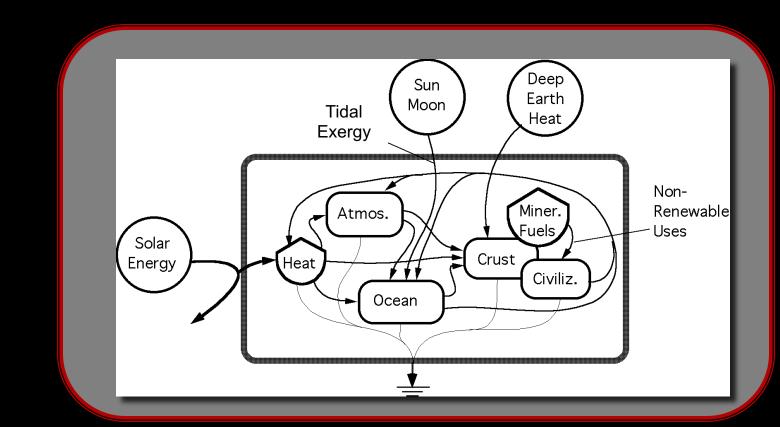
OSU~EmEa – 5

Geobiosphere Emergy Baseline


The history of the Geobiosphere Emergy Baseline Solar equivalents, Solar emergy

Over the past 30 years, the Geobiosphere Emergy Baseline (GEB) has evolved

Emergy Flow (Empower) Supporting The Geobiosphere....

Three main exergy fluxes driving the geobiosphere:

Sunlight, Tidal Exergy, and Deep Heat

Emergy Flow (Empower) Supporting The Geobiosphere....

Total Emergy = Solar Emergy + Tidal Emergy + Deep Earth Heat Emergy

Recall: Solar emergy = exergy flow * transformity

By definition the Emergy from Solar input has transformity =1.0 Transformities for the other two exergy sources <u>must be calculated</u>

 \sim

2

Solar Emergy...

Solar energy flow: 3.93 E24 J/yr based on solar constant 2 gcal/cm²/min, 70 % absorption, and 1.27 E14 m² cross section facing the sun.

Solar Energy = 2cal/cm²/min* 5.26 E5 min/yr*0.70*1.27E14m²*1E4 cm²/m² = 3.93 E24 J/yr

Solar Transformity = 1.0 sej/J by definition

Empower Supporting the Geobiosphere....

Prior to 2000...

Total emergy driving the geobiosphere = 9.44 E24 sej/yr

 Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 1996)

Note	Note Input		Inflow units/yr	Emergy/Unit sej/unit	Empower (E24 sej/yr)
1 Solar i	nsolation	J	3.93 E24	1.0	3.93
2 Deep	earth heat	J	6.72 E20	6,055	4.07
3 Tidal e	energy	J	8.52 E19	16,842	1.44
4	Total				9.44

(Odum H.T., 1996. Environmental Accounting: Emergy and Environmental Decision Making. John Wiley & Sons, New York

Empower Supporting the Geobiosphere....

After 2000...

Total emergy driving the geobiosphere = 15.83 E24 sej/yr

Table 1. Annual Emergy Contributions to Global Processes* (after Odum et al. 2000)

Note	Input	Units	Inflow units/yr	Emergy/Unit sej/unit	Empower (E24 sej/yr)
1 Solar i	insolation,	J	3.93 E24	1.0	3.93
2 Deep	earth heat,	J	6.72 E20	1.20 E4	8.06
3 Tidal e	energy,	J	0.52 E20	7.39 E4	<u>3.84</u>
4	Total				15.83

(Odum, H.T. 2000. Emergy of Global Processes. Folio #2: Handbook of Emergy Evaluation. Center for Environmental Policy, University of Florida, Gainesville, FL.)

Following the Eighth Biennial Emergy Conference (January, 2014), the need for revisiting the procedures and assumptions used to compute the Geobiosphere Emergy Baseline emerged as a necessity to strengthen the method of Emergy Accounting and remove some sources of ambiguity and potential misunderstanding.

