NATURAL CAPITAL & ENVIRONMENTAL SERVICES OF THE U.S NATIONAL FORESTS

an Emergy Synthesis Approach

Center for Environmental Policy University of Florida Gainesville, FL 32611

EVALUATION OF NATURAL CAPITAL AND ENVIRONMENTAL SERVICES OF U.S. NATIONAL FORESTS USING EMERGY SYNTHESIS

FINAL REPORT

By

Mark T. Brown and Elliott Campbell

Under Cooperative Agreement Number 05-DG-11120101-019

8 June 2007

CENTER FOR ENVIRONMENTAL POLICY UNIVERSITY OF FLORIDA

PO Box 116350 Gainesville, FL 32611 (352) 392-2425

EVALUATION OF NATURAL CAPITAL AND ENVIRONMENTAL SERVICES OF U.S. NATIONAL FORESTS USING EMERGY SYNTHESIS

Mark T. Brown and Elliott Campbell Center for Environmental Policy University of Florida

EXECUTIVE SUMMARY

Using the environmental accounting system, emergy synthesis, the value of the "Natural Capital" and "Environmental Services" of the U.S. Forest Service (USFS) were quantified on an energetic basis (ca. 2005). Emergy evaluation was done by quantifying all the energy flows required to create a system component or flow and placing it in a common unit, the solar emjoule (sej). Solar emjoules were also expressed in monetary equivalents called "emdollars" (em\$) using a conversion factor based on the ratio of total emergy driving the USA economy divided by the Gross Domestic Product (GDP). In this way, emergy, generally an unfamiliar concept, and emjoules, equally unfamiliar units, were expressed in more familiar units and directly comparable to monetary scales of value.

Much of the natural capital and many of the environmental services of the USFS do not have market values. Emergy synthesis quantifies the value provided by the environment as well as the storages within the environment on an energetic basis, independent from market valuation. Emergy synthesis can establish values for everything, from glaciers to endangered species, on a common baseline, the energy required to make them. These values are external to the economic system, and while comparable, in many cases are not directly transferable. That is to say, emdollar values, for the most part, do not and probably should not, be used to value things within a monetary value system by suggesting that emdollar value is equivalent to prices derived from market actions.

The United States Forest Service System

The United States Forest Service (USFS), part of the US Department of Agriculture, is responsible for 155 National Forests and 20 Grasslands totaling 192.7 million acres of public land in 44 states and Puerto Rico. National forests cover about 5% of the total area of the United States. In addition, they comprise roughly a quarter of all "natural" habitats in the US and are vital for the survival of many endangered and threatened species. Virtually every habitat type of the US is contained within USFS lands, from the Redwoods of northern California to the prairie-potholes of North Dakota.

The USFS is organized into nine regions throughout the country and these nine regions are further divided into 600 ranger districts. The regions are numbered 1 through 10 but in 1965, region 7 was combined with region 9 to form the Eastern Region and the number 7 was dropped from the continuum. The emergy evaluation of the USFS was conducted by evaluating each region and then summing results to obtain overall values for the USFS as a whole. *MTB Draft* ~ 6/8/07 i

Emergy Flows Supporting the USFS

Emergy evaluation of the National Forest Systems first evaluated the flows of energy, materials and services driving the system including renewable, nonrenewable and purchased flows. Since much of the energy driving the forest system is environmental and varies spatially throughout the USA, the emergy evaluations were conducted by USFS region and then summed for the USFS as a whole. The annual emergy driving the USFS was dominated by renewable environmental flows and when converted to emdollars were equal to about em \$42.7 billion (10⁹) in 2005. Nonrenewable resource flows from within the USFS system that were used (soils and organic matter) totaled ^{em}\$89.2 million. Imported emergy in the form of energy, goods and services (fuels, electricity, labor, etc) when expressed in emdollars totaled ^{em}\$9.4 billion. By far the largest imported emergy in 2005 was the emergy in tourists visiting National Forests which totaled ^{em}\$13.3 billion.

Exports, those with and without market values, that originate from USFS lands represent environmental subsidies to the USA economy. They were quantified using emergy and amounted to about em\$263.7 billion in 2005, of which clean water accounted for about 40% and fossil fuels and minerals for about 37%. The remaining 23% was composed of wildlife, hydroelectric power, wood biomass and numerous other smaller "products". By comparison, the economic values of these exports were \$69 billion.

Emergy Value of USFS Assets

The assets or storages of matter, energy, and information of the USFS were evaluated grouping into four categories including: environmental assets (such as forest biomass, water, soils, organic matter, etc.) economic assets (roads, machinery, buildings etc.) geologic assets (fossil fuels and minerals) and cultural assets (Indian artifacts and critical species). In addition to these assets, biodiversity and genetic resources were also evaluated. Environmental assets within the USFS totaled over $^{\text{em}}$ \$5.7 trillion (10¹²) in 2005, while economic assets totaled 84 billion. The emergy in geologic assets when expressed as emdollars was em\$5.7 trillion. Native American artifacts, were estimated to be em\$11.4 trillion in value. The emergy values of the genetic resources on USFS lands were the largest storage of natural capital equal to over em \$154.1 quadrillion (10¹⁵) while biodiversity was valued at over ^{em}\$209.1 trillion. Endangered species on USFS lands were valued at ^{em}\$32.7 trillion. While controversial, these values underscore the importance of the Forest Service's role in protecting genetic resources and biodiversity.

Comparison of USFS Emdollar Values With Economic Values

For comparison with economic values, the natural capital of the USFS was grouped into two categories: capital having market values and capital having no market value. Natural capital for which market values could be generated included forest resources, minerals, water, etc. The economic values of these totaled over \$2.7 billion while the emergy derived emdollar values were about 2.5 times the market value or ^{em}\$9.4 billion. Natural capital with no market values totaled over ^{em}\$2.8 quintillion (10¹⁸) of which the emergy value of geologic formations represented over 94% of this total. *MTB Draft* ~ 6/8/07

Environmental services were also grouped into those with and those without market values. Environmental services for which market values could be generated included research information, water supply, wildlife hunting and fishing, carbon sink, etc. The economic values of these totaled about \$177 billion while the emergy derived emdollar values were about 8.2 times the market value or about ^{em}\$1.4 trillion. Environmental services without market values were estimated to be worth about ^{em}\$52.3 billion, the largest of which was the ground water recharge , totaling ^{em}\$42.7 billion and followed by clean air valued at ^{em}\$6.9 billion.

Emergy Evaluation of Osceola and Deschutes Forests

To demonstrate the application of the methodology at a smaller scale the flows and storages of two forests, Osceola Forest in Florida, and Deschutes Forest in central Oregon were also evaluated. Osceola National Forest is in North Central Florida and consists of 160,000 acres of predominately Slash Pine forest but also features hardwood and Cypress swamps and stands of Longleaf Pine. The Timucuan Indians inhabited the area for 12,000 years disappearing shortly after European contact. The Deschutes National Forest on the east side of the cascade Mountains in Central Oregon is managed in conjunction with the Ochoco National Forest and the Crooked River National Grassland. Deschutes comprises more than half of the combined area, 1.85 million acres of the total 2.5 million within the three management regions. The forest is generally dominated by pines, primarily Lodgepole and Ponderosa but also includes Spruce-Fir forests. This area was historically inhabited seasonally by the Umpqua Native Americans for over 10,000 years.

Deschutes Forest is about 12 times the size of Osceola Forest and has about 5 1/2 times the renewable environmental emergy driving it as compared to Osceola. When driving emergy is expressed as emdollars the total value of the renewable emergy driving Deschutes and Osceola Forests was ^{em}\$386.1 million and ^{em}\$70.2 million respectively. Imported emergy in the form of energy, goods and services when expressed in emdollars totaled ^{em}\$1.3 million in Osceola and about ^{em}\$33 million in Deschutes Forest. By far the largest imported emergy in both forests in 2005 was the emergy in visiting tourists, which totaled ^{em}\$124 million in Deschutes and ^{em}\$6.2 million in Osceola Forest. Exports from Deschutes Forest totaled nearly ^{em}\$2.2 billion, of which the geopotential energy in water leaving the forest represented about 63% of the total. Harvested timber was ^{em}\$38 million. On the other hand Osceola Forest exports totaled ^{em}\$14.7 million of which harvested wood accounted for about ^{em}\$8.9 million.

Summary

In all, the USFS annual budget allocation in 2005 was about \$4.9 billion. When compared to environmental services obtained from USFS lands (^{em}\$1.5 trillion) the budget allocation is about 0.3% of the services and when compared to the values of natural capital the budget is miniscule. Total exports from Forest Service lands were estimated to be worth ^{em}\$299.6 billion or more than 60 times the USFS annual budget in 2005. The value of endangered species found on USFS lands alone were estimated at nearly 6600 times the annual USFS budget, and if the values of biodiversity and genetic resources are included the annual budget appears diminishingly small in comparison.

MTB Draft ~ 6/8/07

EVALUATION OF NATURAL CAPITAL AND ENVIRONMENTAL SERVICES OF U.S. NATIONAL FORESTS USING EMERGY SYNTHESIS

TABLE OF CONTENTS

EXECUTIVE SUMMARY	i
The United States Forest Service System	i
Emergy Flows Supporting the USFS	
Emergy Value of USFS Assets	
Comparison of USFS Emdollar Values With Economic Values	
Emergy Evaluation of Osceola and Deschutes Forests	
Summary	
INTRODUCTION	.1
Background and Concepts	.1
Background and Previous Work	
Significance of the Research	
Strengths and Weaknesses of the Methods	. 3
Plan of Study	.4
METHODS	.5
General Methodology	5
Step 1: Overview System Diagrams	
Step 2: Emergy Synthesis Tables of Flows	
Step 3: Emergy Synthesis Tables of Storages	
Step 4: Calculation of Emergy Indices	.6
Evaluations of the USFS System and Subsystems	
Evaluations Based on Averaged Inputs	
Emergy Intensities Based on Previous Studies.	
Calculation of EIs (Transformities and Specific Emergies)	
Calculation of Emdollar Equivalents	
RESULTS	.8
The US Forest Service System	8
Emergy Flows Supporting the USFS System.	
Emergy in Storages of the USFS System	
Evaluations of Osceola and Deschutes National Forests	
Osceola Forest	
Deschutes National Forest	
Emergy Flows supporting Deschutes and Osceola National Forests	
Emergy Storages of the Deschutes and Osceola National Forests	
SUMMARY AND CONCLUSIONS	
REFERENCES	15
LIST of TABLES	1 ð
Table 1. Definitions of terms Table 2. Previous research projects using emergy synthesis	
Table 2. Flevious research projects using emergy synthesis	
Table 4. Example emergy synthesis table.	22
Table 5. Emergy indices for comparative evaluation	$\frac{1}{23}$
Table 6. Summary of the annual emergy flows supporting the USFS System*	24
Table 7. Summary of the emergy value of US National Forest System assets	26
	1

Table 8. Summary indices for the USFS system and regions (ca. 2005)	.27
Table 9. Annual emergy flows supporting Deschutes National Forest	
Table 10. Annual emergy flows supporting Osceola National Forest	
Table 11. Summary of the value of Deshutes National Forest assets (ca. 2005)	30
Table 12. Summary of the value of Osceola National Forest assets (ca. 2005)	
Table 13. Emergy, emdollar, and economic value of services of the USFS System (ca. 2005)	
Table 14. Emergy, emdollar, and economic value of assets of the USFS System (ca. 2005)	.36
LIST of FIGURES	41
Figure 1. Diagram illustrating calculation of transformities	42
Figure 2. Diagram illustrating method of calculating transformity	43
Figure 3 Map of the US Forest Regions	44
Figure 3. Map of the US Forest Regions Figure 4. System diagram of the US National Forest System,	45
Figure 5. Emergy inflows driving the US Forest Service System	46
Figure 6. Emergy in exports and environmental services from US National Forest System	47
Figure 7. Emergy in exports and environmental services from US Forest lands (ca. 2005)	
Figure 8. Emdollar value of assets on USFS lands (ca. 2005)	
Figure 9. Emergy in assets of the US National Forest System expressed as percent of total	.51
Figure 10. Emdollar value of assets of US Forest Service by region.	.52
Figure 11. Emergy in environmental assets of US Forest System (ca. 2005) by region	.53
Figure 12. Driving emergy basis for Deschutes and Osceola Forests	
Figure 13. Emergy in exports form Deschutes and Osceola National Forests	.56
Figure 14. Assets (natural capital) of Deschutes and Osceola National Forests	.57
APPENDICES	.30
APPENDIX A - 1. Annual emergy flows supporting Region 1 of the US Forest System	.39
APPENDIX A-2. Annual emergy flows supporting Region 2 of the US Forest System APPENDIX A-3. Annual emergy flows supporting Region 3 of the US Forest System	.05
APPENDIX A - 4. Annual emergy flows supporting Region 4 of the US Forest System	./1
APPENDIX A - 5. Annual emergy flows supporting Region 5 of the US Forest System	.//
APPENDIX A - 6. Annual emergy flows supporting Region 6 of the US Forest System	80
APPENDIX A - 7. Annual emergy flows supporting Region 8 of the US Forest System	
APPENDIX A-8. Annual emergy flows supporting Region 9 of the US Forest System	
APPENDIX A-9. Annual emergy flows supporting Region 10 of the US Forest System	107
APPENDIX B-1. Emergy in stored assets of Region 1 - US National Forest System	
APPENDIX B-2. Emergy in stored assets of Region 2 - US National Forest System	
APPENDIX B - 3. Emergy in stored assets of Region 3 - US National Forest System	
APPENDIX B - 4. Emergy in stored assets of Region 4 - US National Forest System	
APPENDIX B - 5. Emergy in stored assets of Region 5 - US National Forest System	
APPENDIX B - 6. Emergy in stored assets of Region 6 - US National Forest System	
APPENDIX B - 7. Emergy in stored assets of Region 8 - US National Forest System	
APPENDIX B - 8. Emergy in stored assets of Region 9 - US National Forest System	
APPENDIX B - 9. Emergy in stored assets of Region 10 - US National Forest System	137
APPENDIX C. Notes to Table 6Summary of annual emergy flows of the US Forest System	140
APPENDIX D - Notes to Table 7. Assets of National Forest System	143
APPENDIX E.1 - Notes to Table 9 - Annual Emergy Flows of Deschutes National Forest	146
APPENDIX E.2 Notes to Table 10 - Annual Emergy Flows of Osceola National Forest	151
APPENDIX F.1 - Notes to Table 11. Emergy Value of Deshutes National Forest Assets	156
APPENDIX F.2 - Notes to Table 12. Emergy Value of Osceola National Forest Assets	158
APPENDIX G - Fauna on USFS Lands	161
APPENDIX H - Emergy of Endangered Species	164
APPENDIX I – Emergy Evaluation of Game Hunting on USFS Lands	165
APPENDIX J -Emergy of Native American Cultural Information	167
APPENDIX K: Emergy in USFS Buildings	169

EVALUATION OF NATURAL CAPITAL AND ENVIRONMENTAL SERVICES OF U.S. NATIONAL FORESTS USING EMERGY SYNTHESIS

Mark T. Brown and Elliott Campbell Center for Environmental Policy University of Florida

INTRODUCTION

Background and Concepts

Increasingly, government agencies like the US Forest Service (USFS) are being questioned regarding the costs and benefits of their annual monetary budgets. While it is relatively easy to account for monetary expenditures for goods and services that support forest operations and the returns that result from them, (e.g. timber or other material resources,) it is quite difficult to evaluate the less tangible environmental services or the natural capital inherent in the forests and grasslands that make up the Forest Service System. Society benefits from these environmental services and the natural capital from which they flow, yet in most monetary accounting schemes they are often not evaluated or if they are, given values based on human preferences.

In this research project we us the concepts and methods of systems ecology (Odum, 1983) and EMERGY (spelled with an "m") synthesis (Odum 1996) to evaluate natural capital and environmental services of the 191 million acres of the National Forest System of the U.S.A. Emergy synthesis is an overview systems approach to evaluating environmental resources and services that includes economic costs and benefits as well as societal and environmental non-market assets and values. We use the term synthesis instead of analysis because the approach is a synthesis, or combining elements into coherent wholes, instead of dissection as the term analysis implies. By evaluating complex systems using emergy methods, the major inputs from the human economy and those that are derived "free" from the environment can be integrated to analyze questions of public policy and environmental management holistically.

Emergy is the available energy of one kind previously required directly and indirectly to make a product or service, and its unit is the emjoule (see Table 1 for additional definitions) (Odum, 1996). Emergy can be used to evaluate, on a common basis, the contributions of complex systems or processes that have coupled hydrologic, geologic, ecological and economic components. For this reason, it is an ideal method for evaluating such complex systems as the US National Forest System, where societal and environmental systems are interacting.

Emergy synthesis is a scientifically based quantitative method for evaluating environmental assets and processes as well as economic products and services. It measures the work of environmental processes and sectors of the economy to produce goods and services on a common basis, the energy required directly and indirectly to produce them. The values obtained using emergy synthesis are independent of human preferences and do not rely on artificial markets or shadow pricing. However, emergy can be expressed in emdollars, defined as the dollars of gross economic product an emergy flow contributes (Odum, 1996). Since emergy is an unfamiliar unit *MTB Draft* $\sim 6/8/07$ 1

of measure, it is often converted to dollars of economic product using a standard multiplier. The strength of emergy synthesis is its ability to evaluate directly both market and non-market goods and services, and when converted to dollars of economic product, it provides a powerful quantitative decision-making tool. Table 1 provides definitions for some important terms.

Different from other methods of energy analysis, emergy synthesis recognizes that each kind of energy has different quality (different transformity). Once transformed to emergy, flows of different energies, materials and services that are usually not comparable can be compared, summed or subtracted, and indices calculated that shed light on the sources of real wealth, losses due to impacts, and relative rates of use and exploitation. The techniques of systems ecology, including systems diagramming, aggregation, and simulation of macroscopic models of system properties provide potential for synthesis of complexity (Odum et al., 1998). The methods of emergy synthesis provide a quantitative decision making tool.

Background and Previous Work

Emergy Synthesis and Ecological Economics are emerging new fields of interest in environmental policy. The importance of these fields relates to valuing natural resources and the unmonied contributions of the environment to the economy. Over the past two decades faculty, students, and associates of the Systems Ecology Program and the Center for Environmental Policy in the Department of Environmental Engineering Sciences, University of Florida have developed and refined these theories of environmental value that are independent of human preferences. The theories and methods have been applied in wide array of systems to better understand issues related to resource management and to evaluate alternative solutions to policy questions. Table 2 lists previous research projects using emergy evaluations of resource management issues and questions.

Significance of the Research

All parties involved with Forest Service lands are concerned with finding solutions to the many social, economic, and environmental issues associated with their management. Trade offs between critical habitat and endangered species, quality and quantity of water resources, ecosystem services, aesthetic values and economic use are a few of the common issues recognized by agencies and the general public. While a common concern, is to insure the sustainability of these valuable ecosystems and the economic enterprises they support. As a result, methods for evaluation of management decisions should encompass environmental as well as economic systems and be able to evaluate the environmental consequences of management decisions that are guided by sometimes conflicting social values.

Emergy evaluations made to determine basic questions concerning the emergy characteristics of the USFS System provide a way to value resources and environmental services that is independent of human preferences and willingness-to-pay. Evaluation can guide land and water management in regard to developing new uses, controlling watersheds, and carrying nutrients and particles to receiving waters. Emergy synthesis may help define difficult choices on uses of water for drinking or recreation, retention of scenic resources, and conservation of breeding places for wildlife.

The results of this project allow the expression of ecological and economic values within a common framework and demonstrate an alternative valuing system and its applicability to environmental management decision making.

Strengths and Weaknesses of the Methods

The greatest strength in using emergy as a measure of value is that all things are put on a common scale that is objective and scientific. Products and processes in the economy of humanity and nature are valued according to what it took to make them or what they can do in use rather than what people think they are worth. This results in the ability to compare the effects of alternatives across broad and diverse categories of things. Because the economic and ecological consequences of social value choices are expressed on a common scale, emergy synthesis eliminates the uncertainty associated with the controversy over how to quantify and compare these different values.

Perhaps the greatest problem in using emergy synthesis is that it is a complex method that requires broad knowledge and special training by its practitioners. Emergy synthesis is also a fairly new methodology that at first received fierce opposition in the economic community. As the true relationship between our economy and its support environment has become more apparent, economists have become more open to new ways of thinking as illustrated by the development of a new field, ecological economics and the increased interest in alternative valuing systems.

A significant problem in using emergy synthesis is the fact that it is a "donor system of value". There are two general methods by which value can be determined (1) receiver based systems e.g. the market economy based on human willingness to pay and (2) donor based systems which are based on the production cost of goods and services (Odum, 1996). Donor based methods of determining value are not usually employed for the determination of value in western society where value is invariably associated with the subjective idea of utility to humans. Emergy synthesis is a donor based method for determining value. Since western society is more inclined to measure value from a receiver based perspective it has been difficult to alter this mind set for environmental management decisions that require a broader, integrative viewpoint. A main impediment to the use of emergy synthesis in decision making is society's reluctance to change value systems under the perceived notion that willingness-to-pay works in the market place, and therefore it can be made to work in the public policy arena.

Values determined by a donor method are based on objective facts and scientific principles. Both objective and subjective values can be determined using statistical methods with known limits of confidence and both measures are dependent on the accuracy of the information used in the determination. Donor based estimates of value are limited by the available information and these limits may be less confining than in the receiver based method since receiver based estimates of value are limited by the information available to the general public which is canvassed to obtain the value estimates.

MTB Draft ~ 6/8/07

Plan of Study

To place the values of the natural capital and environmental services of the Forest Service System in perspective, emergy synthesis of the main storages and the main ecological processes were performed. Using an eco-region approach to quantifying storages and processes, values were quantified for each of the nine forest service regions. In addition, each regional system's flows of purchased inputs, labor, and tourism activity were also evaluated. The data from the regions was summarized in an overall evaluation of the USFS system. This evaluation included the flows of renewable and nonrenewable inputs, purchased inputs and exports for the system. To provide a more detailed assessment, two case studies of selected forests (Osceola, in south east region, and Deschutes in the northwest region) were also evaluated.

In a final comparative analysis, emergy of environmental services and natural capital of the USFS system, expressed as emdollars were compared to economic values derived using both market and non-market methodologies. Table 3 lists the work plan carried out over the year and 6 months of the project.

METHODS

General Methodology

The general methodology for emergy synthesis is a "top-down" systems approach (Odum, 1996). The first step is to construct systems diagrams that are a means of organizing thinking and relationships between components and pathways of exchange and resource flow. The second step is to construct emergy synthesis tables directly from the diagrams. The final step involves calculating emergy indices that summarize and relate emergy flows of the economy with those of the environment, and allow the prediction of economic and environmental viability. Given next is further elaboration on the methods used in this study.

Step 1: Overview System Diagrams

A system diagram in "overview" was drawn first to put the Forest Service System in perspective, to combine information about the system from various sources, and to organize data-gathering efforts. The process of diagramming the system of interest in overview ensured that all driving energies and interactions were included. Since the diagram included both the economy and environment of the system, it is like an impact diagram which shows all relevant interactions. The Forest Service System diagram was used as a guide to construct a table of data requirements for the emergy synthesis. Each pathway that crosses the system boundary was evaluated.

Step 2: Emergy Synthesis Tables of Flows

Emergy evaluations of systems are carried out by accounting for the flows of materials, energy, and information that support the system. An emergy synthesis table with the main headings and organization shown in the example of Table 4 is used to organize data and maintain consistency.

The evaluation of the USFS system accounted for all the flows of material, energy, information and money that support the USFS system on an annual basis at several scales of analysis. First, the flows of the larger system within which the Forest Service is embedded (the emergy economy of the USA) were evaluated. This was necessary in order to calculate needed multipliers and ratios that were used in the evaluation of the USFS system. Second, the flows of each of the FS regions were evaluated. This was necessary in order to take into account geographic differences in driving energies and storages throughout the USFS system. Then two National Forests (Osceola and Deschutes) were evaluated in detail to provide additional insight into variations between flows and storages that result from the dramatic differences in landscape setting.

Step 3: Emergy Synthesis Tables of Storages

The storages of natural and economic capital were evaluated for the USFS system and Deschutes and Osceola Forests. An Emergy synthesis table of storages like that shown in Table 4 for flows was constructed for each system. The column headings in the storage table are the same as those in the flows table. To calculate the emergy of stored quantities (storages) of environmental resources, for instance wood biomass or soils, it was necessary to sum the emergy of all of the inputs and then multiply by the time it takes to accumulate the storage. We estimated the time required from the literature. To calculate the emergy of economic storages, for instance buildings and roads, we summed all the inputs of energy, materials and labor required to produce them.

Step 4: Calculation of Emergy Indices

Several indices, which are calculated from the flows of emergy supporting processes and products are used to provide perspective when compared to other processes and products. Once the emergy synthesis tables were completed, emergy flows were summarized into total renewable flows, total nonrenewable, and total purchased. The indices are defined in Table 5 and include ratios that relate purchased emergy to renewable emergy, the intensity of emergy use, a ratio of yield to cost, and a ratio that provides an index of environmental stress.

Evaluations of the USFS System and Subsystems

Evaluations Based on Averaged Inputs

Generally emergy evaluations of systems are conducted using average annual flows. For renewable inputs to the USFS system, such as solar energy, tidal energy and rainfall, etc. annual averages were used. For economic inputs, we used the most recent annual data available from USFS sources. Thus, while averaged flows were used for the renewable inputs, the data for economic flows were not averaged, but consisted of annual flows for a recent fiscal year. The result is an emergy evaluation of the USFS system as if it was in a steady state during the most recent year for which data were available. We used data from several recent years, but the dominate annual flows were for the year 2005. Thus the time frame for this analysis of the USFS system is ca. 2005.

Emergy evaluation tables contain line items for each of the actual flows of renewable energy inputs, nonrenewable resources consumed from within the USFS system (eg soils eroded), and imported energies, materials, and labor supporting the system and the exports from the system. Raw data on flows and storage reserves were converted into emergy units, and then summed for a total emergy flow to the system. Renewable inputs driving the system that come from the same source were not added, to avoid double counting. While each of the renewable driving energies were evaluated separately, only the larger input was utilized as the driving renewable input. Since each of the renewable inputs is derived from the geobiosphere's web of interactions and they are ultimately derived from the same global sources (ie sun, tidal momentum, deep heat) if the renewable inputs to the USFS were added together, the result would double count the global driving energies. In keeping with methods developed by Odum (1996) the largest of the renewable inputs was utilized as the driving renewable of the renewable inputs was utilized as the driving the global driving energies.

Emergy Intensities Based on Previous Studies

Emergy accompanying a flow or storage of something (energy, matter, information, etc.) is easily calculated if the Emergy Intensity (EI) is known. Instead of calculating EIs new with each evaluation, standard practice is to use EIs calculated in previous studies. Whenever an evaluation of a process or service is done, one of the outputs of the evaluation is the calculation of a EI.

These are complied in a database at the Center for Environmental Policy at the University of Florida (CEP, 2006), currently unpublished.

In this study, EIs for common goods services and information were compiled from previous evaluations. Flows and storages expressed in their usual units were multiplied by the emergy per unit of that flow or storage obtained from other studies. For example, the flow of fuels in joules per time was multiplied by the transformity of that fuel (emergy per unit energy in solar emjoules/joule). In like manner, the mass of a material input was multiplied by its specific emergy (emergy per unit mass in solar emjoules/gram). The emergy of a storage is readily calculated by multiplying the storage quantity in its usual units by its unit emergy value.

Calculation of EIs (Transformities and Specific Emergies)

Transformity and specific emergy are unit emergy values calculated as the total amount of emergy required to make a produce or service divided by the available energy of the product (resulting in a transformity) or divided by the mass of the product (resulting in a specific emergy). Figures 1 and 2 illustrate the method of calculating a transformity first in equation form (Figure 1) and then with example numbers (Figure 2). The transformity of the product is the <u>emergy</u> of the product divided by the <u>energy</u> of the product (units are sej/J). If the output flow is in mass then the specific emergy of the product is the emergy of the output divided by the mass (units are sej/g)

Several EIs were calculated as part of this study. They include transformities for: biodiversity, archeological artifacts, and endangered species. A transformity is calculated by first quantifying all the emergy used in making the product or service and dividing by the energy of the product or service. These EI evaluations are included as appendices to the report (Appendices B, C, D, and E.

