OSU~EmEA - 18

Emergy Evaluation of Energy Alternatives

Net Emergy, Emergy Yield Ratio, Energy Return on Energy Invested (EROEI)

A reminder...

	SI multiples for joule (J)									
:	Submulti	ples		Multip	es					
Value	Symbol	Name	Value	Symbol	Name					
10 ⁻¹ J	dJ	decijoule	10 ¹ J	daJ	decajoule					
10 ⁻² J	cJ	centijoule	10 ² J	hJ	hectojoule					
10 ⁻³ J	mJ	millijoule	10 ³ J	kJ	kilojoule					
10 ⁻⁶ J	μJ	microjoule	10 ⁶ J	MJ	megajoule					
10 ⁻⁹ J	nJ	nanojoule	10 ⁹ J	GJ	gigajoule					
10 ⁻¹² J	рJ	picojoule	10 ¹² J	ТJ	terajoule					
10 ⁻¹⁵ J	fJ	femtojoule	10 ¹⁵ J	PJ	petajoule					
10 ⁻¹⁸ J	aJ	attojoule	10 ¹⁸ J	EJ	exajoule					
10 ²¹ J	zJ	zeptojoule	10 ²¹ J	ZJ	zettajoule					
10 ⁻²⁴ J	yJ	yoctojoule	10 ²⁴ J	YJ	yottajoule					
	Common multiples are in bold face									

M.King Hubbert 's Blip

"Reality is merely an illusion, albeit a very persistent one." *Albert Einstein*

Peak Oil...

"My analyses are based upon the simple fundamental geologic fact that initially there was only a fixed and finite amount of oil in the ground, and that, as exploitation proceeds, the amount of oil remaining diminishes monotonically."

M.King Hubbert

two estimates of the amount of oil that will ultimately be produced.

The colored curve reflects Ryman's estimate of $2,100 \times 10^9$ barrels and the black curve represents an estimate of $1,350 \times 10^9$ barrels.

The Epoch of Fossil Fuel Exploitation

(after Hubbert, 1969)

the hydrocarbon age is about over.

Peak Oil...

Global politics for the next two decades...

1st Law of Thermodynamics

Energy cannot be created or destroyed

2nd Law of Thermodynamics

In all real process (transformations), some energy loses its ability to do work

We sometimes speak loosely of energy being "used up" whereas what is really meant is that the potential for driving work is consumed, while the calories of energy inflows and outflows are the same.

Net Emergy...emergy costs of obtaining energy

When the energy cost of recovering a barrel of oil becomes greater than the energy content of the oil, production will cease, no matter what the monetary price may be.

M. K. Hubbert

EYR Defined...

Emergy yield ratio. The ratio of the emergy yield from a process to the emergy costs. The ratio is a measure of how much a process will contribute to the economy.

Summary of Emergy Yield Ratios of Fuels

Without Labor & Services

Fuel at "WellHead"

Fuel Type	EYR (w/out L & S)
Soft Coal	6.2/1
Hard Coal	10.2/1
Crude Oil	13.7/1
Natural Gas	9.9/1

Summary of Emergy Yield Ratios of Fuels

With Labor & Services

Fuel at "WellHead"

Fuel Type	EYR (w/ L & S)	Cost/ E9 J
Soft Coal	4.8/1	\$1.50
Hard Coal	7.0/1	\$1.68
Crude Oil	7.0/1	\$5.72
Natural Gas	7.4/1	\$3.00

We believe that to maintain society's current level of infrastructure and information processing, a minimum net emergy of about 4/1 is required.

Net Emergy...conventional sources

All declining....

Net Emergy....so called renewable sources

Corn...

BioDiesel...