The result was three approaches to evaluating the GEB:

Brown, M.T. and S. Ulgiati. 2016. Assessing the Global Environmental Sources Driving the Geobiosphere: A Revised Emergy Baseline. *Ecological Modelling*,

Campbell, D.E. 2016. Emergy Baseline for the Earth: Review of the Science and a New Calculation. *Ecological Modelling*,

De Vilbiss, C., M.T. Brown, E. Seigel, and S. Arden. 2016. A New Approach to the Planetary Emergy Baseline. *Ecological Modelling*, In addition, two other papers address important related issues:

Brown, M.T. and S. Ulgiati. 2016. Emergy Accounting of Global Renewable Sources . *Ecological Modelling*

Siegel, E., M.T. Brown, C. De Vilbiss, S. Arden. 2016. Calculating solar transformities of the four major heat-producing radiogenic isotopes in the Earth's crust and mantle. *Ecological Modeling* But first.... A note about units and nomenclature Since solar energy in no way actually contributes to radiogenic heat, Earth's relic heat, or its tidal energy, it is apparent that these do not embody solar exergy and are inappropriately characterized as solar emergy.

(after Raugei, 2013)

We use different nomenclature for solar <u>equivalent</u> Joule (seJ) and solar <u>emjoule</u> (sej). The units of solar equivalent exergy are solar equivalent joules, abbreviated seJ (note the capital J).

The GEB is expressed in seJs (solar equivalent Joules) whereas subsequent geobiospheric resources (e.g. wind, rain, fossil fuels, etc.) are expressed in sej (solar emjoules).

Solar equivalent joules are abbreviated using a capital "J". A lower case 'j' in sej represents solar emjoule.

An emjoule is not available energy, it is the memory of available energy destroyed in the past, thus we use the lower case "j".

> When describing the ratio of solar equivalent exergy to exergy of tides and geothermal sources the use of the term transformity is incorrect, since transformity is defined as the ratio of solar emergy to available energy (sej/J).

> Since the solar equivalents of tidal dissipation and geothermal heat are not emergy, it is more correct to refer to the ratio seJ/J as a solar equivalence ratio (SER).

seJ = solar equivalent Joule sej = solar emjoule

SER = solar equivalence ratio (seJ/J) T_R = Transformity (sej/J) The Solar Equivalent Baseline

Solar Equivalent Baseline....

	Brown and Ulgiati			Campbell			De Vilbiss et al.		
Inflow	Exergy	SER (seJ J ⁻¹)	Solar Equivalent Exergy (E+24 seJ yr ⁻ ¹)	Exergy	SER (seJ J ⁻¹)	Solar Equivalent Exergy (E24 seJ yr ⁻¹)	Exergy	SER ^b (seJ J ⁻ ¹)	Solar Equivalent Exergy (E24 seJ yr ⁻¹)
Solar energy absorbed	3.60E+24	1	3.6	3.85E+24	1	3.85	3.60E+2 4	1	3.6
Geothermal Flows ^{a.}	9.78E+20	5,500 (985)	5.4 (0.95)	9.20E+20	4,200	3.86		7,500 ^c	
Primordial Heat							5.95E+2 0	10,40 0	5.5
Radiogenic							4.95E+2 0	4600	2.3
Tidal energy absorbed	1.17E+20	26,300 (3800)	3.1 (0.44)	1.11E+20	35,400	3.92	1.17E+2 0	17,70 0	2.1
Total global empower		(12.1 (1.51)		(11.6			13.5

Solar Equivalent Baseline....

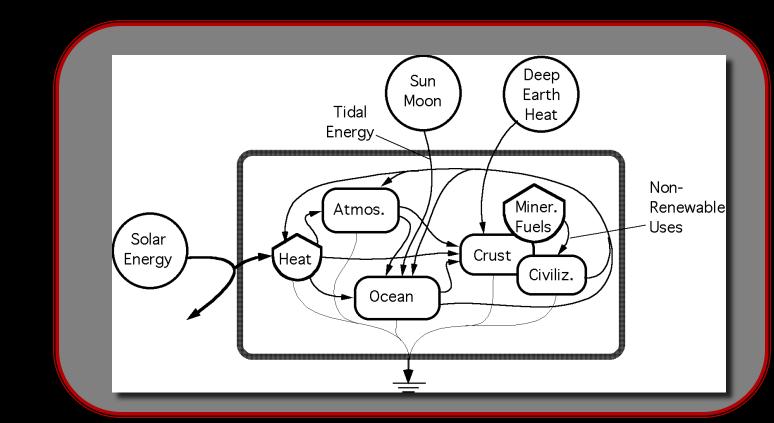
Summary of GEB and Solar Equivalence Ratios and Solar Equivalent Exergy derived from Brown & Ulgiati, Campbell & DeVilbiss et al.