Calculation of Emdollar Equivalents

Emdollars are a measure of the money that circulates in an economy as a result of a flow of emergy. The emdollar (^{em}\$) value of a flow of energy material or information is calculated by first determining the emergy of the flow and then converting to emdollars using a standard conversion factor. For average goods and services the conversion factor is obtained by dividing the total emergy driving an economy by the economy's Gross Domestic Product. Obviously this is an average value for an entire economy and can only be used to provide perspective suggesting that on the average for every dollar circulating in the economy there is so much emergy driving it. Total emergy driving the economy in the USA (ca. 2005) was 1.89 E25 sej and the GDP in that year was \$9.8 E 12 thus the ratio of emergy to dollars was

$$sej/\$ = \frac{1.89E25}{9.8E12} = 1.9E12sej/\$$$

RESULTS

The results of this analysis of the Forest Service system include emergy synthesis of the storages (natural capital) and main ecological processes (environmental services) of Forest Service lands by region and for the entire USFS system. Emergy synthesis of the Osceola and Deschutes Forests are also included. Comparisons between regions, and between the two forests, are drawn and then compared to the USFS system as a whole. Finally a synthesis table is presented comparing economic and emdollar values of market and non-market environmental services and natural capital.

The US Forest Service System

Given in Figures 3 and 4 is a map and a systems diagram of the US Forest Service System respectively. In the systems diagram, driving energies are arranged along the outside with flows that cross the system boundary. Components include: 1) the forest ecosystems with native and no-naïve vegetation, insects and pests, wildlife and fish and a storage representing biodiversity; 2) surface water; 3) geologic structure an minerals; 4) soil and soil water; 5) a component representing tourism containing a storage of "image" and tourists: 6) the capital assets of the US Forest Service system.

Emergy Flows Supporting the USFS System

Emergy evaluation tables for each of the 9 regions of the US Forest Service Systems are given in Appendix A. A summary table of the annual flows of emergy supporting the US Forest Systems as a whole (ca. 2005) is given in Table 6. The flows of energy, material and money that cross the USFS system boundary are listed as line items in the table. Each is multiplied by its Emergy Intensity (EI) to convert all flows into emergy. Finally, in the last column emergy flows are converted to emdollars, which represent dollar equivalents of the emergy flows. In this way comparisons can be made between monetary flows and the other flows of emergy and material that support the USFS system.

The table is divided into six major categories of flows: Renewable Resources (annual inflows that result from overall global processes); Indigenous Nonrenewable Resources (resources such as soils that are "used" n support of USFS processes); Imported Resources (purchased energy, material, and labor as well as the inflows of tourists); Economic Payments Received (the flows of money received form various sources); Exports (materials, energy, and information that is exported from the USFS system); and Economic Payments Made (monetary payments made by USFS system to outside parties).

The annual driving emergy flows (ca. 2005) of the USFS system in Table 6 are summarized in billions of Emdollars in the bar graphs in Figure 5. The renewable inputs (top graph) were dominated by the chemical potential emergy in rainfall totaling ^{em}\$42.7 billion/yr. Not all the rain is "used" within the lands of the forest service system as some is exported, Therefore transpiration is shown in the graph as the emergy in rainfall that was used in primary production (valued at about ^{em}\$19 billion/yr). Water also has a geopotential emergy that is used as it runs off the lands to lower elevations and is shown as the second largest input that was used within the *MTB Draft* ~ 6/8/07

forest service system (about ^{em}\$26.6 billion/yr). The emergy in waves (about ^{em}\$16.3 billion/yr) was a relatively significant input to the overall system, derived from Region 10. Earth cycle (^{em}\$13.3 billion/yr) is the geologic inputs that were responsible for uplift and geologic concentrations of minerals expressed on an annual basis. Other inputs shown are Sunlight (^{em}\$2.3 billion/yr), wind (^{em}\$4.4 billion/yr)), Hurricanes (^{em}\$1.2 billion/yr), and tidal energy (^{em}\$2.5 billion/yr)

The imported nonrenewable sources (bottom graph, in Figure 5 - note the difference in scale of the Y axis) are dominated by the influx of tourists. The emergy expended by tourists represented an input of very high quality energy to the USFS system and amounted to ^{em}\$13.3 billion in 2005. The next largest inputs were expenditures for miscellaneous services (^{em}\$4.9 billion) and labor (about ^{em}\$4 billion). Interestingly, nonrenewable inputs like petroleum products, purchased goods and electricity amounted to only about ^{em}\$0.48 billion combined. The flows that dominate the USFS system are all inputs associated with human inputs either as labor, services in purchased goods (Misc. services) or tourist time.

Figure 6 summarizes the values of exports from the entire USFS System (ca. 2005) that are tabulated in Table 6. Exports include both resources that have market values (wood, fossil fuels, minerals etc) and those that do not normally have them (e.g. chemical potential and geopotential energy of water). All exports were evaluated in the table in emergy terms and then converted to emdollars. The top graph in Figure 6 shows the most important exports and their percentages of the total. Geopotential and chemical potential energy of water accounted for about 40% of total exported value from Forest Service lands. Minerals and fossil fuels accounted for about 37% of all exports. Image, which was estimated as the percent of the environmental and economic assets that tourists experience (0.1%) during visits to Forest Service lands, amounted to 1.8% of total exports. Harvested wood accounted for about 1% of exports, while wildlife and fish harvested from Forest Service lands was about 9%. Finally hydroelectric power generated on Forest Service lands accounted for about 11% of exports.

Total emdollar value of exports and environmental services from Forest Service lands (ca. 2005) equaled about ^{em}\$263 billion per year (Table 6 and Figure 6). Chemical and geopotential energy in water totaled about ^{em}\$103 billion/yr, while the value of fossil fuels and minerals exported was about ^{em}\$65.3 billion/yr. Harvested fish and wildlife were valued at ^{em}\$23.5 billion/yr, while harvested wood and firewood was valued at ^{em}\$2.9 billion.

Shown in Figure 7 are pie charts of the distribution of exports for each of the regions of the US Forest System (ca. 2005). In general, the chemical and geopotential energy in water are the largest exports from Forest Service lands in the regions, with the exception of Region 3 where minerals are the largest. The value of the chemical potential of water is in its support of life processes in downstream riverine and estuarine systems and to a lesser extent, support of terrestrial ecosystems. Geopotential energy of water leaving National Forest lands, on the other hand, is valuable for the physical work that it performs (including the important services of pulsing) which helps to transport and distribute sediments, nutrients and organic matter.

Emergy in Storages of the USFS System

Emergy evaluation of storages of assets within the US Forest Service System (ca. 2005) are summarized in Table 7 and Figures 8 and 9 Emergy evaluations of assets by regions are given in Appendix B. The storages of assets on Forest Service lands are grouped into four categories: environmental assets, economic assets, geologic assets, and cultural assets. Environmental assets totaled ^{em}\$5.7 trillion of which glaciers were the largest contributor (^{em}\$2.1 trillion). Tree biomass was next largest contributing about ^{em}\$1.5 trillion to total environmental assets. Soil organic matter was valued at about ^{em}\$983 billion Wildlife was contributed about ^{em}\$566 billion Ground and surface water together were valued at about ^{em}\$512 billion.

Economic assets were dominated by roads. Combined the roads on the USFS lands were valued at ^{em}\$79.6 billion ^{em}\$ of which gravel roads were by far the largest. Buildings, machinery and office equipment accounted for ^{em}\$4.6 billion.

Critical species was the singled largest asset on USFS lands and dominated the geologic and cultural assets category. The value of critical species was ^{em}\$32.7 trillion. Fossil fuels were valued at about ^{em}\$4.1 trillion ^{em}\$ while minerals totaled about ^{em}\$1.6 trillion. Finally, the value of Indian artifacts totaled about ^{em}\$2 trillion.

Figure 9 shows the assets of the USFS as percentages of totals. In the top chart, only environmental assets are given. In the middle chart both environmental assets and nonrenewable assets (fossil fuels and minerals) are shown together. In the bottom chart all assets are combined.

Emdollar values of assets by region are shown in Figure 10. Environmental assets are shown in the top graph. Region 10 had the highest emdollar value of environmental assets (^{em}\$2.58 trillion) as a result of the prevalence of glaciers. Emdollar values of economic assets were generally about one to two orders of magnitude lower than the environmental assets (middle graph)

The pie charts in Figure 11 for each of the USFS regions show the percent of total environment assets by category. In general, tree biomass and soil organic matter comprised the largest percentages of total value in all the regions except Region 10 which was dominated by emergy value of glaciers. Ground water comprised from 8% to more than 28% of the total value of assets on USFS lands. While surface water was relatively unimportant in most regions, it contributed about 19% of the total value of environmental assets in Region 9.

Comparative indicators and indices for the USFS as a whole and for each of the regions are given in Table 8. The first three rows summarize renewable, indigenous nonrenewable, and imported emergy flows which are the main flows used to calculate most of the indices that follow. In general the USFS system, is dominated by renewable inputs with 41% renewable for the USFS system as a whole, and ranging from 41% to 96% renewable for the regions. The emergy yield ratio, which is a measure of the total emergy use per unit of emergy invested from the economy was about 3/1 for the USFS as a whole and between 1.7/1 (Region 2) and 26/1 (Region 10). The ratio of imports to exports for the USFS as a whole is quite low (0.09/1) and varied between 0.04/1 (Region 10) and 0.32/1 (Region 8). Emergy return on investment, which is a ratio of the exported environmental services to the emergy value of the inputs from the economy averaged 11.4/1 for the USFS system as a whole and varied between 3/1 (Region 8) and 27.6/1 (Region 10).

Evaluations of Osceola and Deschutes National Forests

The Osceola and Deschutes National Forests represent rather stark contrasts. Osceola is in the southeastern coastal plan, dominated by slash pine flatwoods, while Deschutes is on the eastern side of the cascade Mountains, has relatively high topographic relief, and is dominated by Lodgepole and Ponderosa Pine. Brief descriptions of each Forest follow.

Osceola Forest

Osceola National Forest is in North Central Florida and consists of 160,000 acres of predominately Slash Pine forest but also features hardwood and Cypress swamps and stands of Longleaf Pine. There are 174 km² of hardwood/Cypress swamp, 97 km² of Longleaf, and 376 km² of Slash pine. The topography is very flat, with an elevation range of about 30 meters and an average of approximately 100 meters above sea level. Osceola is managed for multiple uses. It produces timber, harbors wildlife, and provides people with hiking, hunting, fishing opportunities. The Timucuan Indians inhabited northern Florida and southern Georgia for 12,000 years; Osceola NF contains over 300 sites with evidence of the Timucua people, many of which are unexcavated. Osceola is the site of the yearly Olustee Civil War reenactment, attracting thousands to the forest.

Deschutes National Forest

The Deschutes National Forest in Central Oregon is managed in conjunction with the Ochoco National Forest and the Crooked River National Grassland. Deschutes and comprises more than half of the combined area, or 1.85 million acres of the total 2.5 million within the three management regions. It is on the east side of the Cascade Mountain Range, which extends from Southern British Columbia, Canada to northern California. Deschutes NF was established in 1908 and split into the Ochoco and Paulina National Forests in 1915. Deschutes has an average elevation of 2180 meters, varying from 750 to over 3000 meters in the Cascades. Deschutes is one of the most heavily recreated National Forests, receiving over eight million tourists a year and is the site of recreation opportunities such as ski resorts, snowmobile tracks, developed campgrounds, as well as wilderness areas and the Newberry National Volcanic Monument. Extensive lava fields are evidence of eruptions as recently as 500 years ago. The forest is generally dominated by pines, primarily Lodgepole and Ponderosa but also includes Spruce-Fir forests, mall clusters of mixed hardwood stands, and Mountain Hemlock stands. Deschutes is home to 233 species of mammals, 62 species of reptiles and amphibians, hundreds of species of birds and thousands of species of insects. The area was historically inhabited seasonally by the Umpqua Native Americans for over 10,000 years.

Emergy Flows supporting Deschutes and Osceola National Forests

Emegy evaluation tables for Deschutes and Osceola National Forests are given in Tables 9 and 10. As in the emergy evaluation of the National Forest System, the evaluation tables are organized into renewable flows, nonrenewable flows, imports, and exports. Economic payments *MTB Draft* ~ 6/8/07 11

received and made are also included. Figure 12 shows the driving emergy of Deschutes and Osceola Forests as percent of total.

Deschutes Forest is about 12 times the size of Osceola Forest and has about 5 1/2 times the driving renewable environmental emergy as compared to Osceola (Tables 9 and 10). When driving emergy is expressed as emdollars the total value of the renewable emergy driving Deschutes and Osceola Forests was ^{em}\$386.1 million and ^{em}\$70.2 million respectively. Imported emergy in the form of energy, goods and services when expressed in emdollars totaled ^{em}\$1.3 million in Osceola and about ^{em}\$33 million in Deschutes Forest. By far the largest imported emergy in both forests in 2005 was the emergy in visiting tourists which totaled ^{em}\$124 million in Deschutes and ^{em}\$6.2 million in Osceola Forest. Exports from Deschutes Forest totaled nearly ^{em}\$2.2 billion, of which the geopotential energy in water leaving the forest represented about 63% of the total. Harvested timber was ^{em}\$38 million (see Figure 13). On the other hand Osceola Forest exports totaled ^{em}\$14.7 million of which harvested wood accounted for about ^{em}\$8.9 million (see Figure 13).

Emergy Storages of the Deschutes and Osceola National Forests

The assets of the two Forests were nearly equal despite the difference in their relative sizes (Tables 11 and 12 and Figure 14). Ecological assets in the Deschutes and Osceola Forests totaled ^{em}\$19.9 billion and ^{em}\$16.6 billion respectively. Soil organic matter and tree biomass were the two largest assets categories in Deschutes (59.3% and 30.6%) while the largest ecological assets in the Osceola Forest were the ground water aquifer (49.8%) and peat (28.0%). Roads dominated the economic assets of both Forests totaling ^{em}\$3.1 billion and ^{em}\$1.0 billion in Deschutes and Osceola respectively. We had data to estimate the quantity of phosphate in subsurface formations in the Osceola Forest which totaled ^{em}\$216.6 billion. Cultural assets which included Native American artifacts and critical species totaled ^{em}\$2.2 trillion and ^{em}\$174 billion for the Osceola and Deschutes forests respectively.

SUMMARY AND CONCLUSIONS

The assets of the USFS system can be divided into environmental assets, which are sometimes called natural capital, economic assets (roads buildings etc.); geologic assets, often referred to as nonrenewable resources; and what we have termed cultural assets, or storages that have very high value because of their rarity. By far, the very rare artifacts and critical species have the highest emdollar values, totaling ^{em}\$11.4 trillion and ^{em}\$32.7 trillion respectively. Estimates of the emdollar value of biodiversity suggest they are worth ^{em}\$209 trillion and genetic resources on USFS lands are valued at ^{em}\$154.1 quadrillions. Extreme values such as these are indicative of values outside the moneyed economy. Since emergy is a measure of "replacement value" it is not extraordinary that the genetic resources have such extreme values.

Table 13 summarizes the emdollar and market values for a number of services (flows) of the US Forest Service System grouped as those with market values and those having no market value. The emdollar value of services with market values totaled ^{em}\$1.45 trillion, while the market dollar value totaled \$177.0 billion. The emdollar value was about 2.5 times that of the dollar value. By far the largest service of the forest system when evaluated in emdollars is organized recreation that was estimated as the emergy value of tourists visiting the USFS system on an annual basis (^{em}\$1.33 trillion). The largest service in economic terms is the estimated market value of water flowing out of Forest Service lands (\$127.1 billion).

Of the non-market services, the emergy value of clean water (estimated as the total rainfall of USFS lands) was ^{em}\$42.7 billion and clean air was estimated to be valued at ^{em}\$6.9 billion. Total emdollar value of ecosystem functions including gross and net production and respiration were ^{em}\$1.3, ^{em}\$0.5, and ^{em}\$0.8 billion respectively. Finally the value of scientific information generated by USFS scientists was ^{em}\$0.14 billion. As a result of a our inability of estimating emergy values, several non market services including: pollination, seed dispersal, and predator control were not evaluated.

Table 14 summarizes the emdollar and dollar values for USFS assets grouped as those with market values and those having no market value. The emdollar value of coal was the largest of the assets with market values (totaling ^{em}\$4.0 trillion and dollar value of \$73.4 billion). USFS timber values when values in dollars and emdollars show marked difference. The Emdollar value of timber was ^{em}\$1.47 trillion while the dollar value was about \$147 billion. Dollar value of real estate were about 22 times greater that the emdollar values (\$960 billion versus ^{em}\$43 billion). Overall ,the total emdollar value of USFS assets having market values was ^{em}\$9.4 trillion while the dollar values were about 3.5 times the dollar values.

Of the non-market assets by far the emdollar value of geologic formations was the largest, totaling em \$2.67 quintillion (10¹⁸), followed by genetic resources totaling em \$154.1 quadrillion (10¹⁵) and biodiversity (em \$209.1 trillion)

In all, the USFS annual budget allocation in 2005 was about \$4.9 billion. When compared to environmental services obtained from USFS lands (em \$1.5 trillion) the budget allocation is about 0.3% of the services and when compared to the values of natural capital the budget is miniscule. Total exports from Forest Service lands were estimated to be worth em \$299.6 billion or more than *MTB Draft* ~ 6/8/07 13

60 times the USFS annual budget in 2005. The value of endangered species found on USFS lands, were estimated at nearly 6600 times the annual USFS budget, and if the values of biodiversity and genetic resources are included the annual budget appears diminishingly small in comparison.

REFERENCES

- Aiken, R. 2005. *Private and Public Land Use by Hunters*. United States Fish and Wildlife Service, Arlington Virginia, 36 pp.
- Blake, E., E. Rappaport, and J. Jarrel. 2006. The Deadliest, Costliest, and Most Intense United States Hurricanes from 1851 to 2004 (and Other Frequently Requested Hurricane Facts. Technical Memorandum NWS TPC-4. NOAA/NWS Tropical Prediction Center Miami, Fl. 51 pp.
- Brown, M.T. and E. Bardi. 2001. *Handbook of Emergy Evaluation Folio #3*. Center for Environmental Policy, University of Florida, Gainesville, Fl.30 pp.
- Brown, M.T, M. Cohen, E. Bardi, and W. Ingwerson. 2006. *Species Diversity in the Florida Everglades: A systems approach to calculating biodiversity*. Aquatic Sciences, January, 2006, 24 pp.
- Brown, M.T., P. Green, A. Gonzalez and J. Venegas, 1992, Emergy Analysis Perspectives, Public Policy Options, and Development Guidelines for the Coastal Zone of Nayarit, Mexico, Vol. 2, Report to The Cousteau Society and Government of Nayarit, Mexico, Center for Wetlands, University of Florida, Gainesville, FL.
- Brown, M.T., H.T. Odum, G. McGrane, R.D. Woithe, S. Lopez and S. Bastianoni, 1995, *Emergy Evaluation of Energy Policies for Florida*, Final Report to the Florida Department of Community Affairs, Center for Environmental Policy, Department of Environmental Engineering Sciences, University of Florida, Gainesville, FL.
- Brown, M.T., S. Tennenbaum, and H.T. Odum, 1988, *Emergy Analysis and Policy Perspectives for the Sea of Cortez, Mexico*, Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 58 pp.
- Brown, M.T., R.D. Woithe, H.T. Odum, C.L. Montague, and E.C. Odum, 1993, *Emergy Analysis Perspectives of the Exxon Valdez Oil Spill in Prince William Sound, Alaska*, Final Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 122 pp.
- Campbell, D., and T. Cai. 2006. *Emergy and Economic Value*. In Press, United States Environmental Protection Agency. 30 pp.
- Doherty, S.J.. 1995. *Emergy Evaluations of and Limits to Forest Production*. PhD Dissertation, Department of Environmental Engineering. University of Florida, Gainesville Fl. 215 pp.
- Doherty, S.J., M.T. Brown, and R.C. Murphy, H.T. Odum, and G.A. Smith, 1993, *Emergy Synthesis Perspectives, Sustainable Development, and Public Policy Options for Papua New Guinea*. Final Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 182 pp.
- Energy Information Administration (EIA). "Official Energy Statistics from the US Government." 1/12/07. http://www.eia.doe.gov/ (1/20/07)
- French, Dwight. "Energy Information Administration (EIA). Effective, Occupied, and Vacant Square Footage, 1992." July 15th, 1998.

http://www.eia.doe.gov/emeu/cbecs/Squareft/sqtab_1a.html (9/10/06)

- Hau, J. and B. Bakshi. 2003. *Promise and Problems of Emergy Analysis*. Ecological Modelling 178. 215-225, 10 pp.
- International Heat Flow Commission (IHFC). "Global Heat Flow Database". University of North Dakota. 9/20/06. http://www.heatflow.und.edu/data.html (8/5/06)

MTB Draft ~ 6/8/07

Kearney, M. 2005. 2004 Annual Monitoring and Evaluation Report and 5 Year Review: National Forests in Florida. United States Forest Service, Tallahassee Fl. 92 pp.

- Kreiger, D. 2001. *Economic Valuation of Forest Ecosystem Services: A Review.* The Wilderness Society, Washington D.C. 40 pp.
- National Council for Air and Stream Improvement (NCASI) and US Forest Service Research Work Unit 4104. "COLE- Carbon Online Estimator." USDA Forest Service, Northern Global Change Program. 10/24/05. http://ncasi.uml.edu/COLE/index.html (10/5/06)
- National Renewable Energy Laboratory, (NREL). *Renewable Resource Data Center*. 2006. <u>http://rredc.nrel.gov/</u>
- NatureServe. *Get Data: Animal Data for Download*. Copyright 2006. <u>http://www.natureserve.org/getData/animalData.jsp</u> (7/9/06)
- NOAA Satellite Information Service. *Get/View Online Climatic Data*. 11/13/06. http://www.ncdc.noaa.gov/oa/climate/climatedata.html (9/6/06)
- NRCS (2006). The Watershed Program in the 21st Century http://www.nrcs.usda.gov/programs/watershed/watershedbenefits.pdf (3/06/07)
- Odum. H.T. 2000. *Handbook of Emergy Evaluation Folio #2.* Center for Environmental Policy, University of Florida. 30 pp
- Odum, H.T., 1996, *Environmental Accounting: Emergy and Environmental Decision Making*, John Wiley & Sons, New York, 370 pp.
- Odum, H.T. and M.T. Brown (eds) 1976. *Carrying Capacity for Man and Nature in South Florida*. Report to the US Dept of Interior, National Park Service. Center for Wetlands, University of Florida, Gainesville.
- Odum, H.T., M.T. Brown, and R.A. Christianson, 1986. *Energy Systems Overview of the Amazon Basin*, Report to The Cousteau Society, Center for Wetlands, University of Florida, Gainesville, FL, 190 pp.
- Pugh, S. 2004. *RPA Data Wiz V. 1.* USDA Forest Service, North Central Research Station. St. Paul, MN.
- Scatena F.N., S. Doherty, H.T Odum., and P. Karecha. 2002. *An EMERGY Evaluation of Puerto Rico and the Luquillo Experimental Forest*. USDA Forest Service General Technical Report GTR-9. 79 pages.
- Sedell, J. M. Sharpe, D. Apple, M. Copenhagen, and M. Furniss. 2000 *Water and the Forest Service*. USDA Forest Service, Washington D.C. 35 pp.
- Smith, B., P Miles, J. Vissage, and S. Pugh. 2003. *Forest Resources of the United States, 2002.* United States Forest Service. Washington D.C. 137 pp.
- Stackhouse, P. and C. Whitlock,. "Surface meteorology and Solar Energy *(release 5.1)*." NASA. 3/8/06 http://eosweb.larc.nasa.gov/sse/ (9/5/06)
- Stynes, D. and E. White. 2006. *Spending Profiles for National Forest Visitors by Activity*. United States Forest Service. Washington D.C. 26 pp.
- Tilley, D. and W. Swank. 2003. *Emergy-based environmental systems assessment of a multipurpose temperate mixed-forest watershed of the southern Appalachian Mountains, USA*. Journal of Environmental Management. Issue 69. 15 pp.
- Tilley, D.R., 1999, *Emergy Basis of Forest Systems*, Ph.D. Dissertation, Department of Environmental Engineering Sciences, University of Florida, 300 pp.
- United States Department of the Interior. *National Atlas of the United States Raw Data Download.* 4/28/06. <u>http://www.nationalatlas.gov/atlasftp.html#wildrnp</u> (4/10/06)
- United States Forest Service. USDA Forest Service. 1/12/07.

MTB Draft ~ 6/8/07

http://www.fs.fed.us/

- United States Fish and Wildlife Service (2002. 2001 National survey of fishing, hunting, and wildlife associated recreation. USDI, USFWS, USDC, and US Census Bureau. Washington, DC. 170pp.
- United States Forest Service (USFS). 2003. *Report of the Forest Service-FY2002*. United States Forest Service, Washington D.C. 273 pages.
- United States Forest Service (USFS). 2006. 2005 Performance and Accountability Report. United States Forest Service, Washington D.C, 192 pages.
- United States Forest Service (USFS). 2004. National Visitor Use Monitoring Program National Project Results January 2000-September 2003. United States Forest Service, Washington D.C. 10 pages.
- United States Forest Service (USFS). 2005. FY2005 Forest Service Revenue, Expenses and Cost of Collection. United States Forest Service. Washington D.C. 14 pages
- United States Forest Service (USFS). 2006. *Fiscal Year 2006 President's Budget Overview*. United States Forest Service, Washington D.C. 54 pages.
- United States Forest Service (USFS), 2006. Unpublished Data Collected On Site
- United States Geologic Survey (USGS). *Ground Water Atlas of the United States*. 5/25/05. http://capp.water.usgs.gov/gwa/
- United States Geologic Survey (USGS). Latest Oil and Gas Assessment. 1/15/2007. http://energy.cr.usgs.gov/oilgas/noga/

LIST of TABLES

Table 1. Definitions of terms

Table 2. Previous research projects using emergy synthesis

Table 3. Abbreviated work plan

Table 4. Example emergy synthesis table

Table 5. Emergy indices for comparative evaluation

Table 6. Summary of the annual emergy flows supporting the US National Forest System

Table 7. Summary of the emergy value of US National Forest System assets

Table 8. Summary indices for the USFS system and regions (ca. 2005)

Table 9. Annual emergy flows supporting Deschutes National Forest

Table 10. Annual emergy flows supporting Osceola National Forest

Table 11. Summary of the value of Deshutes National Forest assets (ca. 2005)

Table 12. Summary of the value of Osceola National Forest assets (ca. 2005)

Table 13. Emergy, emdollar, and economic value of services of the National Forest System (ca. 2005)

Table 14. Emergy , emdollar, and economic value of assets of the National Forest System (ca.2005)

Table 1. Definitions of terms

Available Energy - Potential energy capable of doing work and being degraded in the process (units: kilocalories, Joules, etc.)

Useful Energy - Available energy used to increase system production and efficiency **Power** - Useful energy flow per unit time

- Emergy Available energy (exergy) of one kind previously required directly and
- indirectly to make a product or service (units: emjoules, emkilocalories, etc.) **Empower** emergy flow per unit time (units: emjoules per unit time)
- **Transformity** emergy per unit available energy (units: emjoule per joule)
- **Solar emergy** Solar energy required directly and indirectly to make a product or service (units: solar emjoules)
- Solar Empower Solar emergy flow per unit time (units: solar emjoules per unit time)
- **Emergy Intensity** Emergy of one kind required to produce a product or service per unit of output of the product or service. There are two types of EIs: transformity and specific emergy
- **Solar Transformity** Solar emergy per unit available energy (units: solar emjoules per Joule)
- Specific Emergy (solar) Solar emergy per mass of a product (units: solar emjoules per gram)
- **Emdollars**, (^{Em}\$) Dollars of gross economic product due to an emergy contribution's proportion of the national empower

(after Odum, 1996).