Sean King Thiago Romanelli Rogerio Amoeda Tom Se Ryan B Tyler N

Iner																
		uatio	n for soybe	ean production	Я.	-	(F40									
dy			Units	ax Datax	Emergy/Unit:	Emergy	(E12 sej/yr)¤ A		Tabl	e-3 – Emergy ev	aluati	on of cru	de soybean	oil extraction pr	ocess. भ	
hit			700	700	7)0(7)0(म							
DIL		. ispirat	ion¤ J¤	1.17E+10×	3.06E+04×	357.10			Note	a Itema		Units	Datax	Emergy/Unitx	Emergy (E12	2·sej/yr)
	3 ¤	Irrigation water:	(J ¤	9.39E+09×	6.89E+04×	646.70	(X	biod	Crus	hing Inputs 🗉 👘		7)0(700		7(0)	
	4 ¤	Nitrogen x	g¤	1.11E+04¤	6.80E+10×	755.24	(×	11.		17: Soybeansx		g¤	2.31E+06	4.23E+09		9760.
	5 ¤	Phosphorus)	g¤	3.48E+04×	6.22E+10×	2164.56	× ×	U		18: Electricity ×		J¤	6.69E+08	2.92E+05)		195.
	6 ¤	Potashx	g¤	5.93E+04×	3.11E+09×	184.42	<u> </u>	201		19) Fossil Fuels	0	Jx	2.97E+09	1.11E+05		329
	7¤	Fossil-Fuelsx Herbicidesx	J¤	1.16E+09×	1.11E+05×	128.76				20) Steam X		J¤	2.46E+09	4.57E+04		112
	97	Seeds	9~	7.04E+04×	5.35E+09m	376.64	x x	g):		21 Hexanex		g¤	5.39E+03	5.70E+09		30
	10¤	Machineryx	gx	2.00E+04×	1.13E+10×	226.00	(×	15		22 Labor a		J¤	2.31E+05	7.48E+06		1
	11 ¤	Electricity	J¤	4.09E+07¤	2.92E+05×	11.94 ¤	×	9.4		23: Machinery X		g¤	4.41E+04	1.13E+10		498
	12¤	Laborx	J¤	9.29E+06×	7.48E+06×	69.49 ¤	<u> </u>	J)a		24 Water X		J.≍	4.32E+04	3.06E+043		0
	Outputs	ne. d to:	50	201	70	50	A	1.	Crus	hing Outputs: x		7)0(7) 0 (7)0)	
	13 ×	Soybeansx	gx	2.31E+06×	4.11E+09×	9498.40	× ×	J ,2		25: Crude soybe	an oil	a ga	3.92E+05	2.79E+10		10929
	Ħ							Ja	म							
			34	í.	Sodiu	um .hv	droxide	0.7	_	9.07E+03	- 	70E+	00.7		51.7	70 - 1
41					00010			80		2		70E+	007		51.8	1
Tab	e 2 – E	mergy evalua	ation fo	r-transport	ed soybe	eans. 9	ſ						00			1
Not	ex	ltem)¤		Units	Data)	<	Emergy/Unit:	Emergy	·(E12	sej/yr)¤ 🏛 🚺	r 5	.70E+	09¤		162.4	15 i p i
Bea	n Trans	port Inputs: x		5)))	7)E)		.)¤(7)p)		×	r 5	70E+	09.0		192.6	6 1)
14)	(Soybeansx		g¤	2.31E	+06 :	4.11E+09¤	9498.40)¤	×		405.	40		47.0	
15)	(Truck-transpo	ort-1 ¤	mton-mile	iii 1.62E	+02):	1.62E+12¤	262.44		X P	9, 1	.13E+	10.4		47.0	1.52
Bea	n-Trans	port-Outputste	(5)c)	7)a))a(5)q(X 3)	K 1	.13E+	10¤		89.7	/2 :()
16)	(Soybeansx		giji	2.31E	+06:	4.23E+09¤	9760.84	i a	× .	< 7	.94E+	09 ¤		168.3	3 3:0)
			Pro	cessino.	Outputs	90		10	_			ď				(11)
			41	(Biodie	esel c	silo:	airi	_	3.78E+05	1 3	17E+	10 🗉		11992.1	2:12
			40	,	Courds			120		0.04E+04		405	440		44002.4	
	Table	-4 - Emergy eva	aluation f	or transporte	d-crude-so	vbean o	i l. वर			046404	411	ABET	TTA T		11992.1	2 A A
	Note	⊲ Item≍		Units¤	Datax	Eme	rav/Unit≍ Eme	erav (E12-s	ei/vr)¤	X						
	Oil-Tr	ansport-Inputs:		700	100	100	10.			x on system	1.46	_				
	26 ×	Crude soyb	ean oil≍	g¤	0.00E+05>		100	109	929.06	×						
	27 ¤	Truck-trap		\sim	· · · · ·		1 - C		262.44)	X .		Valu	ie iz	Unit¤	×	
	Oil-Tr	ansport-Out							10	X Jack (D) M		400	14 40 - E4	O and the form	~	
	28 ×						714		50)	× DUIS (PC+IN)	,=,q	482	1.10.5 E1	2 sej/na/yr.4	^	
	- T			YR :	= 1	6	//1		-)	inputs (F)	·=);	717	′1.02⊭ E1	2-sej/ha/yr¤	×	
		\sim		I I X .		.0	///~		6	it-emergy-(Y)	·=);;	1199	2.12 E1	2 sei/ha/yr¤	×	
								stm	ent re	tio /E//R+M	.= 10		1.495 8		¥	
			-	\$				talload	in	tio (/E+MV/P			0.60		Q	
							environmen	anoau	"()				2.00A A		C	
						Emerg	ly∙sustainat	niity ind	ex	THE REPORT	·= ;;		0.05		¤	
									N	et vield (Y/F		1	1.67		a la	