Inflow	Exergy ^{a.}	$\frac{\text{SER}^{\text{b.}}}{(\text{seJ J}^{-1})}$	Solar Equivalent Exergy ^{c.} (E+24 seJ yr ⁻¹)
Solar energy absorbed	3.73E+24	1	3.7
Geothermal Flows	9.52E+20	4,900	4.7
Tidal energy absorbed	1.14E+20	30,900	3.5
Total Global Empower			12.0

a. Average of the exergy from Brown & Ulgiati (2016), Campbell (2016)

b. Average of the SERs from Brown & Ulgiati (2016), Campbell (2016)

c. rounded to two significant figures


OSU~EmEa – 6b

Emergy of Renewable Secondary and Tertiary Global Sources

Computation of primary, secondary and tertiary global renewable sources, Accounting principles to avoid double counting

Emergy Flow (Empower) Supporting The Geobiosphere....

Three main flows driving global processes, Sunlight, Tidal Energy, and Deep Heat

Geobiosphere emergy = Sum of inputs

= Solar Emergy + Tidal Emergy + Deep Earth Heat Emergy

Recall: Solar equivalent emergy = exergy flow * SER By definition the Emergy from Solar input has SER =1.0

SERs for the other two energy sources were computed and equal :

Tide = 30,900 seJ/J Deep Heat = 4,900 seJ/J

Empower Supporting the Geobiosphere....

Total Emergy driving the geobiosphere = 12.0 E24 sej/yr

Summary of GEB and Solar Equivalence Ratios and Solar Equivalent Exergy derived from Brown & Ulgiati, Campbell & DeVilbiss et al.

Inflow	Exergy ^{a.}	SER ^{b.} (seJ J ⁻¹)	Solar Equivalent Exergy ^{c.} (E+24 seJ yr ⁻¹)
Solar energy absorbed	3.73E+24	1	3.7
Geothermal Flows	9.52E+20	4,900	4.7
Tidal energy absorbed	1.14E+20	30,900	3.5
Total Global Empower			12.0

a. Average of the exergy from Brown & Ulgiati (2016), Campbell (2016)

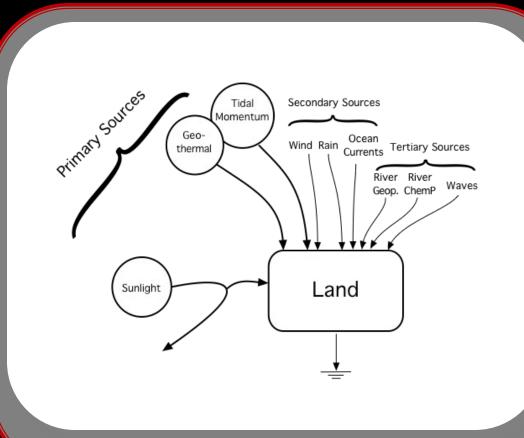
b. Average of the SERs from Brown & Ulgiati (2016), Campbell (2016)

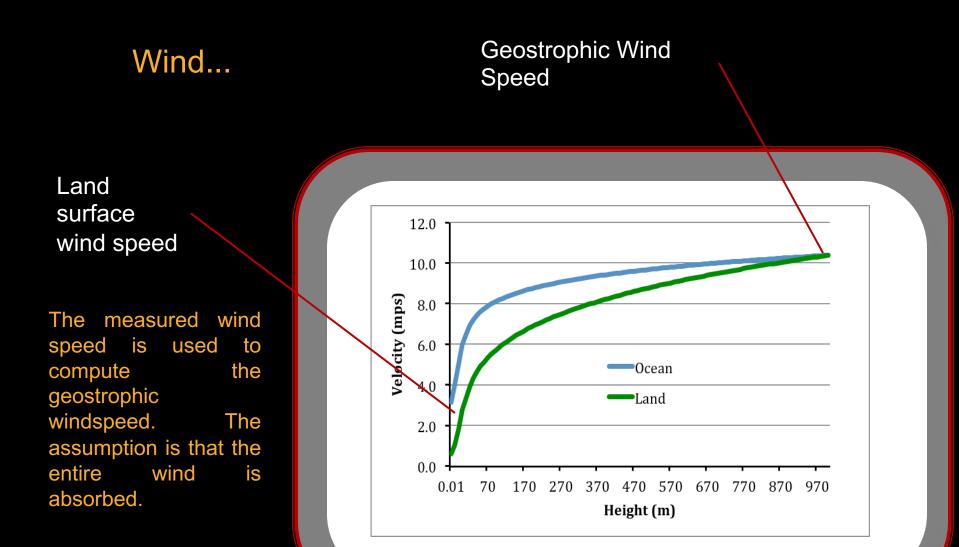
c. rounded to two significant figures

The emergy sources to most systems also include secondary and tertairy renewable sources that are produced by the Geobiosphere Emergy Baseline (GEB)