Table 2. Previous research projects using emergy synthesis

- 2004-07 Agency: UNEP. M.T. Brown & Matt Cohen Co-PIs. Emergy Accounting and Systems Synthesis of Land Management Interventions at Multiple Scales in the Sahel Region of West Africa. Part of a larger research effort titled: An Ecosystem Approach to Restoring West African Drylands and Improving Rural Livelihoods through Agroforestry-based Land Management Interventions
- 1997-98 Agency: USDA Coweeta Hydrologic Laboratory. M.T. Brown, PI. Emergy Evaluation & Simulation Models for the Wine Spring Creek Watershed & Blue Ridge Mtns. of NC. Research project for emergy analysis of management options of national forests using forests in the Blue Ridge Mountains of North Carolina as a case study (Tilley, 1999).
- 1993-94 Agency: Florida Department of Community Affairs. M.T. Brown, PI: Options and Perspectives for Florida's Future Energy Policy. Emergy analysis of community redevelopment in south Florida following the Hurricane Andrew disaster and analysis of alternative energy sources and efficiency technologies (Brown et al., 1995).
- 1990-92 Agency: Office of the Governor, Nayarit, Mexico. M.T. Brown, PI: Policy Perspectives and Master Planning for the State of Nayarit, Mexico. Development of a master plan and the necessary governmental and regulatory initiatives for the protection of the natural resources of the coastal zone of the State of Nayarit, Mexico. Funded by the Government of Nayarit through the Cousteau Society (Brown et al., 1992).
- 1990-91 Agency: The Cousteau Society, M.T. Brown, PI: Energy Evaluation of the Impacts and Mitigation of the Exxon Valdez Oil Spill in Alaska. Environmental and social impact evaluation of the Exxon Valdez oil spill and the costs and benefits of various mitigation and prevention alternatives (Brown et al., 1993).
- 1994-90 Agency: National Science Foundation, M.T. Brown, co-principle investigator: Methods for Evaluating Ecological Engineering. Development of energy analysis techniques to evaluate and rank ecological systems and environmental technologies. The methods developed are used to evaluate environmental impacts and assess sustainable development.
- 1988 Agency: The Cousteau Society. H.T Odum and M.T. Brown, Co-PIs: Energy Analysis and Public Policy Perspectives for Papua New Guinea. Evaluation of pressing resource questions, and policy recommendation for effective resource management and sustainable development. Included evaluations of forestry development projects, shrimp fishery, tourism, and foreign trade (Doherty et al., 1992).
- 1986-87 Agency: The Cousteau Society. M.T.Brown, PI: Energy Analysis and Public Policy Perspectives for the Sea of Cortez, Mexico. Evaluation of pressing resource questions, and policy recommendations for effective resource management and sustainable development. Included evaluations of the effect of the Colorado River diversions, shrimp fishery, and foreign trade (Brown et al., 1988).
- 1983-87 Agency: The Cousteau Society, H.T Odum and M.T. Brown, Co-PIs: Energy Analysis and Public Policy Perspectives for the Amazon Basin. Evaluation of pressing resource questions, and policy recommendations for effective resource management and sustainable development. Included evaluations of tropical forestry (Jari Forestal), hydroelectric development, alternative energy sources, foreign trade and simulation models of impacts of development on the economy and ecology of the Amazon (Odum et al., 1986).
- 1974-77 Agency: U.S. Department of Interior, H.T Odum and M.T. Brown, Co-PIs. The South Florida Study: Carrying Capacity for Man and Nature in South Florida. Systems ecology study and energy analysis of the Kissimmee/Everglades Basin, its environment, water, and human economies, including management suggestions for maximizing long term values (Odum and Brown, 1976).

Table 3. Abbreviated work plan

- I. Working with USDA Forest Service staff
 - 1. Identify system boundaries for regional evaluations,
 - 2. Draw system diagrams for regional systems,
 - 3. Assemble data for regional analyses,
- II. Conduct regional analyses
 - 1. Evaluate quantities of energy, materials and services that are driving the regional systems,
 - 2. Evaluate storages within system boundaries,
 - 3. Calculate indices for comparison of storages and flows within Forest Service regions.
- III. Working with USDA Forest Service staff
 - 1. Identify two forests for case study evaluations,
 - 2. Draw system diagrams of each system,
 - 3. Assemble data for regional analyses,
- IV. Conduct evaluations of case studies
 - 1. Evaluate quantities of energy, materials and services that are driving each system,
 - 2. Evaluate storages within system boundaries,
 - 3. Calculate indices for comparison of storages and flows between each case study and for comparison with economic values.
- V. Summarize values of natural capital and environmental services for the entire Forest Service System

1 Note	2 Item	3 Raw Units	4 Emergy Intensity	5 Solar Emergy	6 Emdollars
1	Name 1	Data 1	EI_1	Col 3 * Col 4	Col 5/sej/\$
2	Name 2	Data 2	EI_2	٠٠	
3	Name 3	Data 3	EI ₃	٠٠	
n	Name n	Data 4	EIn		

Table 4. Example emergy synthesis table

Each row in the table is an inflow or outflow pathway in the aggregated systems diagram; pathways are evaluated as fluxes in units per year. Six columns describe each pathway as follows:

Column 1: (Note) The line number for each pathway, and corresponding footnote number that contains sources and calculations for the item.

Column 2: (Item) The item name that corresponds to the name of the pathway in the aggregated systems diagram.

Column 3: (Raw Units) The actual units of the flow, usually evaluated as flux per year. Most often the units are energy (joules/year), but sometimes are given in grams/year or dollars/year.

Column 4: (Emergy Intensity) EI of the item is often derived from previous studies.

Column 5: (Solar emergy, sej) The product of the raw units in Column 3 and the EI in Column 4.

Column 6: (Emdollars) The result of dividing solar emergy in Column 5 by the emergyto-money ratio (calculated independently) for the economy of the nation within which the system of interest is embedded.

Table 5. Emergy indices for comparative evaluation

- **Emergy Investment Ratio**. The Investment Ratio is the ratio of purchased inputs to a process to free renewable emergies derived from local sources. The name is derived from the fact that it is a ratio of "invested" emergy to resident emergy. The Investment Ratio is a dimensionless number: the bigger the Investment Ratio the greater the intensity of development.
- **Empower Density.** The ratio of total emergy use in a process to the total area. Renewable and nonrenewable empower density are also calculated separately by dividing the total renewable emergy by area and the total nonrenewable emergy by area, respectively.
- **Emergy Yield Ratio**. The ratio of the emergy yield from a process to the emergy costs. This ratio is a measure of how much a process will contribute to the economy.
- **Environmental Loading Ratio**. An index of potential environmental impact, the Environmental Loading Ratio is the ratio of nonrenewable emergy to renewable. Low ELRs reflect relatively small environmental loading, while high ELRs suggest greater loading.

(after Odum, 1996; Odum et al., 1998).

Table 6. Summary of the annu	ai cillei	gy nows su		US Mational FO	test system"
			Emergy Intensity	Solar Emergy	EmDollars
NoteItem	Units	Quantity	(sej/unit)	$(x10^{18} \text{sej})$	$(x10^6 \text{ Em}\$)$
RENEWABLE RESOURCES:					
1 Sunlight	J	4.37E+21	1.00E+00	4371.0	2300.5
2 Rain Chemical Potential	J	2.62E+18	3.10E+04	81096.1	42682.1
3 Transpiration	J	1.18E+18	3.06E+04	36087.1	18993.2
4 Rain Geopotential	J	1.08E+18	4.70E+04	50609.1	26636.4
5 Wind, Kinetic	J	3.40E+18	2.45E+03	8326.4	4382.3
6 Hurricanes	J	3.38E+17	6.49E+03	2193.6	1154.5
7 Waves	J	6.07E+17	5.10E+04	30978.9	16304.7
8 Tides	J	1.96E+17	2.43E+04	4756.0	2503.2
9 Earth Cycle	J	2.10E+18	1.20E+04	27257.2	13293.2
INDIGENOUS NONRENEWABL	E RESOL	JRCES:			
10 Soil Loss (harvesting)	g	9.73E+10	1.68E+09	163.5	86.1
10a Soil OM loss (harvesting)	J	8.04E+13	7.40E+04	5.9	3.1
11 Misc. Products (plants) ^{1.}	J	2.50E+13	5.04E+04	1.3	0.7
IMPORTS:					
12 Petroleum Products	J	4.04E+15	1.11E+05	450.1	236.9
13 Machinery, Equipment	g	4.95E+09	1.13E+10	55.8	29.4
14 Misc. Goods	g	7.22E+07	1E9 - 7 E9	1.8	0.9
15 Seedlings	\$	5.16E+07	1.90E+12	98.1	51.6
16 Tourist Time	J	1.69E+15	1.50E+07	25328.8	13331.0
17 Labor (FS + Contract) ^{2.}	hours	1.22E+08	6.30E+13	7683.6	4044.0
18 Electricity	J	1.07E+15	2.92E+05	313.5	165.0
19 Misc. Expenditures ²	\$	2.97E+09	1.90E+12	9264.4	4876.0
ECONOMIC PAYMENTS RECEI	VED				
20 Extracted timber	\$	2.24E+08	1.90E+12	425.9	224.1
21 Extracted minerals/fuels	\$	2.84E+09	1.90E+12	5390.2	2837.0
22 Fee Payments ^{2.}	\$	5.05E+07	1.90E+12	95.9	50.5
EXPORTS:					
23 Extracted Firewood	J	1.17E+16	3.06E+04	358.9	188.9
24 Harvested Wood	J	1.02E+17	5.04E+04	5158.3	2714.9
25 Water, Chemical Potential	J	1.26E+18	8.10E+04	101748.4	53551.8
26 Water, Geopotential	J	2.01E+18	4.70E+04	94618.6	49799.3
27 Minerals	g	4.16E+12	mixed	60553.4	31870.2
28 Fossil Fuels ^{1.}	J	1.52E+18	mixed	124081.7	65306.2
29 Harvested wildlife	J	5.14E+16	1E5-9.9E5	42846.3	22550.7
30 Harvested Fish	J	9.96E+13	1.68E+07	1673.6	880.8
31 Information (research) ² .	hrs	1.11E+06	2.35E+14	260.6	137.2
(Continued next page)					

Table 6. Summary	v of the annual emergy	v flows supporting the U	S National Forest System*
Tuble of Summar	, or the annual emerg.	nome supporting the e	S rutional rolest System

MTB Draft ~ 6/8/07

Table 6. (co	ontinued)
--------------	-----------

			Emergy		
			Intensity	Solar Emergy	EmDollars
Note Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
32 Hydroelectric Power ^{1.}	J	5.05E+17	1.20E+05	60743.1	31970.1
33 Image Exported with Touris	sts hrs	3.69E+09	1.98E+16	77137.6	40598.7
ECONOMIC PAYMENTS MADE	Ξ				
State and Local Gov't					
34Payments	\$	4.15E+08	1.90E+12	787.7	414.6
35 Payments for Labor ² .	\$	1.32E+09	1.90E+12	2515.1	1323.7

* Data are summarized from regional evaluations given in Appendix A
1. No regional data were available. Quantities in this table from national data (NFS, 2005).

Data for regional data were available. Qualitates in this table from harbonal data (115, 2002).
 Data for regions includes portioned fraction of Washington DC offices and other expenditures not accounted for in regional budgets.
 See APPENDIX C for footnotes to Table 6.

			Emergy		
			Intensities	Solar Emergy	EmDollars
NoteItem	Units	Quantity	(sej/unit)	$(x10^{21}sej)$	(x10 ⁹ Em\$)
ENVIRONMENTAL ASSETS					
1 Tree Biomass	J	7.71E+19	3.62E+04	2791.6	1469.3
2 Herb./Shrub Biomass	J	6.91E+18	17976	124.2	65.4
3 Land Area	ha	7.80E+07	1.05E+15	81.9	43.1
4 Soil OM	J	1.50E+20	1.24E+04	1868.2	983.3
5 Peat	J	3.95E+16	3.09E+05	12.2	6.4
6 Glaciers	g	6.23E+17	6.46E+06	4022.3	2117.0
7 Ground Water	J	2.80E+18	3.02E+05	845.3	444.9
8 Surface Water	J	1.59E+18	8.10E+04	129.1	68.0
9 Fauna	g	3.03E+14	mixed	1075.2	565.9
ECONOMIC ASSETS					
10 Roads (dirt)	\$	1.70E+09	1.90E+12	3.2	1.9
11 Roads (gravel)	g	8.01E+13	1.68E+09	134.6	70.9
12 Roads (paved)	g	4.81E+12	2.77E+09	13.3	7.0
13 Machinery & tools	g	9.90E+10	1.13E+10	1.1	0.6
14 Office Equipment	g	3.84E+10	1.13E+10	0.4	0.2
15 Buildings	g	1.10E+12	mixed	7.2	3.8
GEOLOGIC ASSETS					
16 Fossil Fuels	J	1.05E+18	mixed	7770.5	4089.8
17 Minerals (Au, Si, Cu, Pb)	g	4.41E+13	7.06E+10	3112.8	1638.3
CULTURAL ASSETS					
18 Native American Artifacts	J	1.15E+18	1.89E+07	21728.1	11435.8
19 Value of Critical Species	# of spp.	4.96E+02		62224.6	32749.8
20 Biodiversity	# of spp	1.08E+04	1.22E+25	397371.7	209143.0
21 Genetic Resources	J	2.40E+17	1.22E+12	292795703.2	154103001.7

Table 7. Summary of the emergy value of US National Forest System assets

See Appendix D for footnotes to table.

Index*	Unit	USFS	R- 1	R- 2	R- 3	R- 4	R- 5	R- 6	R- 8	R- 9	R-10
R (renewable absorbed)	sej/yr	8.7E+22	4.0E+21	3.7E+21	6.3E+21	9.6E+21	5.6E+21	1.9E+22	7.4E+21	5.6E+21	2.6E+22
N (local nonrenewable)	sej/yr	1.7E+20	3.2E+19	2.0E+19	3.9E+18	2.4E+19	1.1E+19	5.0E+19	7.7E+18	1.9E+19	2.8E+18
Imports (F)	sej/yr	4.3E+22	3.2E+21	5.4E+21	3.8E+21	4.7E+21	6.3E+21	5.3E+21	5.7E+21	3.9E+21	1.0E+21
Exports (B)	sej/yr	4.9E+23	2.1E+22	2.2E+22	3.0E+22	3.5E+22	4.4E+22	5.4E+22	1.8E+22	1.9E+22	2.9E+22
Use $(R+N+N0+F)$	sej/yr	1.3E+23	7.2E+21	9.1E+21	1.0E+22	1.4E+22	1.2E+22	2.4E+22	1.3E+22	9.5E+21	2.7E+22
Empower Density	sej/m^2/yr	1.7E+11	7.0E+10	1.0E+11	1.2E+11	1.1E+11	1.5E+11	2.4E+11	2.4E+11	1.9E+11	3.1E+11
Renewable EmP.	sej/m^2/yr	1.1E+11	3.8E+10	4.2E+10	7.4E+10	7.4E+10	6.8E+10	1.8E+11	1.4E+11	1.1E+11	2.9E+11
Density											
Use per Visitor	sej/capita	6.4E+14	5.4E+14	2.8E+14	4.9E+14	6.1E+14	3.9E+14	8.4E+14	4.2E+14	4.2E+14	9.4E+15
Timber Harvest	sej/m^2/yr	6.6E+09	5.5E+09	4.0E+09	2.2E+09	5.5E+09	8.3E+09	1.1E+10	1.4E+10	1.4E+10	1.4E+09
Emergy Yield Ratio		3.01	2.23	1.70	2.65	3.04	1.88	4.50	2.28	2.41	26.06
(Y/F)											
% renew		0.67	0.55	0.41	0.62	0.67	0.47	0.78	0.56	0.58	0.96
EIR $(F/R+N)$		0.50	0.81	1.43	0.61	0.49	1.13	0.28	0.78	0.71	0.04
Ratio imports to exports		0.09	0.16	0.24	0.13	0.14	0.14	0.10	0.32	0.21	0.04
Emergy Return on		11.39	6.38	4.14	7.78	7.37	7.02	10.18	3.11	4.74	27.55
Invest.											
ELR (F+N)/R		0.50	0.82	1.44	0.61	0.49	1.13	0.29	0.78	0.71	0.04
ESI (EYR/ELR)		6.01	2.72	1.18	4.37	6.17	1.67	15.64	2.93	3.39	651.23
Visitors	peo/ha/yr	2.63	1.28	3.64	2.43	1.80	3.76	2.81	5.76	4.60	0.33

 Table 8. Summary indices for the USFS system and regions (ca. 2005)

* letters refer to flows and indices given in Figures 1 and 2.

			Emergy	Solar	
Not			Intensity	Emergy	EmDollars
e Item	Units	Quantity	(sej/unit)	$(x10^{16}sej)$	(x10 ⁶ Em\$)
RENEWABLE RESOURCES:					
1 Sunlight	J	9.28E+16	1.00E+00	9.3	0.0
2Rain Chemical Potential	J	2.20E+16	3.10E+04	68338.6	359.7
3Transpiration	J	9.74E+15	3.06E+04	29792.0	156.8
4Rain Geopotential	J	9.29E+15	4.70E+04	43650.7	229.7
5Wind, Kinetic	J	4.59E+16	2.45E+03	11240.4	59.2
7Waves	J	0	5.10E+04	0.0	0.0
8Tides	J	0	7.39E+04	0.0	0.0
9Earth Cycle	J	2.33E+16	1.20E+04	27928.2	147.0
INDIGENOUS NONRENEWABLE RE	SOURC	CES:			
10Soil Loss	g	2.52E+11	1.68E+09	42359.5	222.9
10a.Top soil loss	J	2.28E+14	7.40E+04	1686.2	8.9
IMPORTS:					
11Petroleum Products	J	5.83E+13	1.11E+05	649.6	3.4
12Machinery, Equipment	g	1.36E+08	1.13E+10	154.1	0.8
13Misc. Goods	g	1.19E+06	2.49E+10	3.0	0.0
14Seedlings	g	2.05E+07	4.70E+09	9.6	0.1
15Tourist Time	J	1.58E+13	1.50E+07	23693.7	124.7
16Labor	hours	8.14E+05	6.30E+13	5128.2	27.0
17Electricity	J	1.54E+13	2.92E+05	450.5	2.4
ECONOMIC PAYMENTS					
RECEIVED					
18Payment for timber	\$	4.86E+06	1.90E+12	924.2	4.9
19Payments for minerals extracted	\$	6.44E+04	1.90E+12	12.2	0.1
20Fee Payments (hunting, grazing, etc)	\$	3.15E+06	1.90E+12	597.8	3.1
EXPORTS:					
21Extracted Firewood	J	1.68E+14	3.60E+04	606.5	3.2
22Harvested Saw Timber	J	1.44E+15	5.04E+04	7277.9	38.3
23Water Chemical Energy	J	1.36E+16	8.10E+04	109812.1	578.0
24Water Geopotential Energy	J	3.36E+16	7.77E+04	261072.1	1374.1
25Minerals	g	1.07E+10	1.96E+09	2106.6	11.1
26Harvested wildlife	J	2.31E+13	6.7E5-3E10	3370.8	17.7
27Harvested Fish	J	1.71E+13	1.68E+07	28695.4	151.0
28Information (research)	\$	1.20E+04	2.35E+14	282.0	1.5
33Image Exported with Tourists	hrs	3.64E+07	5.59E+13	203454.9	1070.8
ECONOMIC PAYMENTS MADE					
Payments to State and Local					
29Gov't	\$	8.46E+06	1.90E+12	1607.3	8.5
30Payments for Labor	\$	1.28E+07	1.90E+12	2424.4	12.8

Table 9. Annual emergy flows supporting Deschutes National Forest

See Appendix E for footnotes to table

Note ItemUnitsQuantity $(sej/unit)$ $(x10^{16}sej)$ $(x10^{3})$ RENEWABLE RESOURCES:1 $3.14E+18$ $1.00E+00$ 314.4 1 2 Rain Chemical PotentialJ $3.14E+18$ $1.00E+04$ 21471.8 65 3 TranspirationJ $3.13E+15$ $3.06E+04$ 9584.7 50 4 Rain GeopotentialJ $7.98E+14$ $4.70E+04$ 3751.2 19 5 Wind, KineticJ $1.32E+15$ $2.45E+03$ 322.4 1 6 HurricanesJ $1.13E+12$ $6.49E+03$ 0.7 7 WavesJ0 $5.10E+04$ 0.0 8 TidesJ0 $7.39E+04$ 0.0 9 Earth CycleJ $6.83E+14$ $5.80E+04$ 3961.1 10 Soil Loss (harvesting)g0 $1.68E+09$ 0.0 10a. Soil OM loss (harvesting)J0 $7.40E+04$ 0.0 IMPORTS:I $1.10E+12$ $1.11E+05$ 12.2 12 Machinery, Equipmentg $1.29E+07$ $1.13E+10$ 14.6 13 Mise, Goodsg0 $1E9 - 7E9$ 0.0 14 Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15 Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16 Laborhours $2.28E+04$ $6.30E+13$ 143.8 17 ElectricityJ $8.76E+11$ $2.90E+12$ 18.2 19 Services\$ $4.20E+04$ $1.90E+12$ 18.2 20 Payments for minerals 0 $1.90E+12$ 6.6	87	11	8			
Note ItemUnitsQuantity $(sej/unit)$ $(x10^{16}sej)$ $(x10^{3}$ RENEWABLE RESOURCES:13.14E+181.00E+00314.412 Rain Chemical PotentialJ3.13E+153.10E+0412471.8653 TranspirationJ3.13E+153.06E+049584.7504 Rain GeopotentialJ7.98E+144.70E+043751.2195 Wind, KineticJ1.32E+152.45E+03322.416 HurricanesJ05.10E+040.038 TidesJ07.39E+040.009 Earth CycleJ6.83E+145.80E+043961.12010 Soil Loss (harvesting)g01.68E+090.0010 Soil Loss (harvesting)J07.40E+040.00IMPORTS:11.10E+121.11E+0512.2111 Petroleum ProductsJ1.10E+121.11E+0512.2112 Machinery, Equipmentg1.29E+071.13E+1014.613 Misc, Goodsg01.50E+071171.7616 Laborhours2.28E+046.30E+13143.817 ElectricityJ8.76E+112.92E+0525.618 FS Budget Misc.§9.57E+041.90E+121.8219 Services\$4.20E+041.90E+128.020 Payment for timber\$9.65E+051.90E+121.83.321 Payments for minerals\$01				Emergy		
RENEWABLE RESOURCES: 1 Sunlight J $3.14E+18$ $1.00E+00$ 314.4 1 2 Rain Chemical Potential J $4.02E+15$ $3.10E+04$ 12471.8 655 3 Transpiration J $3.13E+15$ $3.06E+04$ 9584.7 50 4 Rain Geopotential J $7.98E+14$ $4.70E+04$ 3751.2 19 5 Wind, Kinetic J $1.32E+15$ $2.45E+03$ 322.4 1 6 Hurricanes J $0.510E+04$ 0.0 0.7 7 Waves J 0 $7.39E+04$ 0.0 8 Tides J 0 $7.39E+04$ 0.0 9 Earth Cycle J $6.83E+14$ $5.80E+04$ $0.961.1$ 200 INDIGENOUS NONRENEWABLE RESOURCES: 1 $0.168E+09$ 0.0 $0.168E+09$ 0.0 0.0 IMPORTS: 1 $1.0E+12$ $1.11E+05$ 12.2 $1.22E$ $1.22E+107$ $1.32E+10$ 14.5 2.66112 13.22						EmDollars
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		Units	Quantity	(sej/unit)	$(x10^{10}sej)$	(x10 ³ Em\$)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		J		1.00E+00	314.4	1654.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 Rain Chemical Potential	J	4.02E+15	3.10E+04	12471.8	65641.1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 Transpiration	J	3.13E+15	3.06E+04	9584.7	50445.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 Rain Geopotential	J	7.98E+14	4.70E+04		19742.9
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5 Wind, Kinetic	J	1.32E+15	2.45E+03	322.4	1696.8
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 Hurricanes	J	1.13E+12	6.49E+03	0.7	3.9
9 Earth CycleJ $6.83E+14$ $5.80E+04$ 3961.1 20 INDIGENOUS NONRENEWABLE RESOURCES:10 Soil Loss (harvesting)g0 $1.68E+09$ 0.010a. Soil OM loss (harvesting)J0 $7.40E+04$ 0.0IMPORTS:11Petroleum ProductsJ $1.10E+12$ $1.11E+05$ 12.2 12 Machinery, Equipmentg $1.29E+07$ $1.13E+10$ 14.6 13 13 Misc. Goodsg0 $1E9 - 7 E9$ 0.0 14 14 Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15 Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16 Laborhours $2.28E+04$ $6.30E+13$ 143.8 17 ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18 FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19 Services\$ $4.20E+04$ $1.90E+12$ 18.2 20 Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21 Payments for minerals\$ $0.190E+12$ 0.0 22 Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:22 6.6 2.2 2.5 23 Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24 Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25 Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 26 Water, Chemical PotentialJ $2.30E+10$ $3.36E+06$ 17.8			0	5.10E+04	0.0	0.0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$				7.39E+04		0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$				5.80E+04	3961.1	20848.0
10a. Soil OM loss (harvesting)J0 $7.40E+04$ 0.0IMPORTS:11Petroleum ProductsJ $1.10E+12$ $1.11E+05$ 12.2 12Machinery, Equipmentg $1.29E+07$ $1.13E+10$ 14.6 13Misc. Goodsg0 $1E9 - 7 E9$ 0.0 14Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16Laborhours $2.28E+04$ $6.30E+13$ 143.8 17ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 8.0 ECONOMIC PAYMENTS RECEIVED 20 Payments for minerals 0 $1.90E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 0.0 24Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, GeopotentialJ $5.30E+10$ $3.36E+06$ 17.8 30 28Mineralsg 0 $5E8 - 3E12$ 0.0 29Harvested wildlifeJ $5.30E$	INDIGENOUS NONRENEWAB	LE RESC	OURCES:			
IMPORTS:11Petroleum ProductsJ $1.10E+12$ $1.11E+05$ 12.2 12Machinery, Equipmentg $1.29E+07$ $1.13E+10$ 14.6 13Misc. Goodsg0 $1E9 - 7 E9$ 0.0 14Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16Laborhours $2.28E+04$ $6.30E+13$ 143.8 17ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 8.0 ECONOMIC PAYMENTS RECEIVED 20 Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals\$ 0 $1.90E+12$ 0.0 22 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS: 23 Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24Extracted FirewoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28Mineralsg 0 $528 - 3E12$ 0.0 29Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 <	10 Soil Loss (harvesting)	g	0			0.0
11Petroleum ProductsJ $1.10E+12$ $1.11E+05$ 12.2 12Machinery, Equipmentg $1.29E+07$ $1.13E+10$ 14.6 13Misc. Goodsg0 $1E9 - 7 E9$ 0.0 14Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16Laborhours $2.28E+04$ $6.30E+13$ 143.8 17ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 18.2 19Services\$ $9.65E+05$ $1.90E+12$ 183.3 21Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals\$ $0.190E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 0.0 23Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.2 25Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, GeopotentialJ $5.30E+10$ $3.36E+06$ 17.8 28Mineralsg $0.5E8 - 3E12$ 0.0 29Harvested WildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30Harv		J	0	7.40E+04	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
13 Misc. Goodsg0 $1E9 - 7 E9$ 0.014 Seedlings\$ 8.93E+04 $1.90E+12$ 17.0 15 Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16 Laborhours $2.28E+04$ $6.30E+13$ 143.8 17 ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18 FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19 Services\$ $4.20E+04$ $1.90E+12$ 8.0 ECONOMIC PAYMENTS RECEIVED20 Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21 Payments for minerals\$ 0 $1.90E+12$ 0.0 22 Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:23Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24 Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25 Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26 Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27 Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28 Mineralsg 0 $5E8 - 3E12$ 0.0 29 Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30 Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2		J				64.4
13 Misc. Goodsg0 $1E9 - 7 E9$ 0.014 Seedlings\$ $8.93E+04$ $1.90E+12$ 17.0 15 Tourist TimeJ $7.84E+11$ $1.50E+07$ 1171.7 16 Laborhours $2.28E+04$ $6.30E+13$ 143.8 17 ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18 FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19 Services\$ $4.20E+04$ $1.90E+12$ 8.0 ECONOMIC PAYMENTS RECEIVED 0.0 22 Fee Payments for minerals 0 $1.90E+12$ 0.0 22 Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS: $2.36E+10$ $1.80E+04$ 0.0 23 Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24 Extracted FirewoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26 Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27 Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28 Mineralsg 0 $5E8 - 3E12$ 0.0 29 Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30 Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2		g	1.29E+07	1.13E+10	14.6	76.6
16Laborhours $2.28E+04$ $6.30E+13$ 143.8 17ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 18.3 20Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals\$ 0 $1.90E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:23Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25Harvested WoodJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 47.3 28Mineralsg 0 $5E8 - 3E12$ 0.0 29Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2	13 Misc. Goods	g		1E9 - 7 E9	0.0	0.0
16Laborhours $2.28E+04$ $6.30E+13$ 143.8 17ElectricityJ $8.76E+11$ $2.92E+05$ 25.6 18FS Budget Misc.\$ $9.57E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 18.2 19Services\$ $4.20E+04$ $1.90E+12$ 18.3 20Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals\$ 0 $1.90E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:23Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25Harvested WoodJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 47.3 28Mineralsg 0 $5E8 - 3E12$ 0.0 29Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2		\$	8.93E+04	1.90E+12	17.0	89.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	15 Tourist Time	J		1.50E+07	1171.7	6166.7
18FS Budget Misc. $\$$ $9.57E+04$ $1.90E+12$ 18.2 19Services $\$$ $4.20E+04$ $1.90E+12$ 8.0 20Payment for timber $\$$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals $\$$ 0 $1.90E+12$ 0.0 22Fee Payments $\$$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS: 23 Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 8 26Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 4 27Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28Mineralsg 0 $5E8$ $3E12$ 0.0 29Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2	16 Labor	hours	2.28E+04	6.30E+13	143.8	756.7
19 Services\$ $4.20E+04$ $1.90E+12$ 8.0 ECONOMIC PAYMENTS RECEIVED20 Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21 Payments for minerals\$ 0 $1.90E+12$ 0.0 22 Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:23 Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24 Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25 Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 26 Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 27 Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28 Mineralsg 0 $5E8 - 3E12$ 0.0 29 Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30 Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2	17 Electricity		8.76E+11	2.92E+05	25.6	134.6
ECONOMIC PAYMENTS RECEIVED20Payment for timber\$ $9.65E+05$ $1.90E+12$ 183.3 21Payments for minerals\$ 0 $1.90E+12$ 0.0 22Fee Payments\$ $3.47E+04$ $1.90E+12$ 6.6 EXPORTS:23Misc. Products (plants)J $2.66E+10$ $1.80E+04$ 0.0 24Extracted FirewoodJ $5.01E+10$ $3.60E+04$ 0.2 25Harvested WoodJ $3.36E+14$ $5.04E+04$ 1695.1 26Water, Chemical PotentialJ $2.79E+14$ $3.10E+04$ 864.3 27Water, GeopotentialJ $6.08E+12$ $7.77E+04$ 47.3 28Mineralsg 0 $5E8 - 3E12$ 0.0 29Harvested wildlifeJ $5.30E+10$ $3.36E+06$ 17.8 30Harvested FishJ $9.59E+10$ $1.68E+07$ 161.2	18 FS Budget Misc.		9.57E+04	1.90E+12		95.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			4.20E+04	1.90E+12	8.0	42.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ECONOMIC PAYMENTS REC	EIVED				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20 Payment for timber		9.65E+05	1.90E+12	183.3	964.6
EXPORTS:J2.66E+101.80E+040.024Extracted FirewoodJ5.01E+103.60E+040.225Harvested WoodJ3.36E+145.04E+041695.1826Water, Chemical PotentialJ2.79E+143.10E+04864.3427Water, GeopotentialJ6.08E+127.77E+0447.328Mineralsg05E8 - 3E120.029Harvested wildlifeJ5.30E+103.36E+0617.830Harvested FishJ9.59E+101.68E+07161.2	21 Payments for minerals	\$	•	1.90E+12	0.0	0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\$	3.47E+04	1.90E+12	6.6	34.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$						
25Harvested WoodJ3.36E+145.04E+041695.1826Water, Chemical PotentialJ2.79E+143.10E+04864.3427Water, GeopotentialJ6.08E+127.77E+0447.328Mineralsg05E8 - 3E120.029Harvested wildlifeJ5.30E+103.36E+0617.830Harvested FishJ9.59E+101.68E+07161.2						0.3
26 Water, Chemical PotentialJ2.79E+143.10E+04864.3427 Water, GeopotentialJ6.08E+127.77E+0447.328 Mineralsg05E8 - 3E120.029 Harvested wildlifeJ5.30E+103.36E+0617.830 Harvested FishJ9.59E+101.68E+07161.2						0.9
27 Water, GeopotentialJ6.08E+127.77E+0447.328 Mineralsg05E8 - 3E120.029 Harvested wildlifeJ5.30E+103.36E+0617.830 Harvested FishJ9.59E+101.68E+07161.2						8921.8
28 Mineralsg05E8 - 3E120.029 Harvested wildlifeJ5.30E+103.36E+0617.830 Harvested FishJ9.59E+101.68E+07161.2						4549.2
29 Harvested wildlifeJ5.30E+103.36E+0617.830 Harvested FishJ9.59E+101.68E+07161.2	27 Water, Geopotential	J	6.08E+12		47.3	248.7
30 Harvested FishJ9.59E+101.68E+07161.2	28 Minerals	g	0	5E8 - 3E12	0.0	0.0
		J	5.30E+10			93.7
31 Information (research) $\$$ 1 10F+04 1 90F+12 2 1		J	9.59E+10	1.68E+07	161.2	848.3
	31 Information (research)	\$	1.10E+04	1.90E+12	2.1	11.0
Image Exported w/						
			1.80E+06	6.37E+13	11462.0	60326.5
ECONOMIC PAYMENTS MADE						
33 State and Local Gov't \$ 5.94E+05 1.90E+12 112.9						594.2
34 Labor Payments\$4.50E+051.90E+1285.5See Appendix E for footnotes to table.			4.50E+05	1.90E+12	85.5	450.3

Table 10. Annual emergy flows supporting Osceola National Forest

See Appendix E for footnotes to table.