Biomass to Electricity...

Emergy Yield Ratio of willow biomass is barely 1/1

Net Emergy of Non Renewables

20 20 18 18 16 **Energy Yield Ratio** 16 **Energy Yield Ratio** 14 14 12 12 10 10 8 8 6 6 4 4 2 2 Natural Gas (Av 9.... 0 Oilmports... Oill^{AVE, USA 20001} 0 Hydro... HuclearPower Photovolt... OII (AVG) USA 1953) Oillassiansi coallangusa Wood Ethanol... Ocean... oilshale Geothernal Wind Methane Tidal

Net Emergy of Renewables

Decreasing Emergy Yield Ratio of energy resources (USA)

...EYR of both renewable and non-renewable sources

Environmental contributions to electric generation systems

Direct environmental contributions to Bioenergy systems

Direct & Indirect environmental contributions to Bioenergy systems

An important fact of life....

As the Net Emergy declines, the amount of energy used to accomplish the same amount of end use (eg miles driven) increases...

At 5/1 compared to 10/1

You can drive half as far for the same emergy investment

Feasibility of Large-Scale Biofuel Production

Does an enlargement of scale change the picture?

Mario Giampietro, Sergio Ulgiati, and David Pimentel

B iofuels are widely seen as a feasible alternative to oil. Indeed, in 1995 the Clinton Administration proposed amendments to the Clean Air Act that would require gasoline sold in the nine most polluted US cities to contain additives from renewable sources, such as grain alcohol. This move, even if blocked by a three-judge panel of the US Court of Appeals in Washington, DC (Southerland 1995), has helped to focus attention on the question of whether research and development in biofuel production from agricul-

Large-scale biofuel production is not an alternative to the current use of oil and is not even an advisable option to cover a significant fraction of it for fossil fuels. Common examples are ethanol, methanol, and biodiesel. Ethanol alcohol can be obtained by yeast- or bacteria-mediated fermentation of sugar crops, such as sugarcane, sugarbeet, and sweet sorghum, or of starchy crops, such as corn and cassava. It can also be obtained, albeit at lower yields, from cellulose, a sugar polymer from woody crops, through acid or enzymatic hydrolysis followed by fermentation. Methanol can be obtained from wood or woody crops by means of a wood gasification process followed by com-