The secondary renewable sources are: Wind Rain

The tertiary renewable sources are:


River flow, geopotential River flow, chemical potential Waves


Empower Supporting the Land & Water Ecosystems....

IMPORTANT Consideration...

Input Emergy =

Maximum of Sum of the Primary vs. largest of the secondary & tertiary sources

$$E_{wind} = \frac{1}{2} \rho^* K_{GN} V^3 A^* T$$
 (1)

Where,

 ρ = Air density = 1.23 kg m⁻³ K_{GN} = geostrophic drag coefficient 1.26E-3 (over sea) and 1.64 E-3 (over land) taken from Garratt, (1992) A= area = 3.62 E14 m² (ocean), 1.75 E14 m² (land) T = 3.15 E7 s y⁻¹. V = geostrophic wind velocity (V) computed as follows

 $V = V_{ref}^* (Z/Z_{ref})^a \qquad (2)$

Where,

 $\begin{array}{l} V_{ref} = \text{Reference velocity} = 6.64 \text{ m s}^{-1} \text{ (ocean), } 3.28 \text{ m s}^{-1} \text{ (land)} \\ Z_{ref} = \text{Reference height} = 10 \text{ m} \\ Z = \text{height for velocity V} = 1000 \text{ m} \\ \alpha = \text{surface roughness exponent} = 0.01 \text{ (ocean), } 0.25 \text{ (land)} \\ \text{(Manwell et al., 2010)} \end{array}$