			Emergy		
Not			Intensity	Solar Emergy	EmDollars
e Item	Units	Quantity	(sej/unit)	$(x10^{16}sej)$	$(x10^{6} \text{ Em}\$)$
ECOLOGICAL ASSETS (Natural Capit	ital)				
1 Tree Biomass	J	3.19E+17	3.62E+04	1153988.8	6073.6
2 Herbaceous/Shrub Biomass	J	1.02E+16	17976	18273.8	96.2
3 Land Area	ha	7.50E+05	1.05E+15	78733.3	414.4
4 Soil OM	J	1.80E+18	1.24E+04	2241225.2	11795.9
Ground Water (drinking					
5aquifer)	J	6.87E+15	3.02E+05	207788.6	1093.6
6 Surface Water	J	9.54E+15	8.10E+04	77289.5	406.8
ECONOMIC ASSETS					
7 Roads (dirt)	\$	4.25E+07	1.90E+12	8067.0	42.5
8 Roads (gravel)	g	2.01E+12	1.68E+09	338237.1	1780.2
9 Roads (paved)	g	8.89E+11	2.77E+09	246322.2	1296.4
10 Machinery & tools	g	1.97E+09	1.13E+10	2219.1	11.7
11 Office Equipment	g	5.93E+09	1.13E+10	6678.4	35.1
12 Buildings	g	1.63E+11	mixed	102339.1	538.6
SOCIETAL ASSETS	-				
13 Info. in Archeological Artifacts	J	7.64E+15	1.22E+07	9308988.1	48994.7
14 Value of Critical Species	# of Spp	6.00E+00	mixed	2.4E+07	124973.7

Table 11. Summary of the value of Deshutes National Forest assets (ca. 2005)

See Appendix F for footnotes to table

			Emergy		
			Intensity	Solar Emergy	EmDollars
NoteItem	Units	Quantity	(sej/unit)	$(x10^{16}sej)$	(x10 ⁶ Em\$)
ECOLOGICAL ASSETS (Natural Capital))				
1 Tree Biomass	J	4.46E+16	3.62E+04	161497.7	850.0
2 Herbaceous/Shrub Biomass	J	5.41E+16	17976	97193.5	511.5
3 Land Area	ha	6.54E+04	1.05E+15	6867.0	36.1
4 Soil OM	J	3.47E+17	1.24E+04	431156.4	2269.2
5 Peat	J	2.85E+16	3.09E+05	881020.6	4637.0
6 Ground Water (drinking aquifer)	J	5.19E+16	3.02E+05	1568743.4	8256.5
7 Surface Water	J	5.14E+14	8.10E+04	4161.5	21.9
ECONOMIC ASSETS					
8 Roads (dirt)	\$	3.19E+06	1.90E+12	606.5	3.2
9 Roads (gravel)	g	2.60E+11	1.68E+09	43677.0	229.9
10 Roads (paved)	g	5.32E+11	2.77E+09	147470.4	776.2
11 Machinery & tools	g	1.72E+08	1.13E+10	194.0	1.0
12 Office Equipment	g	2.58E+08	1.13E+10	290.0	1.5
13 Buildings	m^2	3.52E+03	mixed	253.8	1.3
GEOLOGIC ASSETS					
14 Phosphorus	g	9.07E+13	4.54E+09	41149899.8	216578.4
14b Phosphorus	\$	2.27E+09	1.90E+12	430912.8	2268.0
Cultural ASSETS					
15 Info. in Archeological Artifacts	J	1.01E+16	1.22E+07	12276512.9	64613.2
č	# of				
16 Value of Critical Species)	spps	3.00		29088118.1	153095.4
See Appendix E for feetnetes to table	spps	5.00		29000110.1	133093.4

Table 12. Summary of the value of Osceola National Forest assets (ca. 2005)

See Appendix F for footnotes to table

Note	Parameter	Emergy Value (10 ²¹ sej)	Emdollars* (10 ⁹ Em\$)	Dollar Value (10 ⁹ \$)
Services	with Market Value			
1 Res	earch	0.2	0.1	0.02
2 Org	anized recreation	2535.4	1,334	9.2
3 Sale	es, Permits and Concessions	5.9	3.1	3.1
4 Hyc	lroelectric energy	60.7	32.0	11.2
5 Wat	ter supply	101.7	53.6	127.1
6 Car	bon sink	2.4	1.3	1.4
7 Wat	tershed protection	3.8	2.0	19.9
8 Wil	dlife hunting	42.8	22.6	2.9
9 Fisł	n Harvest	1.7	0.9	1.3
10 Wil	dlife watching	0.1	0.1	0.8
	TOTAL	L Market Services/yr.	1449.9	177.0
Non-Ma	arket Services			
11 Clea	an air	13.2	6.9	
12 Clea	an water	81.1	42.7	
13 Poll	ination	NA		
14 See	d dispersal	NA		
15 Pred	dator control	NA		
16 Gro	ss primary productivity	2.4	1.3	
17 Net	primary productivity	1.0	0.5	
18 Tota	al respiration	1.4	0.8	
19 Scie	entific information	0.26	0.14	
	TOTAL Not	nMarket Services/yr.	52.3	0.0

Table 13. Emergy , emdollar, and economic value of services of the National ForestSystem (ca. 2005)

* Emdollars are calculated by dividing emergy in column 3 by 1.9 E12 sej/\$, the average ratio of emergy to money in the USA economy

Notes to Table 13.

1 Research

1. Emergy of FS personnel engaged in research activities.

Number of staff = 486	USFS, 2007
Emergy/ person =4.704E+17	Odum, 1996
Emergy (sej) = 2.29E+20	

2. Economic costs of research (Salary)

Dollar costs = \$20,416,365

2 Organized recreation

1. Emergy of tourists

Notes to Table 13.cont'd

nes lo fuble i s.com u		
Emergy of	f tourists (sej) = 2.54E+24	Table 6, Note 16
2. Tourists economic expenditures	s for recreation	
Num	ber of tourists = 2.05E+08	Table 6, Note 16
	Travel costs = \$45	Estimate
Dollar	r expenditures = $9.2E+09$	
3 Sales, Permits and Concessions	1 9.22.09	
1. Emergy equivalent of dollars =	(dollars)* (1.9 E12 sej/\$)	
	Emergy (sej) = 5.89E+21	
2. FS income from concessions an	d permits	
I	Dollar income = \$3,100,000,000	USFS, 2007
4 Hydroelectric energy		
1. Emergy value of hydroelectricity	ty	
	Emergy (sej) = 6.07E+22	Table 6, Note 32
2. Dollar value hydroelectricity g	enerated	
	Avg price = \$ 0.08/kwh	Estimate
Total get	nerated (kwh) = $1.40E+11$	USFS, 2007
	Dollar value = \$11,200,000,000)
5 Water supply		
1. Emergy value of outflowing sur	face water	
	Emergy (sej) = 1.02E+23	Table 6, Note 25
2. Dollar value		
	Price $(\$/m^3)=0.50$	USEPA, 1999
Volume	of water $(m^3) = 2.54E + 11$	Table 6, Note 25
	Dollar value = \$127,141,046,38	32
6Carbon sink		
1. Emergy value of gross primary	production (emergy driving GPP))
	Emergy (sej) = 2.40E+21	Table 6, Note 3
2. Dollar value		
	Price (\$/tonn)=\$3	USFS, 2007
Quan	tity (tonn/ha) =6	USFS, 2007
	Area (ha) = 7.80E+07	
	Dollar value = \$1,404,000,000	
7 Watershed protection		
1. Emergy value of Rainfall.		
	Emergy (sej) = $3.84E+21$	Table 6, Note 2
2. Costs of watershed protection		Estimates ND CC
	Cost (\$/ha) = \$255	Estimate; NRCS (2005)
	Area (ha) = 7.80E+07	()

	Dollar value = \$19,890,000,000	
8 Wildli	fe hunting	
Notes to Tab	le 13.cont'd	
1. E	Emergy of wildlife harvested	
	Emergy (sej) = 4.28E+22	Table 6, Note 29
2. H	Estimated dollar expenditures for hunting	
	Number of hunters = 1820000	USFS land = 35% of hunting on public lands
	Expenditure/ hunter = \$1,585	USFWS (2002)
	Total expenditures =\$2,884,000,000	
9 Fish H	larvest	
1. E	Emergy of fish harvested	
	Emergy (sej) = 1.67E+21	Table 6, Note 30
2. E	Estimated dollar expenditures for fishing	
	Number persons fishing = 1261700	estimate =3.7% of total fishers
	Expenditure/fisher = \$1,044	USFWS (2002)
	Total expenditures =\$1,317,200,000	
-	fe watching	
1. E	Emergy of tourists	
	Number of wildlife watchers = 806600	estimate =3.7% of total watchers
	Emergy/person (sej/person)=1.25E+14	Table 6, Note 16
	Emergy (sej) = 1.01E+20	
11Clean	air	
Em	ergy value airborne particulate deposition	
	Deposition $(g/cm^2)=1.00E-03$	USFS, 2007
Tot	al quantity (g/yr) = Area * deposition	
	Quantity $(g/yr) = 7.80E+12$	
	Specific Emergy (sej/g) = 1.69E+09	Odum (2000)
	Emergy (sej/yr) = 1.32E+22	
12Clean	water	
Emergy	value of rainfall	
	Emergy (sej/yr)=8.11E+22	Table 7, Note 2
13Pollin	ation	
	No estimate available	
14Seed o	lispersal	
	No estimate available	
15Predat	or control	
	No estimate available	

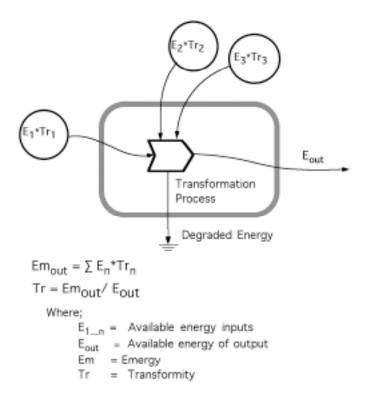
Notes to Table 13.cont'd		
16Gross primary productivity		
Emergy value of gross prima	ry production (emegy driving GPP)	
	Emergy (sej) = 2.40E+21	Table 6, Note 3
17Net primary productivity		
Emergy value of net primary	production (40% GPP)	
	Emergy (sej) = 9.60E+20	Table 6, Note 3
18Total respiration		
Emergy value of respiration	(60% GPP)	
	Emergy (sej) = 1.44E+21	Table 6, Note 3
19Scientific information		
Annual production of inform	nation	
	Emergy (sej/yr) = $2.61E+20$	Table 7, Note 31

Not e	Parameter	Emergy Value (10 ²¹ sej)	Emdollars (10 ⁹ Em\$)	Dollar Value (10 ⁹ \$)
Asset	s With Market Value			
1	People (employees)	5.3	2.8	1.3
2	Building Infrastructure	7.2	3.8	4.4
3	Machinery, Vehicles	1.1	0.6	0.5
4	Roads	151.2	79.6	15.0
5	Timber	2791.6	1469.3	147.7
6	Water (surface)	129.1	68.0	323.0
7	Water (ground)	845.3	444.9	102.0
8	Biomass fuel	2915.8	1534.7	189.0
9	Minerals	3112.8	1638.3	120.0
10	Real estate	81.9	43.1	960.0
11	Coal	7611.1	4005.8	73.4
12	Gas	27.8	14.6	8.9
13	Oil	159.0	83.7	721.5
	Shale	NA		NA
	Peat	12.2	6.4	0.004
16	Mushrooms	NA		0.0003
17	Exotic plants	NA		
18	Food such as fruits	NA		small
19	Medicinal plants and animals	NA		
20	—	NA		small
21	Other forest products	NA		0.003
	-	TOTAL Market Assets	9,396	2,667
Non-I	Market Assets			
22	Soil	1,868	983	
23		531	280	
24	Wildlife	1,075	566	
25	Endangered wildlife	62,225	32,750	
	Topography	1,490,580	784,516	
	Geologic formations	5,070,000,000	2,668,421,053	
	Priceless locations	2,573	1,354	
29	Panorama	NA		
30	Knowledge	370	195	
31	Native American Artifacts	22	11	
32	Biodiversity	397,372	209,143	
33	Genetic resources	292,795,703	154,103,002	
		TOTAL NonMarket Assets	2,823,553,852	

Table 14. Emergy , emdollar, and economic value of assets of the National ForestSystem (ca. 2005)

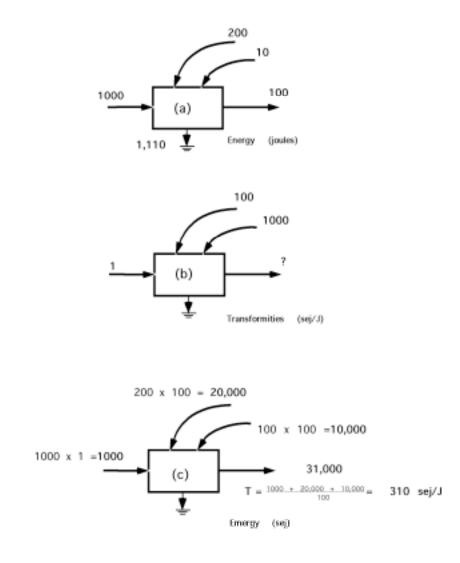
* Emdollars are calculated by dividing emergy in column 3 by 1.9 E12 sej/\$, the average ratio of emergy to money in the USA economy

Notes to Table 14. 1 Employees		
1. Emergy value of employees	s 31, 511 people	
Emergy per capita		Odum, 1996
	Employees * Emergy percapita	
	=5.3E+21	
	=\$1,323,745,000	USFS, 2006
2 Building Infrastructure		
1. Emergy value of bldg =		Table 7, Note 15
2. Total dollar value =	=\$4,394,513,173	USFS, 2006 unpub.
3 Machinery, Vehicles		
1. Emergy in machines, equip.=		Table 7, Note 13
2. Dollar value of machines =	\$547,356,612	USFS, 2006 unpub.
4 Roads		
1. Emergy in roads by class =		Table 7, Notes 10, 11, 1
2. Total dollar value =	=\$15,000,000,000	USFS, 2006 unpub.
5 Timber		
1. Emergy in standing stock =	=2.79E+24	Table 7, Note 1
2. Total dollar value =	Wholesale - \$250/1000 bd ft	USFS, 2007
Dollar value =	=\$147,740,374,482	USFS, 2007
6 Water (surface)		
1. Emergy of water volume =	=1.29E+23	Table 7, Note 8
2. Dollar price of water =	= 3.23 E11 $m^3 * $1.00/m^3$	Estimate
Dollar value =	=\$323,000,000,000	
7 Water (ground)		
1. Emergy value of groundwater =	8.45E+23	Table 7, Note 9
2. Dollar price of water =		
specific yield =		
-	=\$2.00/1000 gal	Estimate
	=Volume * Sp.Yield*price	
	\$102,024,291,498	
8Biomass fuel	0.005.04	
1. Emergy value of total biomass =	2.92E+24	Table 7, Notes 1 & 2
2. Dollar value of biomass =	5.4E12. Kg /1000 kg/tonn* \$35/tonn	Estimate
Dollar value =	=\$189,000,000,000	
9 Minerals		
1. Emergy of minerals by type =	3.11E+24	Table 7, Note 17
2. Dollar value =	\$120,000,000,000	USGS, 2005
MTB Draft ~ $6/8/07$		37

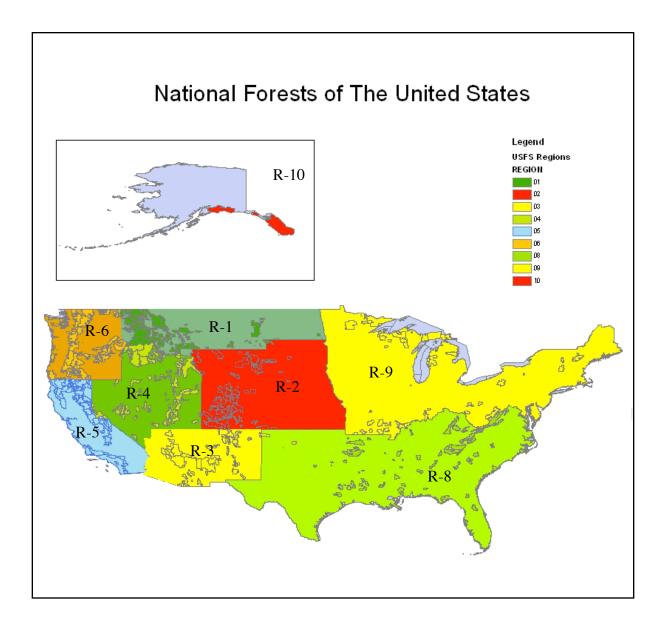

Notes to Table 14 cont'd 10 Real estate	
1. Emergy value of lands $= 8.19E+22$	Table 7, Note 3
2. real estate value = 192.7E6 acres* \$500/acre	Estimate
Dollar value = \$96,000,000,000	
11Coal	
1. Emergy value = $7.61E+24$	Table 7, Note 16
2.Dollar value = $\frac{4.59E9 \text{ mt}}{\text{ton}}$ mt @ \$16 per metric	
Dollar value = \$73,440,000,000	Citation
12Gas	
1. Emegy in natural gas reserves $= 2.78E+22$	Table 7, Note 16
2. Dollar value of reserves = $2.26E17 \text{ J}$ @ \$1.5 per Mmbtu	l
Dollar value = \$8,940,147,610	
13 0il	
1. Emergy in petroleum reserves = $1.59E+23$	Table 7, Note 16
2. Dollar value of reserves = $1.11E10$ barrels @ \$65/barrel	Estimate
Dollar value = $\$721,500,000,000$	
14Shale	
No data available	
15Peat	
1. Emergy in peat = $1.22E+22$	Table 7, Note 5
1. Emergy in peat = $1.22E+22$ 2. Dollar value of peat = $1.27E6 \text{ m}^3 * \$2.80/\text{m}3$	Table 7, Note 5 Estimate
2. Dollar value of peat = $1.27E6 \text{ m}^3 * \$2.80/\text{m}^3$	Table 7, Note 5 Estimate
2. Dollar value of peat = $1.27E6 \text{ m}^3 * \$2.80/\text{m}^3$ Dollar value = $\$3,559,927$	
2. Dollar value of peat = $1.27E6 \text{ m}^3 * \$2.80/m3$ Dollar value = $\$3,559,927$ 16 Mushrooms	
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available	Estimate
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803	
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants	Estimate
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available	Estimate
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits)	Estimate
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200	Estimate
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds 1. Emergy in standing stock = mass harvested not available	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds	Estimate USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds 1. Emergy in standing stock = mass harvested not available	Estimate USFS, 2005 USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds 1. Emergy in standing stock = mass harvested not available 2. Dollar value = \$8,728	Estimate USFS, 2005 USFS, 2005
2. Dollar value of peat = 1.27E6 m ³ * \$2.80/m3 Dollar value = \$3,559,927 16 Mushrooms 1. emergy in mushrooms = mass harvested not available 2. Dollar value = \$279,803 17 Exotic plants No data available 18 Food (nuts, fruits) 1. emergy in foods = mass harvested not available 2. Dollar value = \$9,200 19 Medicinal plants and animals No data available 20 Seeds 1. Emergy in standing stock = mass harvested not available 2. Dollar value = \$8,728 21 Other forest products	Estimate USFS, 2005 USFS, 2005

Notes to Table 14 cont'd 22 Soil	
Emergy in Soil Organic matter = 1.87E+24	Table 7, Note 4
23Old growth biomass	······
Emergy in standing stock=Assume 10% of tree biomass is	old growth
Tree biomass = $7.71E19$ J	C
Old growth = 7.71 E18 J	
Transformity $= 6.89E + 04$	Odum, 1996
Emergy = 5.31E+23	
24Wildlife	
Emergy in standing stock = 1.08E+24	Table 7, Note 9
25Endangered wildlife	
Emergy in standing stock = $6.22E+25$	Table 7, Note 19
26Topography	
Emergy value of elevation = mass* gravitational potential	
Avg. elevation $= 1000$ m	
Density = 2.6 E3 kg/m^2	
Area = $7.8 \text{ E}11 \text{ m}^2$	
Energy = $\frac{(\text{Avgelev.})(\text{area})(9.8)}{\text{m/sec2}}$	
Energy (J) = $1.98744E+21$	
Transformity = 7.5E5 sej/J	Odum, 2000
Emergy (sej) = 1.49058E+27	
27Geologic Formations	
Emergy value of geologic form. = mountain mass * specific emerged	gy
Avg. elevation = 1000 m	
Area=7.8 E11 m^2	2
$Mass = (1000m)(2.6E3kg/m^3)(7.8E11)$	
Specific Emergy (sej/g)=2.50E+09	Odum, 2000
Emergy (sej)=5.07E+30	
28Priceless locations	
Assume value of total content embodied in USFS lands	
Continental area = 2.45 E7 km^2	
Transformity = $1.05E15$ sej/ha	Odum, 2000
Emergy = (area)(transformity)	
Emergy (sej) = 2.5725E+24	
29Panorama	
No data available	
30Knowledge	
Emergy value of knowledge = emergy in experience	

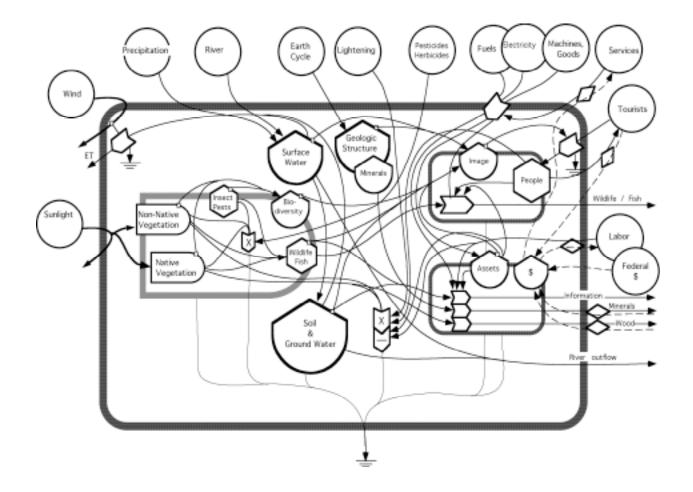
Notes to Table 14 cont'd				
Employees $= 31, 511$ people				
Emergy per capita $=3.36E+17$	Odum, 1996			
Average age $= 35$ years	Estimate			
Emergy = (Employees) (Emergy per capita)(age)			
Emergy (sej) $= 3.7E+23$				
31Native American Artifacts				
Emergy in artifacts $=2.17E+22$	Table 7, Note 18			
32Biodiversity				
Emergy (sej) $= 3.97E + 26$	Table 7, Note 20			
33Genetic resources				
Emergy (sej) = 2.93E+29	Table 7, Note 21			


LIST of FIGURES

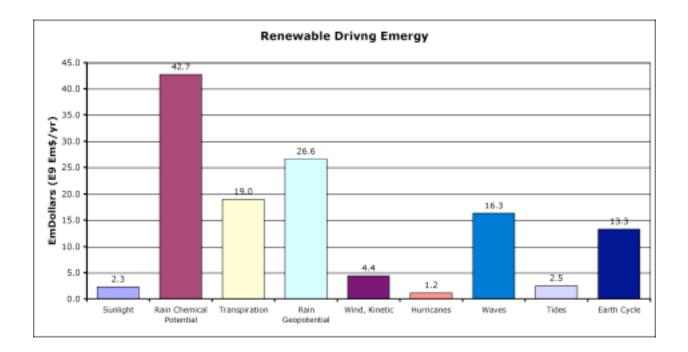
- Figure 1. Diagram illustrating calculation of transformities.
- Figure 2. Diagram illustrating method of calculating transformity.
- Figure 3. Map of the US Forest Regions.
- Figure 4. System diagram of the US National Forest System
- Figure 5. Emergy inflows driving the US Forest Service System
- Figure 6. Emergy in exports and environmental services from US National Forest System.
- Figure 7. Emergy in exports and environmental services obtained from US Forest lands by region (ca. 2005)
- Figure 8. Emdollar value of assets on USFS lands (ca. 2005)
- Figure 9. Emergy in assets of the US National Forest System expressed as percent of total.
- Figure 10. Emdollar value of assets of US Forest Service by region.
- Figure 11. Emergy in environmental assets (natural capital) of US Forest System shown as percent of total (ca. 2005)
- Figure 12. Driving emergy basis for Deschutes and Osceola Forests.
- Figure 13. Emergy in exports form Deschutes and Osceola National Forests
- Figure 14. Assets (natural capital) of Deschutes and Osceola National Forests.