Indicators of performance	Biodieselª	Ethanol in temperate areas	Ethanol in (sub)tropical areas 80 ^b –130 ^c	
Gross energy yield (GJ · ha ⁻¹ · yr ⁻¹)	20-40	40-80		
Net energy yield (GJ · ha-1 · yr-1)	<0-10	<0-30	50 ^b -70 ^c	
Output-input energy ratio	0.6-1.3	0.5-1.7	3.0 ^b -2.5 ^c	
Net to gross ratio (F*/F1)	<0-0.2	<0-0.4	$0.66^{b} - 0.60^{c}$	
Water requirement $(t \cdot ha^{-1} \cdot yr^{-1})$	4000-7000	4000-8000	10,000 ^b -15,000 ^c	
Energy throughput (net MJ/h)	<0-250	<0-1000	250b-1600c	
Best-performing system	oilseed rape	corn-sorghum	sugarcane	
Land requirement (ha/net GJ)	0.100	0.033	0.020 ^b -0.014	
Water requirement (t/net GI)	500	170	200 ^b -200 ^c	
Labor requirement (h/net GJ)	4	1	4 ^b -0.6 ^c	

Table 1. Typical biofuel production systems from agricultural crops.

"Trans-methylester from oil seeds (sunflower, rapeseed, or soybeans). Sunflower and soybean systems have net energies close to or less than zero.

^bLow-input production, as in the Brazilian ProAlcohol Project (Giampietro et al. 1997a). ^cHigh-input production, as reported in Pimentel et al. (1988).

Water...

Indicators of performance	Biodieselª	Ethanol in temperate areas	Ethanol in (sub)tropical areas	
Gross energy yield (GJ · ha ⁻¹ · yr ⁻¹)	20-40	40-80	80 ^b -130 ^c	
Net energy yield (GI · ha ⁻¹ · yr ⁻¹)	<0-10	<0-30	50 ^b -70 ^c	
Output-input energy ratio	0.6-1.3	0.5 - 1.7	3.0 ^b -2.5 ^c	
Net to gross ratio (F*/F1)	<0-0.2	<0-0.4	0.66 ^b -0.60 ^c	
Water requirement $(t \cdot ha^{-1} \cdot yr^{-1})$	4000-7000	4000-8000	10,000 ^b -15,000 ^c	
Energy throughput (net MJ/h)	<0-250	<0-1000	250 ^b -1600 ^c	
Best-performing system	oilseed rape	corn-sorghum	sugarcane	
Land requirement (ha/net GJ)	0.100	0.033	0.020b-0.014c	
Water requirement (t/net GJ)	500	170	200 ^b -200 ^c	
Labor requirement (h/net GJ)	4	1	4 ^b -0.6 ^c	

Table 1. Typical biofuel production systems from agricultural crops.

"Trans-methylester from oil seeds (sunflower, rapeseed, or soybeans). Sunflower and soybean systems have net energies close to or less than zero.

^bLow-input production, as in the Brazilian ProAlcohol Project (Giampietro et al. 1997a). ^cHigh-input production, as reported in Pimentel et al. (1988).

Water...

Using the numbers in the previous table...

- FL Transportation energy = 9.5 E17 J/yr
- FL water consumption = 11.3 E 12 l/yr
- Water required for ethanol from sugarcane = 200t/net GJ = 2 E5 I/1 E9 J

This is almost 17 times current total water consumption in the State!!!

Lower estimate...(process water only)

Using current estimates of water requirements for ethanol from sugarcane...

- FL Transportation energy = 9.5 E17 J/yr
- FL water consumption = 11.3 E 12 l/yr
- Water required for ethanol from sugarcane = 30t/net GJ = 3 E4 I/1 E9 J

<u>9.5 E 17 J/yr</u> * 3E4 I = **2.9 E 13 liters of water** 1.0 E9 J/ha

...almost 2.5 times current total water consumption in Florida!!

Renewable Ethanol...? LAND

Using current Florida sugarcane production per hectare (70 GJ/ha)

FL gasoline consumption = 9.49 E 17 J/yr

<u>9.49 E 17 J/yr</u> = 1.35 E 7 ha of land

70 E9 J/ha

Florida LAND Area = 1.4 E7 ha