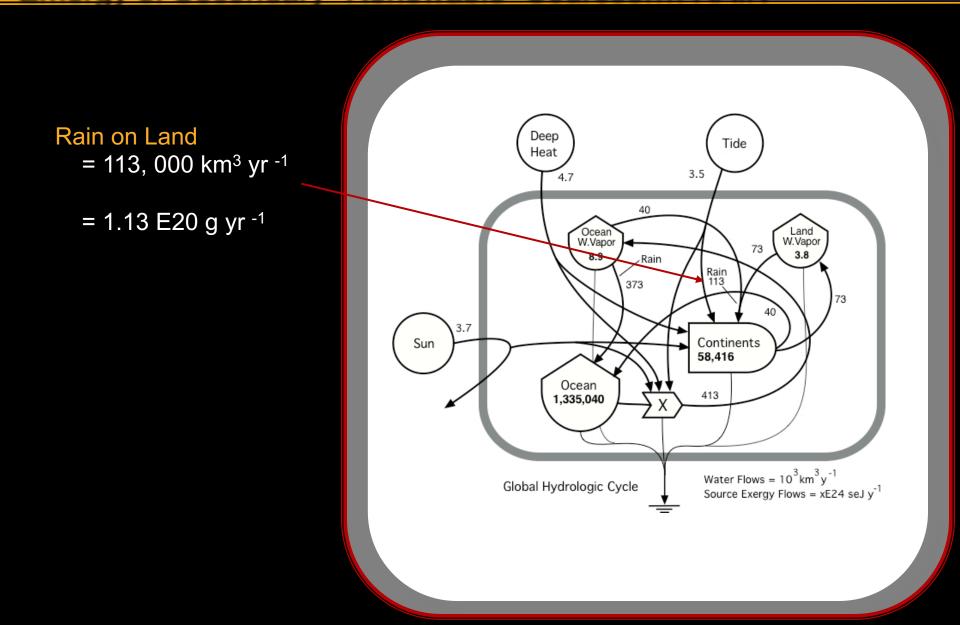
Exergy of wind is computed using Eq.1

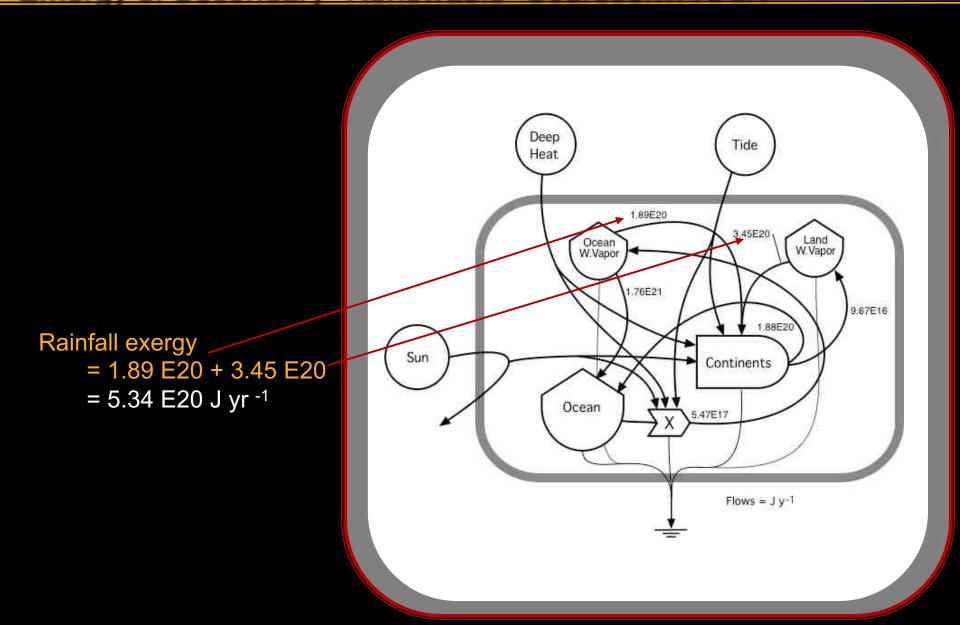
 $E_{ocean} = \frac{1}{2} \rho^* K_{GN} V^3 A^* T = 9.87 E21 J y^{-1}.$

 $E_{land} = \frac{1}{2} \rho^* K_{GN}^* V^{3*} A^* T = 5.25 E21 \text{ J y}^{-1}.$

Tr_{wind} = 12.0 E24 seJ y⁻¹/ (9.87E21 J y⁻¹ + 5.25E21 J y⁻¹) ≈ 790 sej J⁻¹

Gibbs free energy (exergy) in rain is computed by the following formula:


$$\Delta G_i = -\frac{RT}{w} \ln \left(\frac{c_i}{c_{ii}}\right)$$


Where:

- R = universal gas constant; 8.3145 J mol⁻¹
- T = temperature surface; 288.25 k
- w = molecular weight of water; 18.015 g mol $^{-1}$
- c_l = concentration of water in rain; 999,990 ppm

c_{ii} = concentration of water in seawater; 965,000 ppm

$$\Delta G_i = 4.72 \text{ Jg}^{-1}$$

Using the MMULT and INVERSE functions in EXCEL, the inverse matrix of available energy flows (matrix A1,E4) is multiplied by the emergy vector in column F

Volume (km	n3) water						
То♥	S,T,DH	Land	Ocean	L. Atmos	O. Atmos	Vector	
S,T, DH	1.00	0	0	0	0	1.00	
Land	5.79E+24	-113	0	73	40	0.00	
Ocean	6.06E+24	40	-413	0	373	0.00	
L. Atmos	4.93E+23	73	0	-73	0	0.00	
O. Atmos	1.15E+24	0	413	0	-413	0.00	
Available Er	nergy						
							Transformity
то↓	S,T,DH	Land	Ocean	L. Atmos	O. Atmos	Vector	(sej/J)
S,T, DH	1.00	0	0	0	0	1.00	1
Land	5.79E+24	-5.34E+20	0	3.45E+20	1.89E+20	1.00	11982
Ocean	6.06E+24	1.88E+20	-1.95E+21	0	1.76E+21	1.00	4796
L. Atmos	4.93E+23	9.67E+16	0	-3.45E+20	0	1.00	1433
O. Atmos	1.15E+24	0	5.47E+17	0	-1.95E+21	1.00	591