Figure 1. Diagram illustrating calculation of transformities.

In all processes, some energy is degraded and some is transformed into higher quality energy. The <u>energy</u> out is equal to the sum of the input energies minus the degraded energy. The <u>emergy</u> out is equal to the sum of the input emergies. The equations at the bottom of the figure show the general calculation of emergy of a product.


Figure 2. Diagram illustrating method of calculating transformity.

a) energy flows; b) transformity of the output is calculated by dividing the emergy of the output in (c) by the energy of the output in (a).


Figure 3. Map of the US Forest Regions.

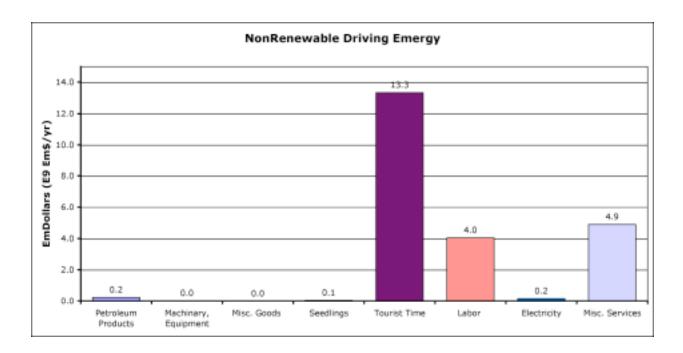
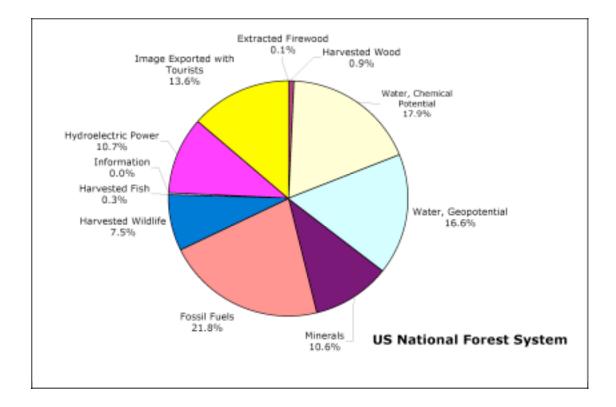

Each region was evaluated separately and then summed for the total USFSS. (Note: there is no longer a Region 7 within the Forest Service system following a reorganization of regional boundaries).

Figure 4. System diagram of the US National Forest System,


showing main driving energies, components, pathways of energy, material and information flows, and exports.

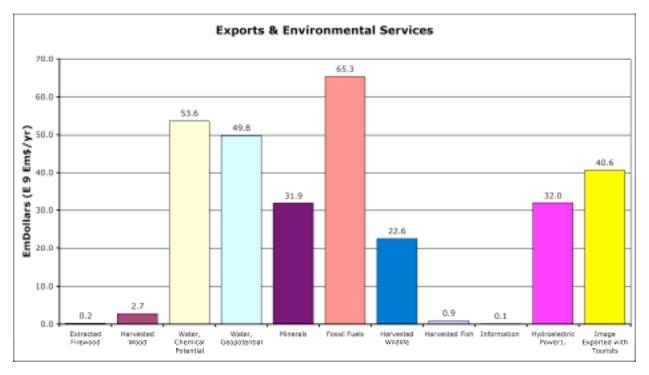


Figure 5. Emergy inflows driving the US Forest Service System.

Data are expressed as EmDollars. Renewable driving emergy flows (top) and nonrenewable emergy inflows including tourists (bottom).

Figure 6. Emergy in exports and environmental services from US National Forest System.

Percent of the total (top), billions of emdollars (bottom).

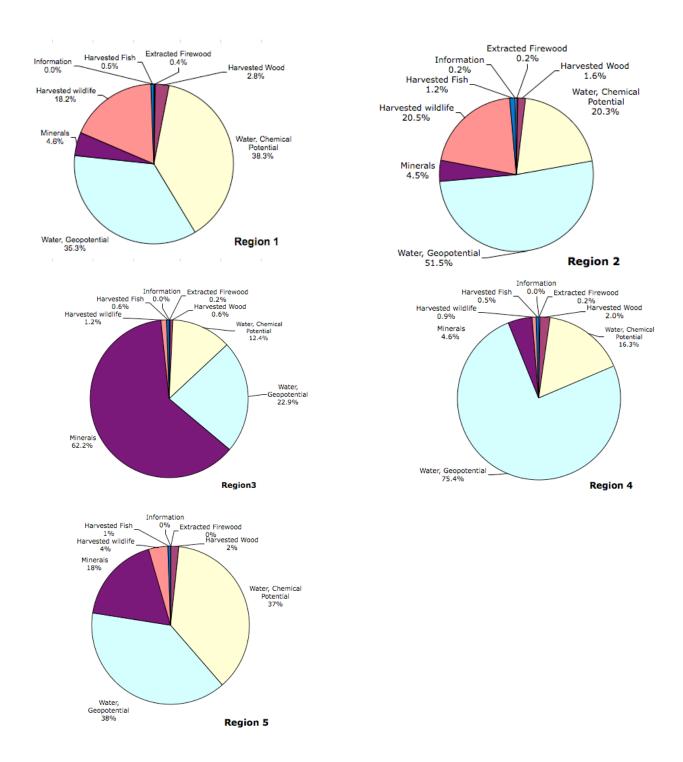


Figure 7. Emergy in exports and environmental services from US Forest lands (ca. 2005). Data are for regions 1-5.

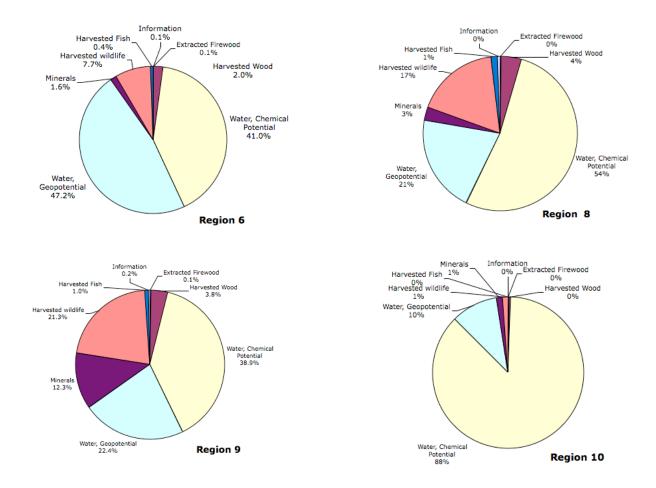
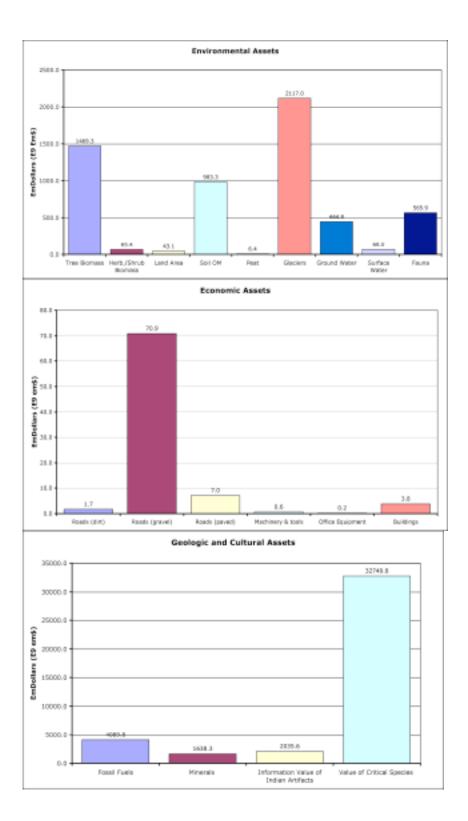
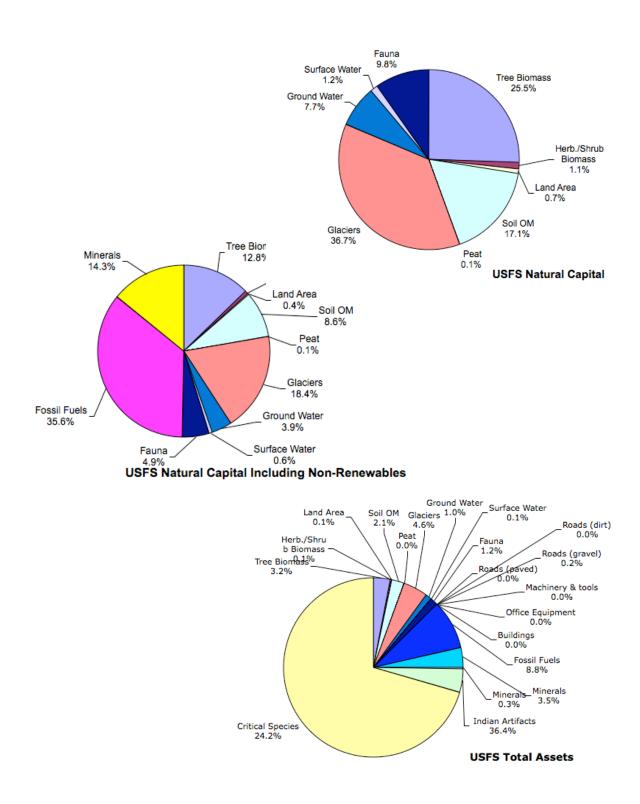
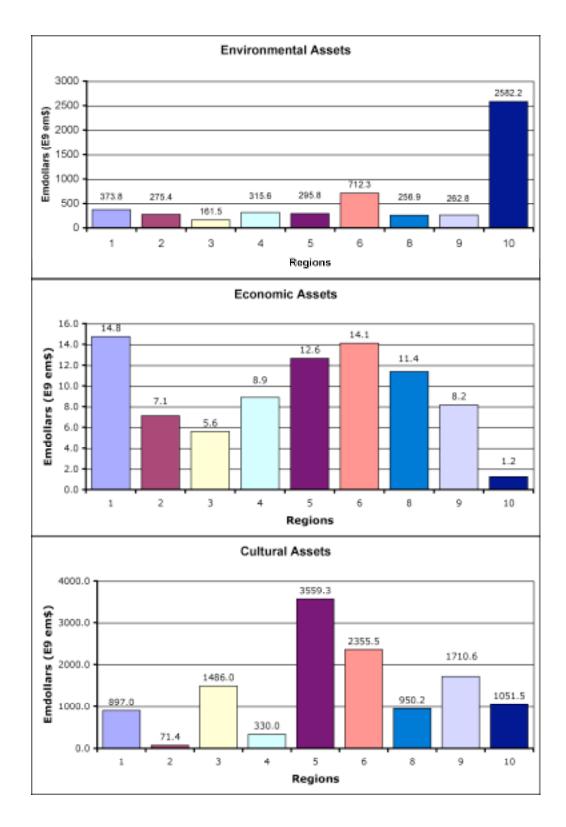


Figure 7 (continued). Emergy in exports and environmental services from US Forests (ca. 2005). Data are for regions 6 - 10.


Figure 8. Emdollar value of assets on USFS lands (ca. 2005).

Environmental assets (top), economic assets (middle) and geologic and cultural assets (bottom)

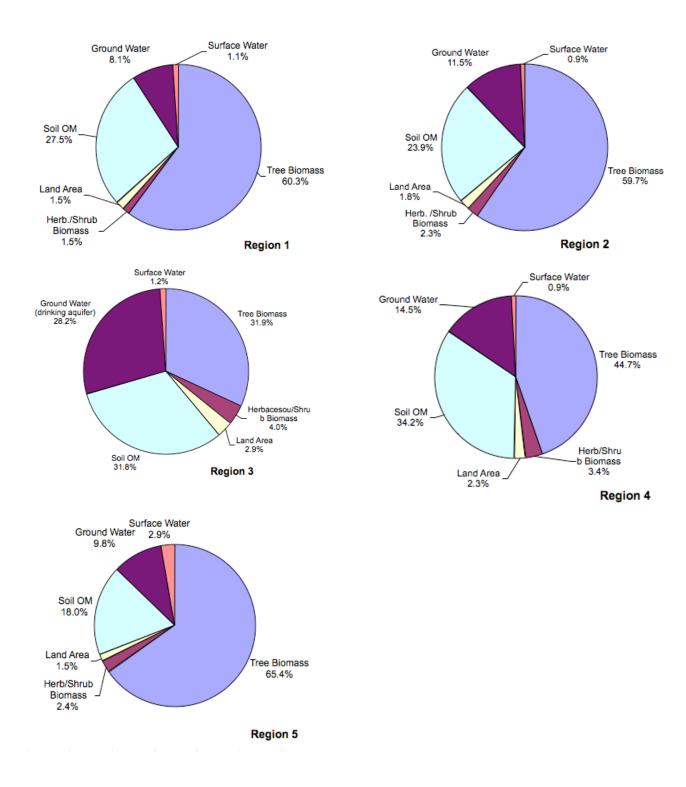


Figure 9. Emergy in assets of the US National Forest System expressed as percent of total.

a) emergy in environmental natural capital, b) emergy in natural capital including estimates of non-renewable reserves, and c) emergy in all assets including cultural assets

Figure 10. Emdollar value of assets of US Forest Service by region. Environmental assets (top), economic assets (middle) and cultural assets (bottom).

Figure 11. Emergy in environmental assets (natural capital) of US Forest System (ca. 2005) by region

Data shown as percent of total (Regions 1-5).

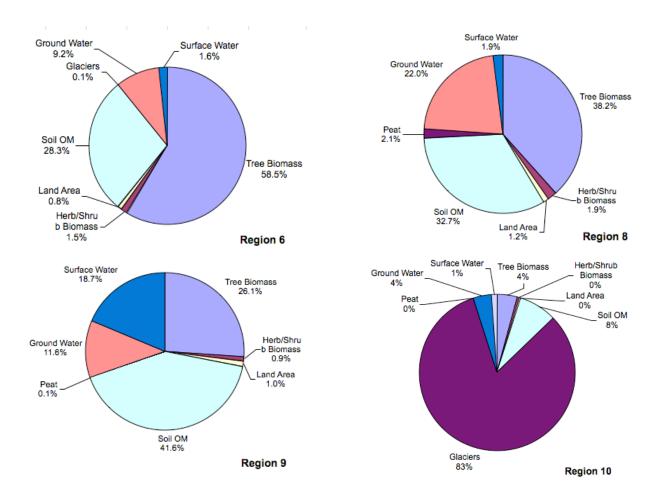
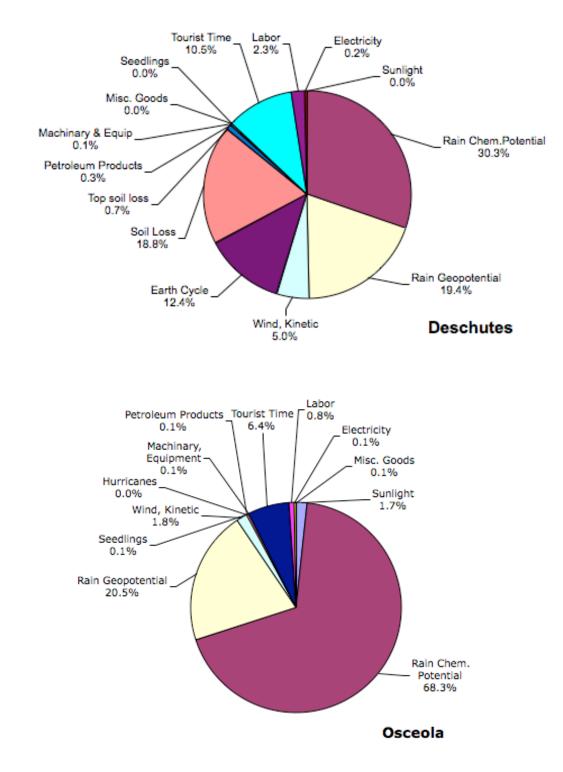
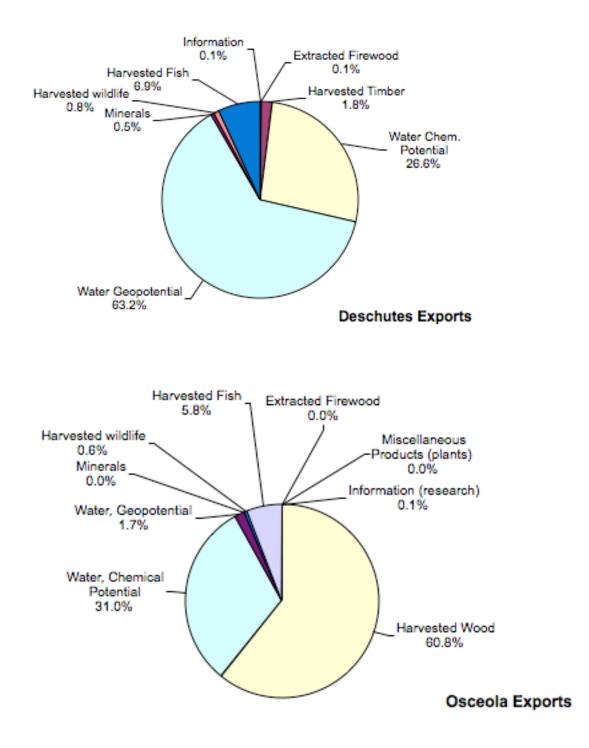




Figure 11 (continued). Emergy in environmental assets (natural capital) shown as percent of total for US Forests (ca. 2005) by region (Regions 6-10).

Figure 12. Driving emergy basis for Deschutes and Osceola Forests. Values are expressed as percent of total inflowing emergy.

Figure 13. Emergy in exports form Deschutes and Osceola National Forests Data shown as percent of total exports.

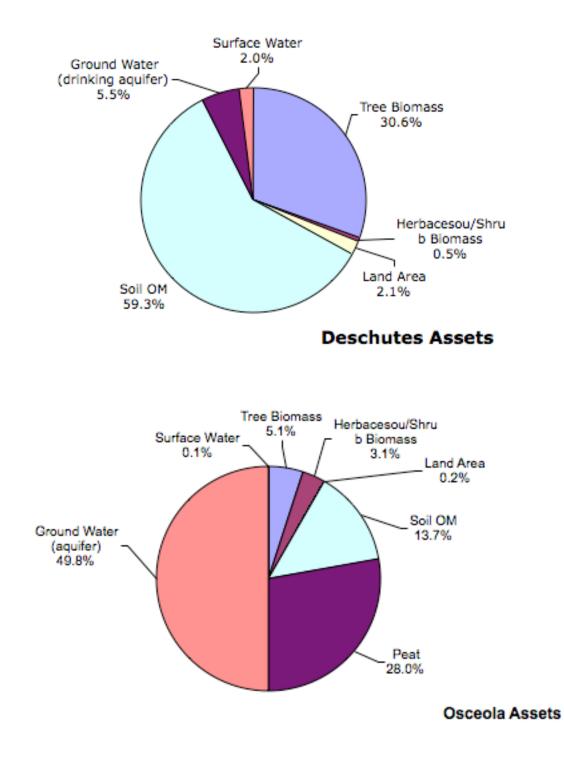


Figure 14. Assets (natural capital) of Deschutes and Osceola National Forests. Assets are shown as percent of total.

APPENDICES

- **Appendix A: Emergy Evaluations of Regions 1-10 Flows**
- **Appendix B: Emergy Evaluations of Regions 1 10 Assets**
- Appendix C: Notes to Table 6: National Flows
- **Appendix D: Notes to Table 7: National Assets**
- Appendix E: Notes to Tables 9 & 10: Deschutes & Osceola Flows
- Appendix F: Notes to Tables 11 & 12: Deschutes & Osceola Assets
- **Appendix G: Emergy Evaluation of Fauna**
- **Appendix H: Emergy Evaluation of Critical Species**
- **Appendix I: Emergy Evaluation of Hunting**
- Appendix J: Emergy Evaluation of Critical Species

Note Item	Unita	Quantity	Emergy Intensity	Solar Emergy	EmDollars
RENEWABLE RESOURCES:	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
	J	5.017E+20	1.00E+00	501.7	264.0
1 Sunlight 2 Rain Chemical Potential	J	1.97E+17	3.10E+04	6101.8	3211.5
3 Transpiration	J	9.99E+16	3.06E+04	3053.3	1607.0
*	J	9.99E+10 1.92E+16	3.00E+04 4.70E+04	904.1	475.9
4 Rain Geopotential 5 Wind, Kinetic	J	6.35E+17	4.70E+04 2.45E+03	1555.9	473.9 818.9
6 Hurricanes	J	0.00E+00	2.43E+03 6.49E+03	0.0	0.0
7 Waves	J	0.001+00	5.10E+04	0.0	0.0
8 Tides		0	5.10E+04 7.39E+04	0.0	0.0
9 Earth Cycle	J J	0 2.90E+17	1.20E+04	3482.5	1832.9
INDIGENOUS NONRENEWABLE I	•		1.20E+04	5462.5	1652.9
10 Soil Loss (harvesting)		1.83E+10	1.68E+09	30.7	16.2
Top soil loss (harvesting)	g J	1.38E+13	7.40E+04	1.0	0.5
11 Misc. Products (plants)	J	1.30E+13	1.80E+04	0.0	0.0
IMPORTS:	J		1.0012+04	0.0	0.0
12 Petroleum Products	J	2.07E+14	1.11E+05	23.0	12.1
13 Machinery, Equipment	•	4.08E+08	1.13E+10	4.6	2.4
14 Misc. Goods	g		1E9 - 7 E9	0.2	2.4
15 Seedlings	g \$	6.57E+06	1.90E+12	12.5	6.6
16 Tourist Time	ф J	1.09E+14	1.50E+12 1.50E+07	1632.5	859.2
17 Labor	hours		6.30E+13	991.1	521.6
18 Electricity	J	1.15E+14	0.30E+13 2.92E+05	33.5	17.6
19 Services	\$	2.73E+08	1.90E+12	518.4	272.8
ECONOMIC PAYMENTS RECEIVE		2.751400	1.90112	510.4	272.0
20 Payment for timber	\$	2.88E+07	1.90E+12	54.7	28.8
Payments for minerals	ψ	2.001+07	1.90112	54.7	20.0
21 extracted	\$	7.92E+07	1.90E+12	150.4	79.2
Fee Payments (hunting,					
22 fishing, grazing, etc)	\$	2.63E+06	1.90E+12	5.0	2.6
EXPORTS:					
23 Extracted Firewood	J	1.55E+15	5.04E+04	78.1	41.1
24 Harvested Wood	J		5.04E+04	565.5	297.7
25 Water, Chemical Potential	J	9.70E+16	8.10E+04	7854.6	4134.0
26 Water, Geopotential	J	1.54E+17	4.70E+04	7233.1	3806.9
27 Minerals	g	1.14E+11	8.16E+09	933.0	491.1
28 Fossil Fuels	J				
29 Harvested wildlife	J	3.94E+15	1.10E+07	3722.8	1959.4
30 Harvested Fish	J	6.42E+12	1.68E+07	107.9	56.8
31 Information (research)	hrs	3.09E+04	1.90E+12	7.3	3.8
32 Hydroelectric Power	J				
33 Image Exported with Tourists	% area	a 0.10%		738.2	388.5
ECONOMIC PAYMENTS MADE					
34 Payments to St. & Local Gov't		2.92E+07	1.90E+12	55.5	29.2
35 Payments for Labor	\$	1.60E+08	1.90E+12	304.9	160.5

APPENDIX A - 1. Annual emergy flows supporting Region 1 of the US National Forest System

Footnotes to Table A-1		
RENEWABLE RESOURCES:		Sources
1 Solar Insolation		
Land Area	1.03E+11m^2	
Insolation	5.94E+09J/m^2/year	NREL, 2006
	1.80E-01(% given as a decimal)	
	rea)*(avg insolation)*(1-albedo)	
	5.02E+20J	
Transformity	1.00E+00sej/J	
2 Rain	5 -	
Chemical Potential		
Land Area	1.03E+11m^2	
Rain	0.386868m/yr	NOAA, 2006
Total Volume Rain		,
	e*1000kg/m^3*4940J/kg	
=	1.97E+17	
Transformity	3.10E+04sej/J	Odum, 2000
3 Transpiration	1.96E-01m/m^2/yr	
	2.02E+10m3	
Energy=Ve	ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	9.99E+16J/yr	
Transformity	3.06E+04sej/J	Odum, 2000
4 Rain Geopotential		
Rain	1.91E-01m/yr	NOAA 2006
Mean Elevation Change	610m	
Land Area	1.03E+11m^2	
Energy(J) = (a)	rea)(rainfall)(avg change in elevation)(de	ensity)(gravity)
=	1.92E+16J	
Transformity	4.70E+04sej/J	Odum et.al, (2000)
5 Wind, Kinetic		
Area	1.03E+11	
air density	1.30E+00kg/m^3	
avg annual wind velocity	4.39E+00mps	NOAA 2006
Geostrophic wind	7.32E+00 observed winds are abou	t 0.6 of geostrophic wind
Drag Coeff.	2.00E-03	
Energy=ar	ea*density*dragcoef*(Geos-grndVel)^	3*31500000
=	6.35E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		
Heat Flow	8.94E+01miliwatts/m^2	IHFC, 2005
area	1.03E+11m^2	

energy=m	iliwatts/m ² *area*sec/yr 2.82E+06J/m ²		
	2.90E+17J/yr	0.1 (2000)	
	1.20E+04sej/J	Odum (2000)	
INDIGENOUS NONRENEWABL			
10 Soil Loss	1.83E+10g/yr		
Top Soil Loss (3.5% of total SL)	$6.40 E + 0.8 e/v_{\pi}$		
	6.40E+08g/yr		
	of C*5.4 kca'/g*4184 J/cal		
	1.38E+13J	NIEG 2005	
11 Misc. Products (Plants)	g/yr	NFS, 2005	
	³ .5kcal/g*4186J/Kcal		
=	2.66E+10joules		
Transformity	1.80E+04sej/J		
IMPORTS:			
12 Petroleum Products			
Forest Service Use	1.78E+05gal/yr	NFS, 2006	
	ll*13e7j/gal		
	2.32E+13J/yr		
FS Building Use			
	6.66E+04BTU/sq ft/yr	EIA, 1992	
energy use =B	ΓU/sqft/yr*sq ft*1055 joules/BTU		
=	2.07E+14J/yr		
Total Fuel Use	2.30E+14J/yr		
Transformity	1.11E+05sej/J	Odum, (1996)	
Est. Cost	3.10E+06\$/yr		
13 Machinery, Equipment	·		
FS	1880vehicles		
avg. mass	4.34E+06g/vehicle		
avg. vehicle lifespan	2.00E+01yrs		
e 1	ehicles*g/vehicle*1/avg life of vehicle		
	4.08E+08g		
Specific Emergy	e	CEP (2006)	
Goods (Pesticides,	1102110 og,g	(2000)	
14herbicides, misc goods)	9.53E+06g/yr	R of FS, 2003	
	2.49E+10sej/g		
emergy=	2.37E+17sej/yr		
Est. for cost	1.68E+06\$/yr		
15 Replanting	·		
Total Cost=	6.57E+06\$/yr		
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
16 Tourism	3 ·	· · · ·	
Tourist Time	1.32E+07visits/yr	NFS, 2005	
average stay	1.90E+01hrs	,	
Total Hours of Stay	2.51E+08hours/yr		
avg. energy/hr	1.04E+02kcal/hr		
total energy expenditure=kc			
= 1.09E + 14J/y			
Transformity	1.50E+07 sej/J		
17 Labor			

FS	6.12E+06hrs/yr	NFS, 2005
Contractors	6.10E+06hrs/yr	
Total Labor	1.57E+07hrs/yr	USA emergy use (1.9E25
		sej/yr);work force of 1.5 E8
Unit Emergy Value	6.30E+13sej/hr	workers
18 Electricity	2943770sq ft	USFS, 2005
	37000btu/ft²/yr	EIA, 1992
	1.09E+11btu/yr	
energy=b	tu/yr*1055 j/btu	
=	1.15E+14J	
2	2.92E+05	Odum, 1996
Est. Cost	2.87E+06\$/yr	
Region Budget	2.89E+08\$/yr	USFS, 2005
19 Services	2.73E+08\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20 Payment for timber	2.88E+07\$/yr	USFS, 2005
Unit Emergy Value Payments for Extracted	1.90E+12sej/\$	CEP (2006)
21Minerals	7.92E+07\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	2.63E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:	-	
23 Extracted Firewood		
mass	1.03E+08kg	
energy=n	nass*1000g/kg15000j/g	
=	1.55E+15J/yr	
Transformity	3.60E+05sej/J	Brown and Bardi (2001)
24 Harvested Wood	$1.39E+06m^{3}/yr$	USFS, 2005
	$5.40E+05g/m^{3}$	
mass	7.48E+11g/yr	
	*15000j/g	
=		
Transformity (w/o	·	
	5.04E+04	
25 Water, Chemical Potential		
Total Export From Streams	1.96E+10m^3/yr	USFS, 2000
	$M^{3/yr} * 1000 \text{ kg/M}^{3} * 4940 \text{ J/kg}$	0515, 2000
joules =	9.70E+16	
Transformity =	8.10E+04	Odum, 2000
Water, Geopotential		
26Energy		
-	volume)(elevation)(density)(gravity)	
avg. elevation	8.00E+02m	
-	volume)(avg elevation)(density)(gravity)	
č	1.54E+17	0.1 0000
Transformity	4.70E+04sej/J	Odum, 2000
MTB Draft ~ $6/8/07$		62