Emergy Driving Terrestrial Rainfall

-1

5.71	F 21		
2.10	E23		
1.41	E22		
4.47	E24		
4.73	E23		
4.73	E23		
<u>1.11</u>	E24		
6.28	E24	seJ	yr

Tidal emergy				
Unit	% Absorbed	Emergy (seJ/y)		
L. Atmos.	0.2%	5.71E+21		
O. Atmos	0.4%	1.33E+22		
Land	6.0%	2.10E+23		
Ocean	93.5%	3.27E+24		
	100.0%	3.50E+24		
Geothermal	emergy abso	rption		
Unit % Absorbed Emergy (seJ,				
L. Atmos.	0.3%	1.41E+22		
O. Atmos	0.7%	3.29E+22		
Land	95.0%	4.47E+24		
Ocean	4.0%	1.88E+23		
	100.0%	4.70E+24		
Solar Emergy	absorption			
Unit	% Absorbed	Emergy (seJ/y)		
L. Atmos.	8.9%	4.73E+23		
O. Atmos	20.9%	1.10E+24		
Land	21.1%	1.11E+24		
Ocean	49.1%	2.60E+24		
	100.0%	5.29E+24		

Exergy_{Rain} = (Mass)(Gibbs energy) = $1.13E15 \text{ g yr}^{1*}4.72 \text{ J g}^{-1}$ = $5.34 E20 \text{ J y}^{-1}$.

Tr_{Terr Rain} = 6.3 E24 seJ y⁻¹/ 5.34 E20 J y⁻¹ \approx 12,000 sej J⁻¹

Solar transformities of SECONDARY global available energy flows							
Item	Global Solar Emergy	Exergy Flux	UEV				
	$(seJ y^{-1})$	(E20 J y ⁻¹)	$(sej J^{-1})$				
Surface wind	1.20E+25	151.20	800				
Rain, Chemical potential	6.30E+24	5.33	12,000				
Ocean currents	1.20E+25	1.58	75,900				

Geopotential Energy in Rivers - The continental runoff, also known as river geopotential is computed from the average annual global river discharge (3.73 E4 km³ y⁻¹) from Dai et al. (2009) and average continental elevation, 797 m (Eakins and Sharman, 2013).

And the energy is given by:

Exergy_{river geopot.} = mass*gravity*height

Energy_{river geopot.} = mass*gravity*height

 $Energy_{river geopot} = 3.73 \ E4 \ km^3 \ y^{-1*1.0E12} \ kg \ km^{-3*9.8} \ m \ s^{-2*797} \ m$ $= 2.91 \ E20 \ J \ y^{-1}$

The emergy of continental rainfall (6.28 E24 seJ/yr.) is the emergy driving river discharge, rather than the GEB, thus the average transformity of river geopotential is:

 $Tr_{river geopot}$ = 6.3 E24 seJ y⁻¹/ 2.91 E20 J ≈ 22,000 sej J⁻¹

Chemical Potential Energy of River Discharge – Global River discharge is $3.73 \text{ E4 km}^3 \text{ yr}^{-1}$ (Dai et al., 2009). We assume an average dissolved solids concentration of 150 ppm, therefore a Gibbs free energy = 4.71 J g^{-1} ; the total available energy in river discharges is as follows:

Exergy_{river chem.pot.} = (Mass)(Gibbs energy) = $3.73 E4 km^3 y^{-1} * 1E15 g km^{-3} * 4.71 J g^{-1}$ = $1.76 E20 J y^{-1}$.

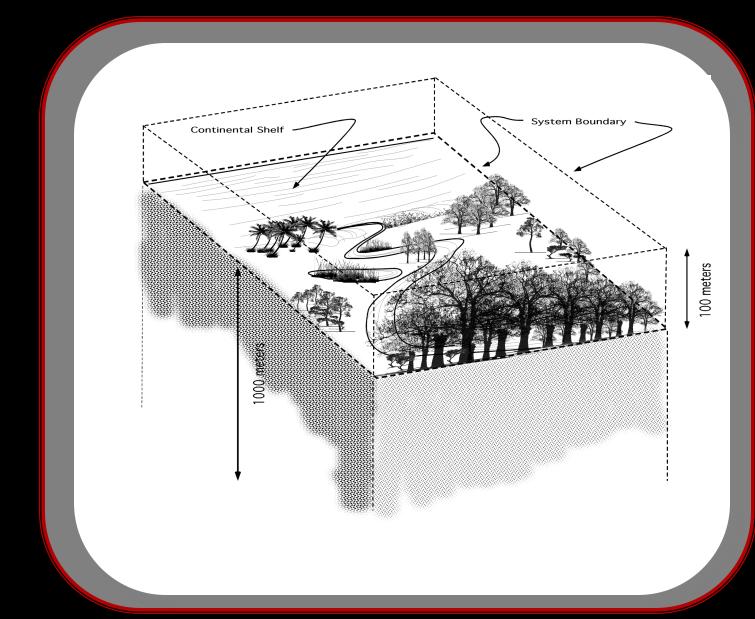
Emergy of continental rainfall is 12.0 E24 sej y⁻¹, thus the transformity of rivers chemical potential is:

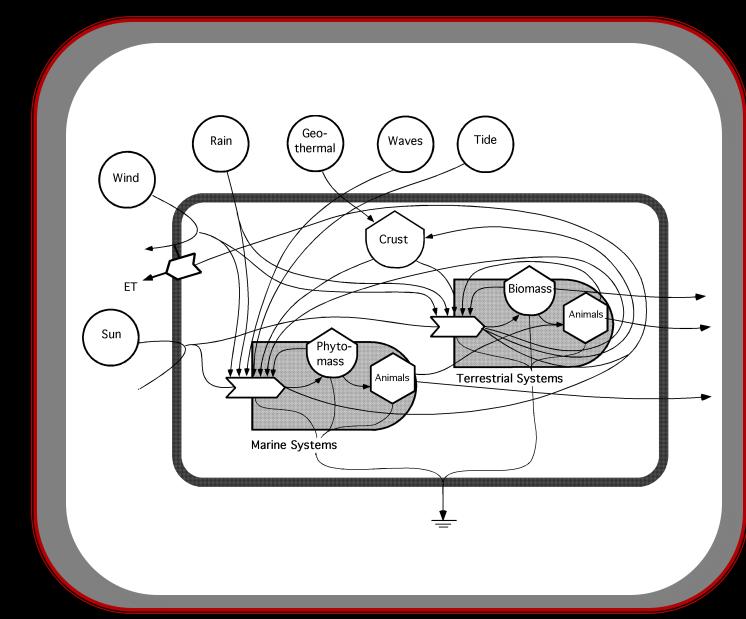
 $Tr_{river chem pot}$ = 6.3 E24 seJ y⁻¹ / 1.76 E20 J ≈ 35,800 sej J⁻¹

Wave Energy - The global transformity for breaking waves is reevaluated using different total wave energy from updated sources since the earlier evaluation by Odum et al. (2000) as follows:

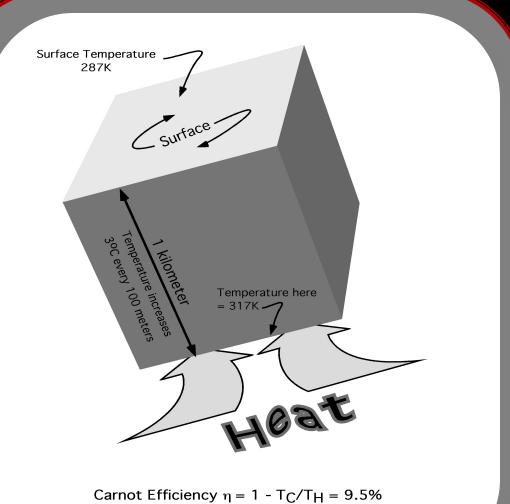
Annual global gross wave power = 6.0 E13 W (Wang and Huang, 2004)

 $Exergy_{waves} = 6.0 E13 W * 3.15 E7 s y^{-1} = 1.89 E21 J y^{-1}$


we assume only the wind energy over oceans driving ocean waves, equal to 8.13E21 J y^{-1} , yielding:


 $Emergy_{wind} = Energy_{wind} * Tr_{wind}$ = 9.87 E21 J y⁻¹* 790 sej J⁻¹ = 7.8 E24 seJ y⁻¹

 $Tr_{waves} = 7.8 E24 \text{ seJ } y^{-1}/1.89 E21 \text{ J } y^{-1} \approx 4,100 \text{ sej } J^{-1}$


Emergy of Tertiary "Renewable" Sources....