27 Minerals Sp. Emergy (avg)=	1.14E+11g/yr 8.16E+09sej/g			
emergy=				
28 Fossil Fuels				
(National data only)				
29 Hunting				
% Dry Weight for Wildlife	2.50E+01%			
Big Game Extracted	99277.5Big Game/y	USFWS, 2002		
avg. mass	5.68E+04g/Game			
energy content	2.65E+04J/g			
	Game/yr*avg mass*(% dry weight)*J/g			
energy=	3.74E+15J/yr	D 1 000 5		
Transformity=	9.90E+05sej/J	Brown, et al. 2005		
Emergy=	3.70E+21sej			
Small Game Extracted	377254.5Small Game/yr	USFWS, 2002		
avg. mass	3.30E+03g/animal			
energy content	6.37E+03J/g			
energy=	*avg mass*(percent dry weight)J/g 1.98E+14J/yr			
Transformity=	1.20E+05sej/J	Brown, et al. 2005		
Emergy=	2.38E+19sej	Diowii, et al. 2005		
Migratory Birds Extracted	297832.5#/yr	USFWS, 2002		
avg. mass	1.30E+03g/bird	001 110, 2002		
energy content	8.83E+03J/g			
	avg mass(percent dry weight)J/g			
energy=	8.55E+11J/yr			
Transformity=	1.01E+05sej/J	Brown, et al. 2005		
Emergy=	8.63E+16sej			
Other Species Extracted	33092.5#/yr	USFWS, 2002		
avg. mass	6.35E+03g			
energy content	6.37E+03J/g			
energy=#*avg mass*(percent dry weight)J/g				
	3.34E+11J/yr			
Transformity=	1.50E+05sej/J	Brown, et al. 2005		
Emergy=	5.02E+16sej			
Sum of Emergy from Game	3.72E+21sej			
Weighted Trans. For Game	1.10E+07sej/J			
30 Fishing	3.76E+06fish caught	USFS, 2004		
avg. mass	4.54E+02g/fish	,		
energy content	1.88E+04J/g			
Energy Fish Caught	6.42E+12J			
Transformity=	1.68E+07sej/J			
31 Research Information	# of papers			
average time spent	8.05E+02hours/paper			
research hours	30898.01hours/yr			
Transformity	2.35E+14sej/hr			
total sej of research	7.26E+18sej			
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)		
32 Hydroelectric Power				
<i>MTB Draft</i> ~ 6/8/07				

(National Data Only)	
33 Image Exported with Tourists	
Number of tourists	2.90E+06
Percent forest experienced	0.10%
Total Env. & Économic	
Assets	7.38E+23sej
Emergy of image	
exported =	7.38E+20sej
34 Payments to State	2.92E+07\$/yr
Unit Emergy Value	1.90E+12sej/\$
35 Payments for FS Labor	1.60E+08\$/yr
Unit Emergy Value	1.90E+12sej/\$

USFS, 2006 estimate

From Table A3-1

USFS, 2005 CEP (2006) USFS, 2005 CEP (2006)

System					
		a	Emergy Intensity	Solar Emergy	EmDollars
Note Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
RENEWABLE RESOURCES:	_				
1 Sunlight	J	5.253E+20	1.00E+00	525.3	276.5
2 Rain Chemical Potential	J	1.61E+17	3.10E+04	4980.1	2621.1
3 Transpiration	J	1.05E+17	3.06E+04	3208.1	1688.5
4 Rain Geopotential	J	1.11E+16	4.70E+04	519.6	273.4
5 Wind, Kinetic	J	4.87E+17	2.45E+03	1193.9	628.3
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.0
7 Waves	J	0	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	2.88E+17	1.20E+04	3450.4	1816.0
INDIGENOUS NONRENEWABLE R	ESOUR	CES:			
10 Soil Loss (harvesting)	g	1.16E+10	1.68E+09	19.5	10.3
10a Top soil loss (harvesting)	Ĵ	8.73E+12	7.40E+04	0.6	0.3
11 Miscellaneous Products (plants)	J		1.80E+04	0.0	0.0
IMPORTS:					
12 Petroleum Products	J	1.32E+14	1.11E+05	14.7	7.8
13 Machinery, Equipment	g	4.23E+08	1.13E+10	4.8	2.5
14 Misc. Goods		8.27E+06	1E9 - 7 E9	0.2	0.1
15 Seedlings	g \$	2.77E+06	1.90E+12	5.3	2.8
16 Tourist Time	Ĵ	2.69E+14	1.50E+07	4019.5	2115.5
17 Labor	hours	1.32E+07	6.30E+13	830.8	437.3
18 Electricity	J	7.35E+13	2.92E+05	21.4	11.3
19 Services	\$	2.42E+08	1.90E+12	459.1	241.6
ECONOMIC PAYMENTS RECEIVE		2.421400	1.70L+12	H JJ.1	241.0
20 Payment for timber	\$	1.56E+07	1.90E+12	29.6	15.6
Payments for minerals	φ	1.302+07	1.901+12	29.0	15.0
21extracted	\$	8.42E+07	1.90E+12	160.0	84.2
Fee Payments (hunting,	Ŷ	0.122107	1	10010	• ••
22grazing,)	\$	3.35E+06	1.90E+12	6.4	3.4
EXPORTS:					
23 Extracted Firewood	J	1.34E+15	3.60E+04	48.4	25.5
24 Harvested Wood	J	7.11E+15	5.04E+04	358.5	188.7
25 Water, Chemical Potential	J	5.57E+16	8.10E+04	4513.5	2375.6
26 Water, Geopotential	J	2.43E+17	4.70E+04	11430.2	6015.9
27 Minerals	g	1.21E+11	8.16E+09	990.6	521.4
28 Fossil Fuels	J				
29 Harvested wildlife	J	4.80E+15	1.10E+07	4543.8	2391.5
30 Harvested Fish	J	1.58E+13	1.68E+07	265.6	139.8
31 Information (research)	hrs	1.61E+05	2.35E+14	37.9	19.9
32 Hydroelectric power	J	11012105	2.002111	5715	17.7
33 Image Exported with Tourists	% area	0.10%-	_	536.7	282.5
ECONOMIC PAYMENTS MADE	i u u	5.1070-		550.1	202.5
34 Payments to St. & Local Gov't	\$	1.19E+07	1.90E+12	22.5	11.9
÷					
35 Payments for Labor	\$	1.67E+08	1.90E+12	31764.0	16717.9

APPENDIX A-2. Annual emergy flows supporting Region 2 of the US National Forest System

Footnotes to Table A-2 RENEWABLE RESOURCES:		
1 Solar Insolation		Sources
Land Area	8.94E+10m^2	
Insolation	7.17E+09J/m^2/year	NASA, 2006
Albedo	1.80E-01(% given as a decimal)	Gholz and Clark, 2000
Energy(J) = (area)*(avg insolation)*(1-albedo) 5.25E+20J	
Transformity	1.00E+00sej/J	
2 Rain	5	
Chemical Potential		
Land Area	8.94E+10m^2	
Rain	0.363811m/yr	NASA, 2006
Total Volume Rain	•	
energy=	/olume*1000kg/m^3*4940J/kg	
=	1.61E+17	
Transformity	3.10E+04sej/J	Odum et.al, (2000)
3 Transpiration	2.38E-01m/m^2/yr	
I	2.12E+10m3	Sedell, 2000
Energy=	Vol*1000Kg/m^3*4940J/kg	,
Rain ET Energy		
	3.06E+04sej/J	Odum (2000)
4 Rain Geopotential	5	
Runoff from Rain	0.126m/yr	NASA, 2006
Mean Elevation Change	305m	
÷	8.94E+10m^2	
	area)(rainfall)(avg change in elevation)(density)(gravity)
	1.11E+16J	
Transformity	4.70E+04sej/J	Odum, (2000)
5 Wind, Kinetic	5	
	8.94E+10	
air density	1.30E+00kg/m^3	
avg annual wind velocity	e	
	observed winds are abo	ut 0.6 of geostrophic
Geostrophic wind		
Drag Coeff.		
Energy=a	area*density*dragcoef*(Geos-Grnd)^	3*31500000
=	4.87E+17	
	2.45E+03sej/J	Odum (2000)
6 Hurricanes None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		
-	1.02E+02miliwatts/m ²	IHFC, 2005

	8.94E+10m^2	
energy=n	niliwatts/m ² *area*sec/yr	
	3.22E+06J/m^2	
	2.88E+17J/yr	
	1.20E+04sej/J	Odum (2000)
INDIGENOUS NONRENEWAB		
10 Soil Loss	1.16E+10g/yr	USFS, 2005
Top Soil Loss (3.5% of	4.065.08-/	
	4.06E+08g/yr	
	g of C*5.4 kca'/g*4184 J/cal	
	8.73E+12J	
Transformity=		
11 Misc. Products (Plants)	g/yr	USFS, 2005
energy=g	*3.5kcal/g*4186J/Kcal	
=	joules	
	1.80E+04sej/J	
IMPORTS:		
12 Petroleum Products		
Forest Service Use	e .	USFS, 2005
	gal*13e7j/gal	
energy=	1.61E+14J/yr	
FS Building Use	1.88E+06sq feet	
	6.66E+04BTU/sq ft/yr	EIA, 1992
energy use =H	3TU/sqft/yr*sq ft*1055 joules/BTU	
=	1.32E+14	
Total Fuel Use	2.93E+14J/yr	
Transformity	1.11E+05sej/J	Odum, (1996)
Est. Cost=g	al*\$2/gal+MMBTUs*\$14/MMBTU	
	4.23E+06\$/yr	
13 Machinery, Equipment		
mass	8.45E+09g	
avg. vehicle lifespan	2.00E+01yrs	
use per y =v	vehicles*g/vehicle*1/avg life of vehicle	
mass used per year	4.23E+08g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
Misc. Goods (Pesticides,		
14herbicides, etc)	8.27E+06g/yr	NFS, 2005
	2.49E+10sej/g	
emergy=		
Est. for cost	1.46E+06\$/yr	
15 Replanting		
Total Cost=	2.77E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism		
Tourist Time	3.25E+07visits/yr	USFS, 2005
average stay	1.90E+01hrs	
Total Hours of Stay	6.18E+08hours/yr	
6 65	1.04E+02kcal/hr	
total energy expenditure=0	Cal/hr*hrs*4186J/Cal	
=	2.69E+14J/y	
MTP Duaft 6/8/07		

•	1.50E+07 sej/J	
17 Labor	6 29E + O6hra/ur	USFS, 2005
	6.38E+06hrs/yr 3.86E+06hrs/yr	0363, 2003
	1.32E+07hrs/yr	
Unit Emergy Value	•	Odum, 1996
18 Electricity	1882186sq ft	USFS, 2005
10 Electricity	37000btu/ft ² /yr	EIA, 1992
	6.96E+10btu/yr	LIA, 1992
energy-1	otu/yr*1055 j/btu	
	7.35E+13J	
Transformity		Odum, 1996
•	3TU/yr/3412btu/kwh*\$0.09/kwh	oddini, 1990
	1.84E+06\$/yr	
FS Regional budget	2.56E+08\$/yr	
Unit Emergy Value	•	CEP (2006)
19 Services	2.42E+08\$/yr	USFS, 2005
Unit Emergy Value	2	CEP (2006)
20 Payment for timber	1.56E+07\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Payments for Extracted		
21Minerals	8.42E+07\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	3.35E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS: 23 Extracted Firewood		
mass	8.96E+07kg	
energy=1	nass*1000g/kg15000j/g	
=	1.34E+15J/yr	
Τ	2.605.04	Brown and Bardi
-	3.60E+04sej/J	(2001)
24 Harvested Wood	8.78E+05m ³ /yr	USFS, 2005
	5.40E+05g/m ³	
	4.74E+11g/yr	
	g*15000j/g	
	7.11E+15J/yr	D 2001
Transformity (w/o services)	5.04E+04	Brown, 2001
25 Water, Chemical potential	$1.12E + 10m \Delta^2/vm$	Sadall 2000
Total Export From Streams	÷	Sedell, 2000
	M^3/yr * 1000 kg/M^3 * 4940 J/kg 5.57E+16J/yr	
6	-	Odum 2000
-	8.10E+04sej/J	Odum, 2000
26 Water, Geopotential Energy	volume)(elevation)(density)(gravity)	
avg. elevatior		USGS, 2006
ę	2.43E+17	0505,2000
e e	4.70E+04sej/J	Odum, 2000
27 Minerals	1.21E+11g/yr	estimate
	1.2117T11g/y1	comman

28	specific emergy= Fossil Fuels	8.16E+09sej/g	
20	(National data only)		
29	Hunting		
2)	% Dry Weight for Wildlife	2 50F+01%	
		1.21E+05Big Game/y	
	-	5.68E+04g/Game	
	energy content		
		Game/yr*avg mass*(% dry	
	energy=v	veight)*J/g	
		4.56E+15J/yr	USFWS, 2002
	Transformity=	÷	Brown et al, 2005
		4.51E+21sej	
		4.60E+05Small Game/yr	USFWS, 2002
	-	3.30E+03g/animal	
	energy content		
		Game/yr*avg mass*(% dry veight)*J/g	
		2.42E+14J/yr	
	Transformity=	-	Brown et al, 2005
	•	2.90E+19sej	Brown et al, 2005
	Migratory Birds Extracted		USFWS, 2002
		1.30E+03g/bird	0.01
	energy content	e	
		Game/yr*avg mass*(% dry	
		veight)*J/g	
		1.04E+12J/yr	
	Transformity=	0	Brown et al, 2005
		1.05E+17sej	
	Other Species Extracted	-	USFWS, 2002
		6.35E+03g	
	energy content		
		Game/yr*avg mass*(% dry veight)*J/g	
	energy-v	4.08E+11J/yr	
	Transformity=		Brown et al, 2005
	Emergy=	6.12E+16sej	, _
	Sum of Emergy from		
	Game	4.54E+21sej	
	Weighted Trans. For	1 10E + 07cc;/I	
20	Game	1.10E+07sej/J 0.26E+06fish_cought	USFS, 2004
30	Fishing	9.26E+06fish caught	assume avg weight = 1
	avg. mass	4.54E+02g/fish	lb
	energy content	1.88E+04J/g	(4.5Cal/G*4187 J/cal)
	Energy Fish Caugh	1.58E+13J	assume 20% dry weight
	Transformity=	1.68E+07sej/J	
31	Research Information	1.62E+02# of papers	
	average time spent	8.05E+02hours/paper	
	research hours	161249hours/yr	
	Transformity	2.35E+14sej/hr	Odum, 1996

69

total sej of research	3.79E+19sej	
32 Hydroelectric Power		
(National Data Only)		
Image Exported with		
33 Tourists		
Number of toursits	2.90E+06	USFS, 2006
Percent forest experienced Total Env. & Economic	0.10%	estimate
Assets	5.37E+23sej	From Table A3-2
Emergy of image exported	-	
=	5.37E+20sej	
34 Payments to State	1.19E+07\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
35 Payments for FS Labor	1.67E+08\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)

System			Emergy	Solaı	
Not			Intensity.	Emergy	EmDollars
e Item	Units	Quantity	(sej/unit)	$(x 10^{18} sej)$	$(x10^{6} \text{ Em}\$)$
RENEWABLE RESOURCES:					
1 Sunlight	J	5.965E+20	1.00E+00	596.5	313.9
2 Rain Chemical Potential	J	1.24E+17	3.10E+04	3843.1	2022.7
3 Transpiration	J	7.87E+16	3.06E+04	2406.5	1266.6
4 Rain Geopotential	J	8.22E+16	4.70E+04	3861.5	2032.3
5 Wind, Kinetic	J	3.49E+17	2.45E+03	855.5	450.2
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.0
7 Waves	J	0	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	2.19E+17	1.20E+04	2628.0	1383.2
INDIGENOUS NONRENEWABLE	RESOU	IRCES:			
10 Soil Loss (harvesting)	g	2.22E+09	1.68E+09	3.7	2.0
Top soil loss (harvesting)	J	1.67E+12	7.40E+04	0.1	0.1
11 Misc. Products (plants)	J		1.80E+04	0.0	0.0
IMPORTS:					
12 Petroleum Products	J	1.62E+14	1.11E+05	18.1	9.5
13 Machinery, Equipment	g	4.74E+08	1.13E+10	5.3	2.8
Goods (Pesticides, herbicides,	0				
14misc goods)	g \$	7.79E+06	1E9 - 7 E9	0.2	0.1
15 Seedlings		1.51E+06	1.90E+12	2.9	1.5
16 Tourist Time	J	1.70E+14	1.50E+07	2535.4	1334.4
17 Labor	hours	9.64E+06	6.30E+13	607.2	319.6
18 Electricity	J	9.01E+13	2.92E+05	26.3	13.8
19 Services	\$	3.16E+08	1.90E+12	600.5	316.1
ECONOMIC PAYMENTS RECEIV	'ED				
20 Payment for timber	\$	1.02E+06	1.90E+12	1.9	1.0
Payments for minerals	¢	1.565.00	1.005 1.0	2064.2	1500.0
21extracted	\$	1.56E+09	1.90E+12	2964.3	1560.2
Fee Payments (hunting, 22fishing,)	\$	6.49E+06	1.90E+12	12.3	6.5
EXPORTS:	Ψ	0.472100	1.901112	12.5	0.5
23 Extracted Firewood	J	1.27E+15	3.60E+04	45.6	24.0
24 Harvested Wood	J	3.60E+15	5.04E+04	181.3	95.4
25 Water, Chemical Potential	J	4.53E+16	8.10E+04	3666.2	1929.6
26 Water, Geopotential	J	1.44E+17	4.70E+04	6752.3	3553.8
27 Minerals	•	2.25E+12	8.16E+09	18373.2	9670.1
28 Fossil Fuels	g J	2.231112	0.101109	10575.2	2070.1
29 Harvested wildlife	J	3 12F±15	1E5 - 9.9E5	345.3	181.7
30 Harvested Fish	J	9.96E+12	1.68E+07	167.4	88.1
31 Information (research)	hrs	3.09E+04	2.35E+14	7.3	3.8
32 Hydroelectric power	J	5.076704	2.336717	1.5	5.0
33 Image Exported with Tourists	% area	0.10%-		317.5	167.1
ECONOMIC PAYMENTS MADE	10 alca	0.10%-	-	517.5	107.1
34 Payments to St. & Local Gov't	\$	1.01E+07	1.90E+12	19.2	10.1
5 + 1 ayments to 5t. & Local GOV t	Ψ	1.01L+07	1.701712	17.2	10.1

APPENDIX A-3. Annual emergy flows supporting Region 3 of the US National Forest System

251.2

Footnotes to Table A-3 RENEWABLE RESOURCES:		
1 Solar Insolation		Sources
	8.42E+10m^2	
	8.64E+09J/m^2/year	NREL, 2006
	1.80E-01(% given as a decimal)	
Energy(J) = (area)*(avg insolation)*(1-albedo)	
	5.96E+20J	
Transformity	1.00E+00sej/J	
2 Rain		
Chemical Potential		
	8.42E+10m^2	
	0.297995m/yr	NOAA, 2006
Total Volume Rain		
energy=v	olume*1000kg/m^3*4940J/kg	
=	1.24E+17	
Transformity	3.10E+04sej/J	Odum (2000)
3 Transpiration	1.89E-01m/m^2/yr	
	1.59E+10m3 Et	
Energy=V	/o1*1000Kg/m^3*4940J/kg	
Rain ET Energy	7.87E+16J/yr	
Transformity	3.06E+04sej/J	Odum, (2000)
4 Rain Geopotential		
Rain	1.09E-01m/yr	NOAA, 2006
Mean Elevation Change	915m	
Land Area	8.42E+10m^2	
Energy(J) =(area)(rainfall)(avg change in elevation)(dens	sity)(gravity)
=	8.22E+16J	
Transformity	4.70E+04sej/J	Odum, (2000)
5 Wind, Kinetic		
Area	8.42E+10	
air density	1.30E+00kg/m^3	
avg annual wind velocity	3.85E+00mps	NOAA, 2006
Geostrophic wind	6.41E+00 observed winds are about 0.6	of geostrophic wind
Drag Coeff.	2.00E-03	
Energy=a	rea*density*dragcoef*(Geos-grndVel)^3*	31500000
energy	3.49E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes		
None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		
÷	82.40846miliwatts/m ²	IHFC, 2005
area	8.42E+10m^2	

area 8.42E+10m^2

energy=miliwatts/m^2*area*sec/yr	
2.60E+06J/m^2/yr	
energy= $2.19E+17J/yr$	$\mathbf{O}(1)$
Transformity 1.20E+04sej/J	Odum (2000)
INDIGENOUS NONRENEWABLE RESOURCES:	
10 Soil Loss 2.22E+09g/yr Top Soil Loss (3.5% of	USFS, 2005
total SL) 7.77E+07g/yr	
energy=g of C*5.4 kca'/g*4184 J/cal	
= 1.67E+12J	
Transformity = 7.40E+04 sej/j	
Miscellaneous Products	
1 1(Plants) g/yr	USFS, 2005
energy=g*3.5kcal/g*4186J/Kcal	,
= 2.66E+10 joules	
Transformity 1.80E+04sej/J	
IMPORTS:	
12 Petroleum Products	
Forest Service Use 2.52E+06gal/yr	
energy=gal*13e7j/gal	
= 3.28E+14J/yr	
FS Building Use 2.31E+06sq feet	
6.66E+04BTU/sq ft/yr	EIA, 1992
energy use =BTU/sqft/yr*sq ft*1055 joules/BTU	Lin, 1992
1.62E+14	
Total Fuel Use 4.90E+14J/yr	
Transformity 1.11E+05sej/J	Odum, (1996)
Est. Cost=gal*\$2/gal+MMBTUs*\$14/MMBTU	Odulli, (1990)
7.20E+06\$/yr	
•	
13 Machinery, Equipment	
mass 9.49E+09g	
avg. vehicle lifespan 2.00E+01yrs	
use per y =vehicles*g/vehicle*1/avg life of vehicle	3
mass used per year 4.74E+08g	CED(2000)
Specific Emergy 1.13E+10 sej/g	CEP (2006)
14 Goods (Pest, herbicides) 7.79E+06g/yr	USFS, 2005
2.49E+10sej/g	
emergy = 1.94E + 17sej/yr	
Est. for cost 1.37E+06\$/yr	
15 Replanting	
Total Cost= $1.51E+06$ \$/yr	
Unit Emergy Value 1.90E+12sej/\$	CEP (2006)
16 Tourism	
Tourist Time 2.05E+07visits/yr	USFS, 2004
average stay 1.90E+01hrs/visit	
Total Hours of Stay 3.90E+08hours/yr	
avg. energy/hr 1.04E+02kcal/hr	
total energy expenditure=kcal/hr*hrs*4186J/Kcal	
energy = 1.70E + 14J/y	
Transformity 1.50E+07 sej/J	
MTB Draft ~ $6/8/07$	

17 Labor **USFS**, 2005 FS 5.04E+06hrs/yr Contractors 2.44E+06hrs/yr Total Labor 9.64E+06hrs/yr Unit Emergy Value 6.30E+13sej/hr Odum, (1996) **18** Electricity 2308712sq ft USFS, 2005 37000 btu/ft²/yr EIA, 1992 8.54E+10btu/yr energy=btu/yr*1055 j/btu = 9.01E + 13JTransformity 2.92E+05 Odum, 1996 Est. Cost=BTU/yr/3412btu/kwh*\$0.09/kwh 2.25E+06\$/yr Regional FS budget 2.71E+08\$/yr Unit Emergy Value 1.90E+12sej/\$ CEP (2006) **19** Services 3.16E+08\$/yr **USFS**, 2005 Unit Emergy Value 1.90E+12sej/\$ CEP (2006) 20 Payment for timber 1.02E+06\$/yr USFS, 2005 Unit Emergy Value 1.90E+12sej/\$ CEP (2006) Payments for Extracted 21Minerals 1.56E+09\$/y Unit Emergy Value 1.90E+12sej/\$ CEP (2006) 22 Fee Payments 6.49E+06\$/yr Unit Emergy Value 1.90E+12sej/\$ CEP (2006) **EXPORTS:** 12 Extracted Firewood mass 8.44E+07kg energy=mass*1000g/kg15000j/g = 1.27E + 15J/yrTransformity 3.60E+04sej/J Brown & Bardi (2001) 24 Harvested Wood $4.44E+05m^{3}/yr$ **USFS**, 2005 $5.40E + 05g/m^3$ mass 2.40E+11g/yr g*15000j/ energy=g = 3.60E + 15J/yrTransformity (w/o services) 5.04E+04 Brown, 2001 25 Water, Chemical potential Total Export From Streams 9.16E+09m^3/yr Sedel1, 2000 Chemical Potential=M^3/yr * 1000 kg/M^3 * 4940 J/kg joules = 4.53E+16J/yrTransformity 8.10E+04sej/J Odum, 2000 26 Water, Geopotential Energy Geopotential (J) =(volume)(elevation)(density)(gravity) avg. elevation= 1.60E+03m USGS, 2006 joules = 1.44E+17J/yrTransformity 4.70E+04sej/J Odum, 2000 **USFS. 2003** 27 Minerals 2.25E+12g/yr sp. Emergy (avg)= 8.16E+09sej/g28 Fossil Fuels

(National data only) 29 Hunting		
% Dry Weight for Wildlife	$250E_{1}01\%$	
	7.88E+04Big Game/y	
	5.68E+04g/Game	
energy content	-	
	Game/yr*avg mass*(% dry weight)*J/g	
	2.97E+15J/yr	USFWS, 2002
Transformity=	2	Brown, et al 2005
•	3.26E+20sej	
	3.00E+05Small Game/yr	FWS
	3.30E+03g/animal	
energy content		
	Game/yr*avg mass*(% dry weight)*J/g	
	1.57E+14J/yr	
Transformity=	•	Brown, et al 2005
5	1.89E+19sej	
Migratory Birds Extracted		USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content		
energy=#	Game/yr*avg mass*(% dry weight)*J/g	
	6.79E+11J/yr	
Transformity=	1.01E+05sej/J	Brown, et al 2005
Emergy=	6.85E+16sej	
Other Species Extracted	2.63E+04#/yr	USFWS, 2002
avg. mass	6.35E+03g	
energy content	6.37E+03J/g	
energy=#	Game/yr*avg mass*(% dry weight)*J/g	
	2.66E+11J/yr	
Transformity=	1.50E+05sej/J	Brown, et al 2005
Emergy=	3.98E+16sej	
Sum of Emergy from	2.45E : 20:	
	3.45E+20sej	
Weighted Trans. For Game	sej/J	
30 Fishing	5.84E+06fish caught	a_{a} and a_{a} and a_{a} and b_{a}
avg. mass	4.54E+02g/fish	assume avg weight = 1 lb $(4.5 \text{ Ce})/(C*4187 \text{ U/ce})$
energy content	1.88E+04J/g 9.96E+12J	(4.5Cal/G*4187 J/cal)
Energy Fish Caught Transformity=	9.90E+12J 1.68E+07sej/J	assume 20% dry weight
31 Research Information	e e	
average time spent	# of papers 8.05E+02hours/paper	
research hours	30898.01hours/yr	
Transformity	2.35E+14sej/hr	
total sej of research	7.26E+18sej	
32 Hydroelectric Power	7.20E11050J	
(National Data Only)		
Image Exported with		
33 Tourists		
Number of toursits	2.90E+06	USFS, 2006
Percent forest experienced	0.10%	estimate
<i>MTB Draft</i> ~ 6/8/07		75

Total Env. & Economic Assets Emergy of image exported	3.18E+23sej
	3.18E+20sej
34 Payments to State	1.01E+07\$/yr
Unit Emergy Value	1.90E+12sej/\$
35 Payments for FS Labor	1.32E+08\$/yr
Unit Emergy Value	1.90E+12sej/\$