Solar transformities of TERTIARY global available energy flows						
T.	Solar Emergy	Exergy Flux	UEV			
Item	$(sej y^{-1})$	(E20 J y ⁻¹)	$(sej J^{-1})$			
River flow, geopotential	6.28E+24	2.91	22,000			
River flow, chemical potential	6.28E+24	1.75	35,800			
Waves absorbed on shore	7.80E+24	18.90	4,100			

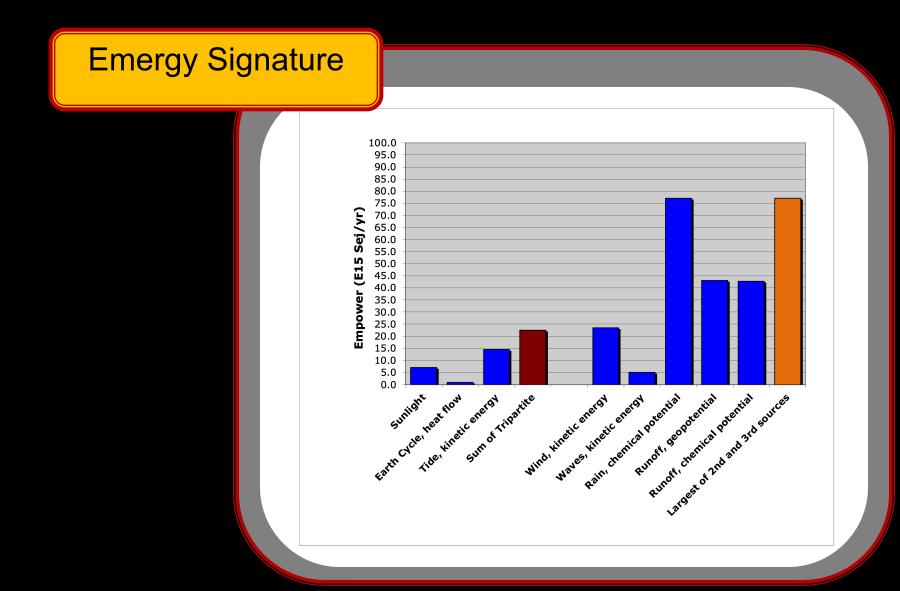
To compute the contribution of geothermal exergy to surface system...only 9.5% of heat is usable.

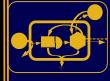
Where:

 T_C is the COLD Temperature (287k) T_H is the HOT Temperature (317K)

Accounting method to avoid double accounting...

- 1. Sum the GEB
- 2. Compare to the largest of the secondary and tertiary inputs
- 3. The largest of these two values is the renewable emergy driving the system.


Table 4. Emergy evaluation of renewable inputs to 1 kilometer of the Earth's surface						
Note	Item	Raw Units		Transformity	Solar Emergy	
				(seJ/unit)	(E15 seJ)	
Global Trip	artite:					
1 Sunligl	nt	7.10E+15	J	1	7.1	
2 Earth C	Cycle, heat flow	2.00E+11	J	4900	1.0	
3 Tide, k	inetic energy	1.63E+11	J	30900	5.0	
	Sum of Tripartite				13.1	
Secondary a	and Tertiary Source	s				
4 Wind, 1	kinetic energy	2.41E+13	J	790	19.0	
5 Waves	, kinetic energy	1.15E+12	J	4100	4.7	
6 Rain, c	hemical potential	3.43E+12	J	12000	41.2	
7 Runoff	, geopotential	1.04E+12	J	22000	23.0	
8 Runoff	, chemical potential	6.28E+11	J	35800	22.5	
Largest of 2nd and 3rd sources					41.2	


Accounting method to avoid double accounting...

- 1. Sum the GEB
- 2. Compare to the largest of the secondary and tertiary inputs
- 3. The largest of these two values is the renewable emergy driving the system.

Table 4. Emergy evaluation of renewable inputs to 1 kilometer of the Earth's surface

Note	Item	Raw Units		Transformity	Solar Emergy
				(seJ/unit)	(E15 seJ)
Global	Tripartite:				
1 Su	unlight	7.10E+15	J	1	7.1
2 Ea	arth Cycle, heat flow	2.00E+11	-}-	4900	1.0
<u> </u>	de, kinetic energy	1.63E+11	J	88800	14.5
	Sum of Tripartite				22.6
Second	ary and Tertiary Source	5			
4 W	ind, kinetic energy	4.53E+13	J	520	23.6
5 W	aves, kinetic energy	1.15E+12	J	4400	5.0
6 Ra	ain, chemical potential	3.43E+12	J	22470	77.1
7 Ri	unoff, geopotential	1.04E+12	J	41240	43.0
8 Ri	unoff, chemical potential	6.28E+11	J	68180	42.8
	Largest of 2nd and 3	rd sources			77.1

Comments?