From Table A3-10

USFS, 2005 CEP (2006) USFS, 2005

	T T •		Emergy Intensity.	Solar Emergy	EmDollars
Note Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
RENEWABLE RESOURCES:		7.895E+2			
1 Sunlight	J	0	1.00E+00	789.5	415.5
2 Rain Chemical Potential	J	1.99E+17	3.10E+04	6163.5	3243.9
3 Transpiration	J	1.29E+17	3.06E+04	3944.1	2075.8
4 Rain Geopotential	J	1.20E+17	4.70E+04	5654.1	2975.8
5 Wind, Kinetic	J	4.20E+17	2.45E+03	1028.0	541.1
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.0
7 Waves	J	0	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	3.88E+17	1.20E+04	4659.4	2452.3
INDIGENOUS NONRENEWABLE	RESOU	RCES:			
10 Soil Loss (harvesting)	g	1.39E+10	1.68E+09	23.3	12.3
10a Top soil loss (harvesting)	J	1.04E+13	7.40E+04	0.8	0.4
11 Misc. Products (plants)	J		1.80E+04	0.0	0.0
IMPORTS:					
12 Petroleum Products	J	1.82E+14	1.11E+05	20.3	10.7
13 Machinery, Equipment Misc. Goods (Pesticides,	g	4.38E+08	1.13E+10	4.9	2.6
14herb.)	g	1.20E+07	1E9 - 7 E9	0.3	0.2
15 Seedlings	\$	2.99E+06	1.90E+12	5.7	3.0
16 Tourist Time	J	1.93E+14	1.50E+07	2881.7	1516.7
17 Labor	hours	1.87E+07	6.30E+13	1181.2	621.7
18 Electricity	J	1.01E+14	2.92E+05	29.6	15.6
19 Services	\$	3.05E+08	1.90E+12	579.3	304.9
ECONOMIC PAYMENTS RECEIVI					
20 Payment for timber	\$	3.79E+06	1.90E+12	7.2	3.8
21 Payments for minerals extracted		1.35E+08	1.90E+12	255.7	134.6
22 Fee Payments (hunting, fishing,) \$	3.92E+06	1.90E+12	7.4	3.9
EXPORTS:					
23 Extracted Firewood	J	1.95E+15	3.60E+04	70.2	36.9
24 Harvested Wood	J	1.40E+16		707.3	372.3
25 Water, Chemical Potential	J	6.98E+16	8.10E+04	5655.7	2976.7
26 Water, Geopotential	J	3.37E+17	7.77E+04	26139.2	13757.5
27 Minerals	g	1.94E+11	8.16E+09	1584.2	833.8
28 Fossil Fuels	J				
29 Harvested wildlife	J	3.45E+15	1e5 - 9.9e5	326.2	171.7
30 Harvested Fish	J	1.13E+13	1.68E+07	190.4	100.2
31 Information (research)	hrs	0.00E+00	1.90E+12	0.0	0.0
32 Hydroelectric power	J				
33 Image Exported with Tourists ECONOMIC PAYMENTS MADE	% area	0.10%-	-	616.5	324.5
34 Payments to St. & Local Gov't	\$	2.48E+07	1.90E+12	47.1	24.8
35 Payments for Labor	\$	1.82E+08	1.90E+12	345.5	181.9

APPENDIX A - 4. Annual emergy flows supporting Region 4 of the US National Forest System

Footnotes to Table A-4 RENEWABLE RESOURCES:		
1 Solar Insolation		Sources
Land Area	1.30E+11m^2	
Insolation	7.43E+09J/m^2/year	NREL, 2006
Albedo	1.80E-01(% given as a decimal)	
	rea)*(avg insolation)*(1-albedo)	
	7.90E+20J	
Transformity	1.00E+00sej/J	
2 Rain	-	
Chemical Potential		
Land Area	1.30E+11m^2	
Rain	0.31054394m/yr	NOAA, 2006
Total Volume Rain	4.02E+10m^3	
energy=vo	olume*1000kg/m^3*4940J/kg	
=	1.99E+17	
Transformity	3.10E+04sej/J	Odum et.al, (2000)
3 Transpiration	2.01E-01m/m^2/yr	
	2.61E+10m3 et	
Energy=V	ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	1.29E+17J/yr	
Transformity	3.06E+04sej/J	Odum et.al, (2000)
4 Rain Geopotential		
Rain	1.09E-01m/yr	NOAA, 2006
Mean Elevation Change	3.05E+02m	
Land Area	1.30E+11m^2	
Energy(J) =(a	rea)(rainfall)(avg change in elevation)(density)(gravity)
=	1.20E+17J	
Transformity	4.70E+04sej/J	Odum et.al, (2000)
5 Wind, Kinetic		
Area	1.30E+11	
air density	1.30E+00kg/m^3	
avg annual wind velocity	3.54E+00mps	
Geostrophic wind	5.90E+00 observed winds are abo	out 0.6 of geostrophic wind
Drag Coeff.	2.00E-03	
Energy=ar	rea*density*dragcoef*(Geos-grndVel)	^3*31500000
=	4.20E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes		
None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		
Heat Flow	9.50E+01miliwatts/m ²	IHFC, 2005
area	1.30E+11m^2	
energy=m	iliwatts/m^2*area*sec/yr	

energy= Transformity INDIGENOUS NONRENEWAB 10 Soil Loss Top Soil Loss (3.5% of a. total SL)	1.20E+04sej/J	Odum (2000)
Transformity= 11 Misc. Products (Plants)	of C*5.4 kca'/g*4184 J/cal 1.04E+13J 7.40E+04 sej/j g/yr *3.5kcal/g*4186J/Kcal 2.66E+10joules 1.80E+04sej/J	USFS, 2005
Forest Service Use	1.30E+06gal/yr	estimate
	÷ •	estimate
	al*13e7j/gal	
energy=	÷	
FS Building Use	1	ELA 1002
	6.66E+04BTU/sq ft/yr	EIA, 1992
6.	STU/sqft/yr*sq ft*1055 joules/BTU	
= 		
Total Fuel Use	3.39E+14J/yr	0.1 (100.0)
Transformity	1.11E+05sej/J	Odum, (1996)
Est. Cost=g	al*\$2/gal+MMBTUs*\$14/MMBTU	
	5.02E+06\$/yr	
13 Machinery, Equipment		
mass	8.75E+09g	estimate
avg. vehicle lifespan	2.00E+01yrs	
use per y =v	ehicles*g/vehicle*1/avg life of vehicle	
mass used per year	4.38E+08g	
Specific Emergy Goods (Pesticides,	1.13E+10 sej/g	CEP (2006)
14herbicides)	1.20E+07g/yr	USFS, 2005
	2.49E+10sej/g	
emergy=	2.98E+17sej/yr	
Est. for cost	2.11E+06\$/yr	
15 Replanting		
Total Cost=	2.99E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism	5	· · · ·
Tourist Time	2.33E+07visits/yr	USFS, 2005
average stay	1.90E+01hrs	
Total Hours of Stay	4.43E+08hours/yr	
avg. energy/hr	1.04E+02kcal/hr	
total energy expenditure=k		
energy=	1.93E+14J/y	
Transformity	1.50E+07 sej/J	
17 Labor	<u> </u>	
$MTB Draft \sim 6/8/07$		
$\gamma \gamma \gamma \rho D T \mu \mu \sim 0/0/07$		

FS Contractors	6.94E+06hrs/yr 7.62E+06hrs/yr	USFS, 2005
Total Labor	1.87E+07hrs/yr	
Unit Emergy Value 18 Electricity	6.30E+13sej/hr 2596247sq ft 37000btu/ft²/yr	based on USA emergy use (1.9E25 sej/yr) and work force of 1.5 E8 workers USFS, 2005 EIA, 1992
	9.61E+10btu/yr	
energy=b	tu/yr*1055 j/btu	
=	1.01E+14J	0.1 1007
Transformity		Odum, 1996
Est. Cost=B	TU/yr/3412btu/kwh*\$0.09/kwh	
Decienci ES budget	2.53E+06\$/yr	
Regional FS budget	2.88E+08\$/yr	CEP(2006)
Unit Emergy Value 19 Services	1.90E+12sej/\$ 3.05E+08\$/yr	CEP (2006) USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20 Payment for timber	3.79E+06\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Payments for Extracted	1.702+1256/0	CEI (2000)
21 Minerals	1.35E+08\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	3.92E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:		
12 Extracted Firewood		
mass	1.30E+08kg	NFS Web
energy=m	nass*1000g/kg15000j/g	
energy=	1.95E+15J/yr	
T	2.605.04	Brown & Bardi
Transformity	3.60E+04sej/J	(2001)
24 Harvested Wood	$1.73E+06m^{3}/yr$	USFS, 2005
	$5.40E+05g/m^{3}$	
mass	9.36E+11g/yr	
energy=g	*15000j/g	
= Transformity (w/o	1.40E+16J/yr	
services)	5.04E+04	Brown, 2001
25 Water, Chemical potential		,
Total Export From		
Streams	1.41E+10m^3/yr	Sedell, 2000
	M^3/yr * 1000 kg/M^3 * 4940 J/kg	
joules =	6.98E+16J/yr	• • • • • • • • • • • • • • • • • • •
Transformity Water Geopotential	8.10E+04sej/J	Odum, 2000
Water, Geopotential 26 Energy		
	volume)(elevation)(density)(gravity)	
-	$2.43\text{E}+03\text{m}^{3}/\text{yr}$	USGS, 2006
joules =	3.37E+17J/yr	
MTD Devel (19/07	-	

Transformity 27 Minerals	7.77E+04sej/J 1.94E+11g/yr	Odum, 2000 estimate
sp.emergy (avg)= 28 Fossil Fuels	8.16E+09	CEP(2006)
(National data only)		
29 Hunting		
% Dry Weight for Wildlife	2.50E+01%	
Big Game Extracted	8.70E+04Big Game/y	USFWS, 2002
avg. mass	5.68E+04g/Game	
energy content	2.65E+04J/g	
energy= #	Game/yr*avg mass*(% dry weight)*J/g	
energy=	3.27E+15J/yr	
Transformity=	9.90E+05sej/J	Brown et al, 2005
Emergy=	3.24E+21sej	
Small Game Extracted	3.31E+05Small Game/yr	USFWS, 2002
avg. mass	3.30E+03g/animal	
energy content	6.37E+03J/g	
	Game/yr*avg mass*(% dry weight)*J/g	
energy=	1.74E+14J/yr	
Transformity=	1.20E+05sej/J	
Emergy=	2.08E+19sej	
Migratory Birds Extracted	2.61E+05#/yr	USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content	8.83E+03J/g	
	Game/yr*avg mass*(% dry weight)*J/g	
energy=	7.49E+11J/yr	
Transformity=	1.01E+05sej/J	
Emergy=	7.56E+16sej	LICEWS 2002
Other Species Extracted	2.90E+04#/yr	USFWS, 2002
avg. mass	6.35E+03g	
energy content	6.37E+03J/g	
ellelgy- #	Game/yr*avg mass*(% dry weight)*J/g 2.93E+11J/yr	
Transformity=	1.50E+05sej/J	
Emergy=	4.39E+16sej	
Sum of Emergy from	- .572+103 C J	
Game	3.26E+21sej	
30 Fishing	6.64E+06fish caught	estimate
avg. mass	4.54E+02g/fish	
energy content	1.88E+04J/g	
Energy Fish Caught	1.13E+13J	
Transformity=	1.68E+07sej/J	
31 Information		
\$ spent for Research	0.00E+00\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
32 Hydroelectric Power		
(National Data Only)		
33 Image Exported with Tourists		
Number of toursits	2.90E+06	USFS, 2006
Percent forest experienced	0.10%	estimate
<i>MTB Draft</i> ~ 6/8/07		

	Total Env. & Economic Assets Emergy of image exported	6.1649E+23sej
	=	6.16E+20sej
34	Payments to State	2.48E+07\$/yr
	Unit Emergy Value	1.90E+12sej/\$
35	Payments for FS Labor	1.82E+08\$/yr
	Unit Emergy Value	1.90E+12sej/\$

From Table A3-10

USFS, 2005 CEP (2006) USFS, 2005 CEP (2006)

System					
			Emergy	Solar	
Noto Itam	I In the	0	Intensity.	Emergy	EmDollars
Note Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em})$
RENEWABLE RESOURCES:			1 0 0 5 0 0	500 0	
1 Sunlight	J	5.028E+20	1.00E+00	502.8	264.65
2 Rain Chemical Potential	J	1.86E+17	3.10E+04	5756.0	3029.46
3 Transpiration	J	1.42E+17	3.06E+04	4339.1	2283.73
4 Rain Geopotential	J	2.65E+16	4.70E+04	1244.3	654.92
5 Wind, Kinetic	J	1.80E+17	2.45E+03	440.9	232.08
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.00
7 Waves	J	1.61E+16	5.10E+04	819.7	431.44
8 Tides	J	1.30E+14	2.43E+04	3.2	1.66
9 Earth Cycle	J	2.09E+17	1.20E+04	2503.5	1317.65
INDIGENOUS NONRENEWABLE	RESOUR	RCES:			
10 Soil Loss (harvesting)	g	6.08E+09	1.68E+09	10.2	5.38
Top soil loss (harvesting)	J	4.58E+12	7.40E+04	0.3	0.18
11 Misc. Products (plants)	J		1.80E+04	0.0	0.00
IMPORTS:					
12 Petroleum Products	J	3.44E+14	1.11E+05	38.3	20.14
13 Machinery, Equipment	g	1.14E+09	1.13E+10	12.8	6.75
14 Misc. Goods		7.56E+06	1E9 - 7 E9	0.2	0.10
15 Seedlings	g \$	8.00E+06	1.90E+12	15.2	8.00
16 Tourist Time	J	2.54E+14	1.50E+07	3796.9	1998.34
17 Labor	hours	1.47E+07	6.30E+13	928.0	488.41
18 Electricity	J	1.91E+14	2.92E+05	55.7	29.31
19 Services	\$	7.70E+08	1.90E+12	1463.1	770.05
ECONOMIC PAYMENTS RECEIVE					
20 Payment for timber Payments for minerals	\$	1.92E+07	1.90E+12	36.5	19.21
21extracted Fee Payments (hunting,	\$	6.79E+08	1.90E+12	1289.5	678.70
22fishing, grazing, etc) EXPORTS:	\$	8.16E+06	1.90E+12	15.5	8.16
23 Extracted Firewood	J	1.23E+15	3.60E+04	44.2	23.27
24 Harvested Wood	J		5.04E+04	677.1	
25 Water, Chemical Potential	J	2.02E+17	8.10E+04	16387.1	8624.78
26 Water, Geopotential	J	3.68E+17	4.70E+04	17278.6	9094.01
27 Minerals	•	9.79E+11	8.16E+09	7993.5	4207.11
28 Fossil Fuels	g J	<i>J.TJ</i> L111	0.101107	1775.5	4207.11
29 Harvested wildlife	J	1.77E+15	1e5 - 9.9e5	1670.4	879.18
30 Harvested Fish	J	1.49E+13	1.68E+07	250.9	132.06
31 Information (research)	hrs	5.02E+04	2.35E+14	11.8	6.21
32 Hydroelectric power	IIIS	J.02E+04	2.3311+14	11.0	0.21
•	0	0.100		506 0	200 /
33 Image Exported with Tourists ECONOMIC PAYMENTS MADE	% area	0.10%		586.0	308.4
34 Payments to St. &Local Gov't	\$	6.80E+07	1.90E+12	129.2	68.02
35 Payments for Labor	\$	1.40E+08	1.90E+12	266.8	140.43

APPENDIX A - 5. Annual emergy flows supporting Region 5 of the US National Forest System

MTB Draft ~ 6/8/07

	otnotes to Table A-5		
	NEWABLE RESOURCES:		a.
1	Solar Insolation		Sources
	Land Area	8.17E+10m^2	
	Insolation	2	NREL, 2006
	Albedo	6	-
	Energy(J) = (a)	rea)*(avg insolation)*(1-albed	0)
		5.03E+20J	
~	Transformity	1.00E+00sej/J	
2	Rain		
	Chemical Potential	9.175.10.40	
	Land Area		
		5	NOAA, 2006
	Total Volume Rain	3.76E+10m^3	
	energy=vc	blume*1000kg/m^3*4940J/kg	
	=	1.86E+17	\mathbf{O} (2000)
2	Transformity	3.10E+04sej/J	Odum (2000)
3	Transpiration	3.52E-01m/m ² /yr	
		ol*1000Kg/m^3*4940J/kg	
	Rain ET Energy	1.42E+17J/yr	\mathbf{O} (2000)
4	Transformity	3.06E+04sej/J	Odum (2000)
4	Rain Geopotential	1 005 01 /	
	Rain	1.08E-01m/yr	NOAA, 2006
	Mean Elevation Change3.		
	Land Area		· · · · · · · · · · · ·
		rea)(rainfall)(avg change in ele	vation)(density)(gravity)
	=	2.002.1100	\mathbf{O} (2000)
~	Transformity	4.70E+04sej/J	Odum (2000)
5	Wind, Kinetic	0.175 10	
	Area	8.17E+10	
	air density	1.30E+00kg/m^3	
	avg annual wind velocity	3.12E+00mps	NOAA, 2006 are about 0.6 of geostrophic
	Geostrophic wind	5.19E+00wind	are about 0.0 or geostrophic
	Drag Coeff.	2.00E-03	
	U	ea*density*dragcoef*(Geos-g	rndVel)^3*31500000
	=	1.80E+17	
	Transformity		Odum (2000)
6	Hurricanes	2	
0	None		
7	Waves		
	Shore length =	1.63E+05m	
	Wave height =	7.50E-01m	
	U	shore length)(1/8)(density)(grav	$(wave height^2)(velocity)$
	2.001 g y (0) = (($m(1/8)(1.025E3kg/m^3)(9.8$	
		$(sec^{2})(\m)^{2}(\m/sec)(3.14E7s)$	s/yr)
	Energy(J) =		
	Transformity =	5.10E+04sej/J	2.98E+04

Cont Shelf Area = 1.63E+07m^2 1.50E+00m Avg Tide Range = Density = 1.03E+03kg/m^3 Tides/year = 7.06E+02 (number of tides in 365 days) $Energy(J) = (shelf)(0.5)(tides/y)(mean tidal range)^2$ (density of seawater)(gravity) = $(__m^2)*(0.5)*(__/yr)*(__m)^2*(__kg/m^3)$ $*(9.8 \text{m/s}^2)$ 1.30E+14J/yr = Transformity = 2.43E+04sej/J 9 Earth Cycle Heat Flow 8.10E+01miliwatts/m² **IHFC**, 2005 8.17E+10m^2 area energy=miliwatts/m^2*area*sec/yr 2.55E+06J/m^2 2.09E+17J/yr energy= Transformity 1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 6.08E+09g/yr USFS, 2005 Top Soil Loss (3.5% of 2.13E+08g/yr total SL) energy=g of C*5.4 kca'/g*4184 J/cal 4.58E+12J = Transformity= 7.40E+04 sej/j **Miscellaneous** Products 11(Plants) **USFS**, 2005 g/yr energy=g*3.5kcal/g*4186J/Kcal 2.66E+10joules 1.80E+04sej/J Transformity **IMPORTS:** 12 Petroleum Products Forest Service Use 3.38E+06gal/yr energy=gal*13e7j/gal 4.39E+14J/yr FS Building Use 4.89E+06sq feet 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU 3.44E+14 — Total Fuel Use 7.82E+14J/yr Odum, (1996) Transformity 1.11E+05sej/J Est. Cost=gal*\$2/gal+MMBTUs*\$14/MMBTU 1.13E+07\$/yr 13 Machinery, Equipment FS Vechiles Mass 2.E+10g avg. vehicle lifespan 2.00E+01yrs use per y =vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.14E+09g Specific Emergy 1.13E+10 sej/g CEP (2006) 14 Goods (Pest/, herbicides) 7.56E+06g/yr USFS, 2005

MTB Draft ~ 6/8/07

8 Tidal

	2.49E+10sej/g	
emergy=	1.88E+17sej/yr	
Est. for cost	1.33E+06\$/yr	
15 Replanting		
Total Cost=	8.00E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism		
Tourist Time	3.07E+07visits/yr	USFS, 2004
average stay	1.90E+01hrs	
Total Hours of Stay	5.83E+08hours/yr	
avg. energy/hr	1.04E+02kcal/hr	
total energy expenditure=k		
=	2.54E+14J/y	
•	1.50E+07 sej/J	
17 Labor		
FS	5.36E+06hrs/yr	USFS, 2005
Contractors	6.08E+06hrs/yr	
Total Labor	1.47E+07hrs/yr	
		based on USA emergy use (1.9E25 sej/yr) and work force
Unit Emergy Value	6.30E+13sej/hr	of 1.5 E8 workers
18 Electricity	4889205sq ft	USFS, 2005
10 Electrony	37000btu/ft ² /yr	EIA, 1992
	1.81E+11btu/yr	LIA, 1992
energy-h	tu/yr*1055 j/btu	
energy=0	1.91E+14J	
_ Transformity		Odum, 1996
-	TU/yr/3412btu/kwh*\$0.09/kw	
Lst. Cost-D	4.77E+06\$/yr	
Regional FS budget	5.77E+08\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
19 Services	7.70E+08\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20 Payment for timber	1.92E+07\$/yr	USFS, 2005
Unit Emergy Value	2	CEP (2006)
Onit Energy Value	1.90E+12SC/\$	CEI (2000)
Payments for Extracted		
21Minerals	6.79E+08\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
	Ū.	
22 Fee Payments	8.16E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:	Ū.	
23 Extracted Firewood		
mass	8.19E+07kg	
energy=m	ass*1000g/kg15000j/g	
=	1.23E+15J/yr	
	-	Brown & Bardi
Transformity	3.60E+04sej/J	(2001)
24 Harvested Wood	1.66E+06m ³ /yr	USFS, 2005

	5.40E+05g/m ³	
mass	8.96E+11g/yr	
energy=g*	1.34E+16J/yr	
Transformity (w/o	1.34E+10 J /yi	
services)	5.04E+04	Brown, 2001
25 Water, Chemical potential		,
Total Export From		
Streams	4.10E+10m^3/yr	Sedell, 2000
	^3/yr * 1000 kg/M^3 * 4940 J/kg	
joules =	2.02E+17J/yr	
Transformity	8.10E+04sej/J	Odum, 2000
Water, Geopotential		
26 Energy	-1	
-	olume)(elevation)(density)(gravity)	11909 2006
avg. elevation		USGS, 2006
joules =	-	O las 2 000
Transformity	•	Odum, 2000
27 Minerals	9.79E+11g/yr	estimate
Sp. Emergy (avg)=	8.16E+09sej/g	
28 Fossil Fuels		
(National data only)		
29 Hunting	0.505.010	
% Dry Weight for Wildlife	2.50E+01%	
Big Game Extracted	4.45E+04Big Game/y	USFWS, 2002
avg. mass	5.68E+04g/Game	
energy content	2.65E+04J/g	
	Game/yr*avg mass*(% dry weight)*J/g	
energy=	1.68E+15J/yr	D 1 0005
Transformity=	9.90E+05sej/J	Brown et al. 2005
Emergy=	1.66E+21sej	
Small Game Extracted	1.69E+05Small Game/yr	USFWS, 2002
avg. mass	3.30E+03g/animal	
energy content	6.37E+03J/g	
	Game/yr*avg mass*(% dry weight)*J/g	
energy=	8.89E+13J/yr	D 1 0005
Transformity=	1.20E+05sej/J	Brown et al. 2005
Emergy=	1.07E+19sej	
Migratory Birds Extracted	1.34E+05#/yr	USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content	8.83E+03J/g	
	Game/yr*avg mass*(% dry weight)*J/g	
energy=	3.84E+11J/yr	
Transformity=	1.01E+05sej/J	Brown et al. 2005
Emergy=	3.87E+16sej	
Other Species Extracted	1.48E+04#/yr	USFWS, 2002
avg. mass	6.35E+03g	
energy content	6.37E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
	1.50E+11J/yr	

Transformity= Emergy=	1.50E+05sej/J 2.25E+16sej	Brown et al. 2005
Sum of Emergy from	5	
Game	1.67E+21sej	
30 Fishing	8.75E+06fish caught 4.54E+02g/fish	accume and weight - 1 lb
avg. mass energy content	1.88E+04J/g	assume avg weight = 1 lb (4.5Cal/G*4187 J/cal)
Energy Fish Caught	1.49E+13J	assume 20% dry weight
Transformity=	1.68E+07sej/J	assume 20% dry weight
31 Research Information	2.40E+01# of papers	
average time spent	8.05E+02hours/paper	
research hours	50209.27hours/yr	
Transformity	2.35E+14sej/hr	Odum, 1996
total sej of research	1.18E+19sej	
32 Hydroelectric Power	, e	
(National Data Only)		
Image Exported with		
33Tourists	2 005 0	
Number of tourists	2.90E+06	USFS, 2006
Percent forest experienced Total Env. & Economic	0.10%	estimate
Assets	5.86E+23sej	From Table A3-10
Emergy of image	5	
exported =	5.86E+20sej	
34 Payments to State	6.80E+07\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
35 Payments for FS Labor	1.40E+08\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)

System			Emergy	Solar	
Not			Intensity.	Emergy	EmDollars
e Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
RENEWABLE RESOURCES:					
1 Sunlight	J	4.628E+20	1.00E+00	462.8	243.6
2 Rain Chemical Potential	J	4.48E+17	3.10E+04	13880.6	7305.6
3 Transpiration	J	1.76E+17	3.06E+04	5370.1	2826.4
4 Rain Geopotential	J	2.80E+17	4.70E+04	13142.8	6917.3
5 Wind, Kinetic	J	3.06E+17	2.45E+03	748.7	394.0
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.0
7 Waves	J	0	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	3.30E+17	1.20E+04	3955.3	2081.7
INDIGENOUS NONRENEWABLE	RESOU	RCES:			
10 Soil Loss (harvesting)	g	2.88E+10	1.68E+09	48.4	25.5
Top soil loss (harvesting)	J	2.17E+13	7.40E+04	1.6	0.8
11 Misc.Products (plants)	J		1.80E+04	0.0	0.0
IMPORTS:					
12 Petroleum Products	J	3.57E+14	1.11E+05	39.8	20.9
13 Machinary, Equipment	g	8.52E+08	1.13E+10	9.6	5.0
14 Misc.Goods (Pest/herbicides,)		9.29E+06	1E9 - 7 E9	0.2	0.1
15 Seedlings	g \$	1.44E+07	1.90E+12	27.4	14.4
16 Tourist Time	Ĵ	2.33E+14	1.50E+07	3487.7	1835.6
17 Labor	hours	2.06E+07	6.30E+13	1296.1	682.2
18 Electricity	J	1.98E+14	2.92E+05	57.9	30.5
19 Services	\$	1.91E+08	1.90E+12	363.1	191.1
ECONOMIC PAYMENTS RECEIV					
20 Payment for timber	\$	5.69E+07	1.90E+12	108.1	56.9
Payments for minerals 21extracted	\$	7.19E+07	1.90E+12	136.5	71.9
Fee Payments (hunting,	Ψ	7.17L+07	1.70L+12	150.5	/1./
22fishing, grazing, etc)	\$	9.52E+06	1.90E+12	18.1	9.5
EXPORTS:					
23 Extracted Firewood	J	1.51E+15	3.60E+04	54.3	28.6
24 Harvested Wood	J	2.12E+16	5.04E+04	1068.8	562.5
25 Water, Chemical Potential	J	2.72E+17	8.10E+04	22041.8	11600.9
26 Water, Geopotential	J	5.40E+17	4.70E+04	25372.2	13353.8
27 Minerals	g	1.04E+11	8.16E+09	844.8	444.6
28 Fossil Fuels	J				
29 Harvested wildlife	J	4.39E+15	1e5 - 9.9e5	4152.0	2185.3
30 Harvested Fish	J	1.37E+13	1.68E+07	230.5	121.3
31 Information (research)	hrs	1.15E+05	2.35E+14	27.1	14.3
32 Hydroelectric power	J				
33 Image Exported with Tourists	% area	0.10%		588.6	309.8
ECONOMIC PAYMENTS MADE					
34 Payments to St. & Local Gov't	\$	2.10E+08	1.90E+12	398.9	210.0
35 Payments for Labor	\$	1.67E+08	1.90E+12	317.6	167.2
	Ŧ				

APPENDIX A - 6. Annual emergy flows supporting Region 6 of the US National Forest System

Footnotes to Table A-6		
RENEWABLE RESOURCES:		
1 Solar Insolation		Sources
Land Area	1.00E+11m^2	
Insolation	5.62E+09J/m^2/year	NREL, 2006
Albedo	1.80E-01(% given as a decimal)	,
	area)*(avg insolation)*(1-albedo)	
8)(*) (*	4.63E+20J	
Transformity	1.00E+00sej/J	
2 Rain		
Chemical Potential		
-	1.00E+11m^2	
	0.903022m/yr	NOAA 2006
Total Volume Rain	9.06E+10m^3	
	olume*1000kg/m^3*4940J/kg	
=	4.48E+17	
Transformity	3.10E+04sej/J	Odum (2000)
3 Transpiration	3.54E-01m/m^2/yr	
	3.56E+10m3	
Energy=V	/ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	1.76E+17J/yr	
Transformity	3.06E+04sej/J	Odum (2000)
4 Rain Geopotential		Cuum (2000)
Rain	5.49E-01m/yr	NOAA 2006
Mean Elevation Change	5.18E+02m	
e	$1.00E+11m^2$	
	area)(rainfall)(avg change in elevation)(d	lensity)(gravity)
=	2.80E+17J	(gravity)
Transformity	4.70E+04sej/J	Odum (2000)
5 Wind, Kinetic	5 -	- ()
Area	1.00E+11	
air density	1.30E+00kg/m^3	
avg annual wind velocity	3.47E+00mps	NOAA 2006
Geostrophic wind		t 0.6 of geostrophic wind
Drag Coeff.	2.00E-03	8 1
e e	rea*density*dragcoef*(Geos-grndVel)/	3*31500000
=	3.06E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes	5 -	-
None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		
Heat Flow	1.04E+02miliwatts/m^2	IHFC, 2005
area	1.00E+11m^2	·
energy=m	niliwatts/m^2*area*sec/yr	
	-	

	3.28E+06J/m^2	
÷••	3.30E+17J/yr	
•	1.20E+04sej/J	Odum (2000)
INDIGENOUS NONRENEWAB		
10 Soil Loss	2.88E+10g/yr	estimate
Top Soil Loss (3.5% of	1.01E+00-/	
total SL)	1.01E+09g/yr	
energy=g	of C*5.4 kca'/g*4184 J/cal	
=	2.17E+13J	
Transformity= Miscellaneous Products	7.40E+04 sej/j	
1 1(Plants)	g/yr	USFS, 2005
	*3.5kcal/g*4186J/Kcal	,
=	2.66E+10joules	
Transformity	1.80E+04sej/J	
IMPORTS:	J -	
12 Petroleum Products		
Forest Service Use	3.33E+06gal/yr	
	al*13e7j/gal	
e. e	4.33E+14J/yr	
	5.08E+06sq feet	
	6.66E+04BTU/sq ft/yr	EIA, 1992
energy use =B	TU/sqft/yr*sq ft*1055 joules/BTU	
÷.	3.57E+14	
Total Fuel Use	7.90E+14J/yr	
	1.11E+05sej/J	Odum, (1996)
	al*\$2/gal+MMBTUs*\$14/MMBTU	
C	1.14E+07\$/yr	
13 Machinery, Equipment	·	
FS Vehicle mass	1.7E+10g	
avg. vehicle lifespan	2.00E+01yrs	
use per y =v	ehicles*g/vehicle*1/avg life of vehicle	
mass used per year	8.52E+08g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
Goods (Pesticides,		
14herbicides, misc goods)	9.29E+06g/yr	USFS, 2005
	2.49E+10sej/g	
emergy=	2.31E+17sej/yr	
Est. for cost	1.64E+06\$/yr	
15 Replanting		
Total Cost=	1.44E+07\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism	2.925 . 07	
Tourist Time	2.82E+07visits/yr 1.90E+01hrs	USFS, 2004
average stay		
Total Hours of Stay	5.36E+08hours/yr 1.04E+02kcal/hr	
avg. energy/hr		
total energy expenditure=k		
= Transformity	2.33E+14J/y 1.50E+07 sej/J	
Transformity		

17 Labor		
FS	6.38E+06hrs/yr	NFS, 2005
Contractors	9.60E+06hrs/yr	
Total Labor	2.06E+07hrs/yr	
		based on USA emergy
		use $(1.9E25 \text{ sej/yr})$ and
Unit Emanay Value	6.20E + 12aci/br	work force of 1.5 E8
Unit Emergy Value	6.30E+13sej/hr	workers
18 Electricity	5084087sq ft	USFS, 2005
	37000btu/ft²/yr	EIA, 1992
	1.88E+11btu/yr	
energy=b	tu/yr*1055 j/btu	
=	1.98E+14J	
Transformity	2.92E+05	Odum, 1996
Est. Cost=B	TU/yr/3412btu/kwh*\$0.09/kwh	
	4.96E+06\$/yr	
Regional FS budget	4.51E+08\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
19 Misc. Expenditures	1.91E+08\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20 Payment for timber	5.69E+07\$/yr	USFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Payments for Extracted	1.90L+12 se jt¢	CEI (2000)
21Minerals	7.19E+07\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	9.52E+06\$/yr	- ()
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:	1, , , , , , , , , , , , , , , , , , ,	
23 Extracted Firewood		
mass	1.01E+08kg	
	nass*1000g/kg15000j/g	
=	1.51E+15J/yr	
	3.60E+04sej/J	Brown & Bardi (2001)
Transformity	5	
24 Harvested Wood	2.62E+06m ³ /yr	USFS, 2005
	$5.40E + 05g/m^3$	
mass	1.41E+12g/yr	
energy=g	*15000j/g	
=	2.12E+16J/yr	
Transformity (w/o	5.045.04	B
	5.04E+04	Brown, 2001
25 Water, Chemical potential Total Export From		
Streams	5.51E+10m^3/yr	
	1^3/yr * 1000 kg/M^3 * 4940 J/kg	
joules =	2.72E+17J/yr	
Transformity	8.10E+04sej/J	Odum, 2000
Water, Geopotential	0.101/0730/3	Suum, 2000
26 Energy		
	volume)(elevation)(density)(gravity)	
avg. elevation	1.00E+03m	USGS, 2006
joules =	5.40E+17J/yr	·
C C	,	
MTB Draft $\sim 6/8/07$		

Transformity 4.70E+04sej/J Odum, 2000 27 Minerals 1.04E + 11g/yrSp. Emergy (avg)= 8.16E+09sej/g 28 Fossil Fuels (National data only) 29 Hunting % Dry Weight for Wildlife 2.50E+01% 1.11E+05Big Game/y **USFWS**, 2002 Big Game Extracted avg. mass 5.68E+04g/Game 2.65E+04J/g energy content energy=#Game/yr*avg mass*(% dry weight)*J/g energy= 4.17E+15J/yr Transformity= 9.90E+05sej/J Brown et al, 2005 Emergy= 4.13E+21sej Small Game Extracted 4.21E+05Small Game/yr **USFWS**, 2002 3.30E+03g/animal avg. mass energy content 6.37E+03J/g energy=#Game/yr*avg mass*(% dry weight)*J/g 2.21E+14J/yr energy= Transformity= 1.20E+05sej/J 2.65E+19sej Emergy= **Migratory Birds USFWS**, 2002 Extracted 3.32E+05#/yr 1.30E+03g/bird avg. mass energy content 8.83E+03J/g energy=#Game/yr*avg mass*(% dry weight)*J/g energy= 9.53E+11J/yr 1.01E+05sej/J Transformity= Emergy= 9.63E+16sej Other Species Extracted 3.69E+04#/yr **USFWS**, 2002 avg. mass 6.35E+03g 6.37E+03J/g energy content energy=#Game/yr*avg mass*(% dry weight)*J/g 3.73E+11J/yr Transformity= 1.50E+05sej/J 5.59E+16sej Emergy= Sum of Emergy from Game 4.15E+21sej 30 Fishing 8.04E+06fish caught USFS, 2004 4.54E+02g/fish assume avg weight = 1 lbavg. mass energy content 1.88E+04J/g (4.5Cal/G*4187 J/cal) 1.37E+13J Energy Fish Caught assume 20% dry weight Transformity= 1.68E+07sej/J 31 Research Information 1.05E+02# of papers average time spent 8.05E+02hours/paper research hours 115384.8hours/yr Odum, 1996 Transformity 2.35E+14sej/hr total sej of research 2.71E+19sej 32 Hydroelectric Power

2.90E+06	USFS, 2006
0.10%	estimate
5.89E+23sej	From Table A3-10
5	
5.89E+20sej	
2.71E+11sej/ha	CEP (2006)
5	× ,
3.61E+22sej/yr	
6.73E+13sej/visitor hour	
2.10E+08\$/yr	USFS, 2005
1.90E+12sej/\$	CEP (2006)
1.67E+08\$/yr	USFS, 2005
1.90E+12sej/\$	CEP (2006)
	0.10% 5.89E+23sej 5.89E+20sej 2.71E+11sej/ha 3.61E+22sej/yr 6.73E+13sej/visitor hour 2.10E+08\$/yr 1.90E+12sej/\$ 1.67E+08\$/yr

NoteItem	Units	Quantity	Emergy Intensity (sej/unit)	Solaı Emergy (x10 ¹⁸ sei)	EmDollars (x10 ⁶ Em\$)
RENEWABLE RESOURCES:	0 1115	Quantity	(30), and)	(III 0 0 0])	(
1 Sunlight	J	2.42E+20	1.00E+00	242.0	127.4
2 Rain Chemical Potential	J	3.21E+17	3.10E+04	9959. 4	5241.8
3 Transpiration	J	2.05E+17	3.06E+04	6275.1	3302.7
4 Rain Geopotential	J	2.30E+16	4.70E+04	1081.8	569.4
5 Wind, Kinetic	J	2.43E+17	2.45E+03	595.1	313.2
6 Hurricanes	J	3.38E+17	6.49E+03	2193.¢	1154.5
7 Waves	J	0.50111	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	1.04E+17	1.20E+04	1253.¢	659.8
INDIGENOUS NONRENEWABLE RI			1.201704	1255.0	059.0
10 Soil Loss (harvesting)		4.45E+09	1.68E+09	7.5	3.9
Top soil loss (harvesting)	g J	3.35E+12	7.40E+04	0.2	0.1
11 Misc. Products (plants)	J	5.5512+12	1.80E+04	0.2	0.1
IMPORTS:	J		1.001-04	0.0	0.0
12 Petroleum Products	J	5.93E+14	1.11E+05	66.1	34.8
13 Machinery, Equipment		7.48E+08	1.13E+10	8.4	4.4
14 Misc. Goods (Pesticides, herb)	g	4.98E+06	1E9 - 7 E9	0.1	4.4 0.1
15 Seedlings	g \$	4.98E+00 8.10E+06	1.90E+12	15.4	8.1
16 Tourist Time	ъ Ј	2.56E+14	1.50E+12 1.50E+07	3834.0	2017.9
17 Labor	hours	2.30E+14 1.49E+07	6.30E+13	940.¢	495.0
18 Electricity	J	1.49E+07 1.35E+14	2.92E+05	39.3	20.7
19 Services	5 \$	4.35E+08	2.92E+03 1.90E+12	825.8	434.6
ECONOMIC PAYMENTS RECEIVED		4.33E+0c	1.90E+12	623.c	434.0
20 Payment for timber	\$	4.02E+07	1.90E+12	76.4	40.2
Payments for minerals	φ	4.02E+07	1.90E+12	70.4	40.2
21extracted	\$	4.38E+04	1.90E+12	0.1	0.0
22 Fee Payments (hunting, grazing,)	\$	9.01E+06	1.90E+12	17.1	9.0
EXPORTS:	4	,	10000112	1	
23 Extracted Firewood	J	8.10E+14	3.60E+04	29.1	15.3
24 Harvested Wood	J	1.53E+16	5.04E+04	771.2	405.9
25 Water, Chemical Potential	J	1.16E+17	8.10E+04	9398.4	
26 Water, Geopotential	J	7.83E+16	4.70E+04	3678.3	1935.9
27 Minerals	g	6.32E+10	8.16E+09	515.7	271.4
28 Fossil Fuels	J	0.521110	0.101103	515.7	271.1
29 Harvested wildlife	J	1.59E+16	1E5 - 9.9E5	3118.5	1641.3
30 Harvested Fish	J	1.51E+13	1.68E+07	253.4	133.4
31 Information (research)	hrs	3.25E+05	2.35E+14	76.3	40.1
32 Hydroelectric power	J	01201100	D ICOLLET I	1012	1011
33 Image Exported with Tourists	% area	0.10%		323.1	170.1
ECONOMIC PAYMENTS MADE	i uivu	0.1070		525.1	170.1
34 Payments to St. &Local Gov't	\$	3.76E+07	1.90E+12	71.4	37.6
35 Payments for Labor	\$	1.87E+08	1.90E+12	355.7	187.2

APPENDIX A - 7. Annual emergy flows supporting Region 8 of the US National Forest System

Footnotes to Table A - 7		
RENEWABLE RESOURCES:		S a versa a a
1 Solar Insolation	5 29E + 10 - A2	Sources
Land Area	$5.38E+10m^{2}$	NIDEL 2006
Insolation Albedo	$5.48E+09J/m^{2}/year$	NREL, 2006
	1.80E-01(% given as a decimal)	
	rea)*(avg insolation)*(1-albedo) 2.42E+20J	
Transformity	1.00E+00sej/J	
2 Rain		
Chemical Potential		
Land Area	5.38E+10m^2	
Rain	1.207792m/yr	NOAA, 2006
Total Volume Rain	6.50E+10m^3	
energy=vo	lume*1000kg/m^3*4940J/kg	
=	3.21E+17	
Transformity	3.10E+04sej/J	Odum, (2000)
3 Transpiration	7.72E-01m/m^2/yr	
	4.15E+10m3	
Energy=Vo	ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	2.05E+17J/yr	
Transformity	3.06E+04sej/J	Odum, (2000)
4 Rain Geopotential		
Rain	4.36E-01m/yr	NOAA 2006
Mean Elevation Change 1.0	00E+02 m	
Land Area	5.38E+10m^2	
Energy(J) =(ar	rea)(rainfall)(avg change in elevation)(density)(gravity)
=	2.30E+16J	
Transformity	4.70E+04sej/J	Odum, (2000)
5 Wind, Kinetic	-	
Area	5.38E+10	
air density	1.30E+00kg/m^3	
avg annual wind velocity	3.96E+00mps	NOAA
Geostrophic wind	6.60E+00 observed winds are abo	ut 0.6 of geostrophic wind
Drag Coeff.	2.00E-03	
e	ea*density*dragcoef*(Geos-grndVel)	^3*31500000
=	2.43E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes	5	
Avg energy/storm	5.00E+05KCAL/m^2/day	Odum et al, 1983
avg hurricane freq.	1.00E-01/yr	
percent energy that is kinetic	3.00E+00%	
percent of energy dispersed to		
land	1.00E+01%	
avg. residence time	1.00E+00day/year	
area	5.38E+10m^2	
energy=0.	1/yr*1yr/365 days*5e5Kcal/m^2/day*.	003*area m^2*4186J/kcal
=	9.26E+13j/yr	
Transformity	6.49E+03sej/J	Odum (2000)
7 Waves		

7 Waves *MTB Draft* ~ 6/8/07

None 8 Tides None 9 Earth Cycle Heat Flow 6.15E+01miliwatts/m² IHFC, 2005 5.38E+10m^2 area energy=miliwatts/m^2*area*sec/yr 1.94E+06J/m^2 energy= 1.04E+17J/yr Transformity Odum (2000) 1.20E+04sej/J INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 4.45E+09g/yr estimate Top Soil Loss (3.5% of total SL) 1.56E+08g/yr energy=g of C*5.4 kca'/g*4184 J/cal 3.35E+12J = Transformity= 7.40E+04 sej/j 11 Miscellaneous Products (Plants) g/yr energy=g*3.5kcal/g*4186J/Kcal joules Transformity 1.80E+04sej/J **IMPORTS**: 12 Petroleum Products Forest Service Vechicle Use 2.70E+06gal/yr energy=gal*13e7j/gal 3.51E+14J/yr 3.45E+06sq feet FS Building Use 6.66E+04BTU/sq ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU 2.42E+14 = Total Fuel Use 5.93E+14J/yr Transformity 1.11E+05sej/J Odum, (1996) Est. Cost=gal*\$2/gal+MMBTUs*\$14/MMBTU 8.61E+06\$/yr 13 Machinery, Equipment FS Vechile mass 1.50E+10g avg. vehicle lifespan 2.00E+01yrs use per y =vehicles*g/vehicle*1/avg life of vehicle mass used per year 7.48E+08g Specific Emergy 1.13E+10 sej/g CEP (2006) 14 Goods (Pesticides, herbicides) 4.98E+06g/yr estimate 2.49E+10sej/g 1.24E+17sej/yr emergy= Est. for cost 8.78E+05\$/yr 15 Replanting Total Cost= 8.10E+06\$/yr USFS, 2006 (unpub) Unit Emergy Value 1.90E+12sej/\$ CEP (2006) 16 Tourism Tourist Time 3.10E+07visits/yr USFS, 2004 average stay 1.90E+01hrs

Total Hours of Stay	-		
avg. energy/hr total energy expenditure=k	1.04E+02kcal/hr		
=	2.56E+14J/y		
Transformity	1.50E+07 sej/J		
17 Labor			
FS	7.14E+06hrs/yr	estimate	
Contractors	4.45E+06hrs/yr		
Total Labor	1.49E+07hrs/yr		
Unit Emergy Value	6.30E+13sej/hr	Odum, 1996	
18 Electricity	3448386sq ft	USFS, 2006 unpub.	
	37000btu/ft ² /yr	EIA, 1992	
	1.28E+11btu/yr		
energy=t	otu/yr*1055 j/btu		
=	1.35E+14J		
Transformity		Odum, 1996	
Est. Cost=H	3TU/yr/3412btu/kwh*\$0.09/kwh		
	3.37E+06\$/yr		
Regional FS budget	4.03E+08\$/yr		
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
19 Misc. Expenditures	4.35E+08\$/yr	USFS, 2005	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
20 Payment for timber	4.02E+07\$/yr	USFS, 2005 CEP (2006)	
֥	Unit Emergy Value 1.90E+12sej/\$		
21 Payments for Extracted Minerals	4.38E+07\$/y	CEP (2006)	
	Unit Emergy Value 1.90E+12sej/\$		
22 Fee Payments	9.01E+06\$/yr		
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
EXPORTS:			
23 Extracted Firewood	5 405 071	LISES 2007	
mass	5.40E+07kg	USFS, 2007	
	nass*1000g/kg*15000j/g		
= Tronsformity	8.10E + 14J/yr	Proven & Pardi (2001)	
Transformity	3.60E+04sej/J	Brown & Bardi (2001)	
24 Harvested Wood	$1.89E+06m^{3}/yr$	USFS, 2007	
	5.40E+05g/m ³		
mass	1.02E+12g/yr		
	;*15000j/g		
= Tronsformity (w/o convices)	1.53E+16J/yr	Brown 2001	
Transformity (w/o services) 25 Water, Chemical potential	5.04E+04	Brown, 2001	
Total Export From Streams	2.35E+10m^3/yr	Sedell, 2000	
-	$M^{3/yr} * 1000 \text{ kg/M}^{3} * 4940 \text{ J/kg}$	Seden, 2000	
joules =	1.16E+17J/yr		
Transformity	8.10E+04sej/J	Odum, 2000	
26 Water, Geopotential Energy	0.10110150/3	Ouum, 2000	
· ••	volume)(elevation)(density)(gravity)		
avg. elevation	3.40E+02m	USGS, 2006	
joules =	7.83E+16J	0000, 2000	

Transformity	4.70E+04sej/J	Odum, 2000
27 Minerals	6.32E+10g/yr	estimate
Sp. Emergy (avg)=	8.16E+09sej/g	
28 Fossil Fuels		
(National data only)		
29 Hunting		
% Dry Weight for Wildlife	2.50E+01%	
Big Game Extracted	4.01E+05Big Game/y	USFWS, 2002
avg. mass	5.68E+04g/Game	
energy content	2.65E+04J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
=	1.51E+16J/yr	
Transformity=	2.00E+05sej/J	Brown, et al, 2005
Emergy=	3.02E+21sej	
Small Game Extracted	1.53E+06Small Game/yr	USFWS, 2002
avg. mass	3.30E+03g/animal	
energy content	6.37E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
energy=	8.01E+14J/yr	
Transformity=	1.20E+05sej/J	Brown, et al, 2005
Emergy=	9.61E+19sej	
Migratory Birds Extracted	1.20E+06#/yr	USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content	8.83E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
energy=	3.46E+12J/yr	
Transformity=	1.01E+05sej/J	Brown, et al, 2005
Emergy = 3.49E + 17sej		
Other Species Extracted 1.34E+05#/yr		USFWS, 2002
avg. mass 6.35E+03g		
energy content	6.37E+03J/g	
÷.	Game/yr*avg mass*(% dry weight)*J/g	
	1.35E+12J/yr	
Transformity=	1.50E+05sej/J	Brown, et al, 2005
Emergy=	2.03E+17sej	
Sum of Emergy from Game	3.12E+21sej	
30 Fishing	8.84E+06fish caught	
avg. mass	4.54E+02g/fish	assume avg weight = 1 lb
energy content	1.88E+04J/g	(4.5Cal/G*4187 J/cal)
Energy Fish Caught	1.51E+13J	assume 20% dry weight
Transformity=	1.68E+07sej/J	
31 Research Information	3.65E+02# of papers	USFS, 2007
average time spent	8.05E+02hours/paper	
research hours	324590.1hours/yr	
Transformity	2.35E+14sej/hr	Odum, 1996
total sej of research	· ·	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
32 Hydroelectric Power (National Data Only)	·	

33 Image Exported with Tourists	
Number of tourists	2.90E+06
Percent forest experienced	0.10%
Total Env. & Economic Assets	3.23E+23sej
Emergy of image exported =	3.23E+20sej
34 Payments to State and Local	3.76E+07\$/yr
Unit Emergy Value	1.90E+12sej/\$
35 Payments for FS Labor	1.87E+08\$/yr
Unit Emergy Value	1.90E+12sej/\$

USFS, 2006 estimate From Table A3-10

USFS, 2005 CEP (2006) USFS, 2005 CEP (2006)

System				~ 4	
			Emergy	Solar	E D . 11
Note Item	Units	Quantity	Intensity . (sej/unit)	Emergy $(x 10^{18} sei)$	EmDollars $(x10^6 \text{ Em}\$)$
RENEWABLE RESOURCES:	Units	Quantity	(sej/unit)	(XIU SCJ)	
1 Sunlight	J	1.947E+20	1.00E+00	194.7	102.5
2 Rain Chemical Potential	J	2.04E+17	3.10E+04	6308.5	
3 Transpiration	J	2.04E+17 1.14E+17	3.06E+04	3480.6	1831.9
	J	4.45E+16	4.70E+04	2089.9	
4 Rain Geopotential 5 Wind, Kinetic	J J		4.70E+04 2.45E+03	2089.9	
6 Hurricanes	J	2.94E+17		0.0	
	v	0.00E+00	6.49E+03		0.0
7 Waves	J	0	5.10E+04	0.0	0.0
8 Tides	J	0	7.39E+04	0.0	0.0
9 Earth Cycle	J	8.82E+16	1.20E+04	1058.0	556.9
INDIGENOUS NONRENEWABLE			1 (05 00	10.1	- -
10 Soil Loss (harvesting)	g	1.07E+10	1.68E+09	18.1	9.5
Top soil loss (harvesting)	J	8.09E+12	7.40E+04	0.6	0.3
11 Miscellaneous Products (plants)) J		1.80E+04	0.0	0.0
IMPORTS:					
12 Petroleum Products	J	2.61E+14	1.11E+05	29.1	15.3
13 Machinery, Equipment	g	3.62E+08	1.13E+10	4.1	2.1
14 Misc. Goods (Pesticides, herb)	g \$	4.53E+06	1E9 - 7 E9	0.1	0.1
15 Seedlings	\$	7.08E+06	1.90E+12	13.5	7.1
16 Tourist Time	J	1.86E+14	1.50E+07	2782.7	1464.6
17 Labor	hours	8.80E+06	6.30E+13	554.1	291.7
18 Electricity	J	1.45E+14	2.92E+05	42.3	22.3
19 Services	\$	2.72E+08	1.90E+12	516.0	271.6
ECONOMIC PAYMENTS RECEIV	ED				
20 Payment for timber	\$	5.80E+07	1.90E+12	110.3	58.0
Payments for minerals	.	1.055.00	1 0 0 5 1 6		
21extracted	\$	1.95E+08	1.90E+12	369.8	
22 Fee Payments (hunting, fishing,	\$	4.69E+06	1.90E+12	8.9	4.7
EXPORTS:					
23 Extracted Firewood	J	7.36E+14	3.60E+04	26.5	13.9
24 Harvested Wood	J	1.40E+16	5.04E+04	707.3	372.3
25 Water, Chemical Potential	J	8.97E+16		7262.4	
26 Water, Geopotential	J	8.89E+16	4.70E+04	4179.9	
27 Minerals	g	2.81E+11	8.16E+09	2293.6	1207.1
28 Fossil Fuels	J				
29 Harvested wildlife	J	1.37E+16	1E5 - 3E5	3977.7	2093.5
30 Harvested Fish	J	1.09E+13	1.68E+07	183.7	96.7
31 Information (research)	hrs	1.66E+05	2.35E+14	39.0	20.5
32 Hydroelectric power	J				
33 Image Exported with Tourists	% area	0.10%		384.5	202.4
ECONOMIC PAYMENTS MADE					
34 Payments to St. and Local Gov'	t \$	1.48E+07	1.90E+12	28.1	14.8
35 Payments for Labor	\$	1.07E+08	1.90E+12	203.3	107.0

APPENDIX A-8. Annual emergy flows supporting Region 9 of the US National Forest System

Footnotes to Table A -8		
RENEWABLE		
RESOURCES:		-
1 Solar Insolation		Sources
	4.89E+10m^2	
	4.85E+09J/m^2/year	NREL, 2006
	1.80E-01(% given as a decimal)	
Energy(J) =(area)*(avg insolation)*(1-albedo)	
	1.95E+20J	
•	1.00E+00sej/J	
2 Rain		
Chemical Potential		
	4.89E+10m^2	
	0.841641m/yr	NOAA, 2006
Total Volume Rain		
	olume*1000kg/m^3*4940J/kg	
	2.04E+17	
-	3.10E+04 sej/J	Odum, (2000)
3 Transpiration	4.71E-01m/m^2/yr	
	2.30E+10m3	
	/ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	-	
•	3.06E+04sej/J	Odum, (2000)
4 Rain Geopotential		
	3.71E-01m/yr	NOAA 2006
Mean Elevation Change		
	4.89E+10m^2	· · ·
	area)(rainfall)(avg change in elevation)(density	y)(gravity)
	4.45E+16J	
•	4.70E+04sej/J	Odum, (2000)
5 Wind, Kinetic		
	4.89E+10	
-	1.30E+00kg/m^3	
avg annual wind velocity		NOAA 2006
Geostrophic wind		geostrophic wind
Drag Coeff.		
	rea*density*dragcoef*(Geos-grndVel)^3*31	500000
	2.94E+17	0.1 (2000)
-	2.45E+03 sej/J	Odum (2000)
6 Hurricanes		
None		
7 Waves		
None		
8 Tides		
None		
9 Earth Cycle		HIEG 2005
	5.71E+01miliwatts/m ²	IHFC, 2005
area	4.89E+10m ²	
energy=n	niliwatts/m ² *area*sec/yr	
<i>MTB Draft</i> ~ 6/8/07	1.80E+06J/m^2	
$V(ID)D(U) \sim 0/8/0/$		

	8.82E+16J/yr	
•	1.32E+04sej/J	Odum (2000)
INDIGENOUS NONRENEWA		
10 Soil Loss	1.07E+10g/yr	estimate
Top Soil Loss (3.5% of total SL)	3.76E+08g/yr	
	g of C*5.4 kca'/g*4184 J/cal	
	8.09E+12J	
- Transformity=	-	
Miscellaneous Products	7. FOLTOF SC/J	
11(Plants)	g/yr	
energy=g	g*3.5kcal/g*4186J/Kcal	
=	joules	
Transformity	1.80E+04 sej/J	
IMPORTS:		
12 Petroleum Products		
Forest Service Use	1.50E+06gal/yr	estimate
energy=g	gal*13e7j/gal	
=	1.95E+14J/yr	
FS Building Use	3.71E+06sq feet	USFS, 2006 (unpub)
	6.66E+04BTU/sq ft/yr	EIA, 1992
energy use =H	BTU/sqft/yr*sq ft*1055 joules/BTU	
=	2.61E+14	
Total Fuel Use	4.56E+14J/yr	
Transformity	1.11E+05 sej/J	Odum, (1996)
Est. Cost=g	gal*\$2/gal+MMBTUs*\$14/MMBTU	
-	6.46E+06\$/yr	
13 Machinery, Equipment	2	
FS Vechile Mass	7.25E+09g	
avg. vehicle lifespan	2.00E+01yrs	
use per $y = y$	vehicles*g/vehicle*1/avg life of vehicle	
mass used per year	3.62E+08g	
Specific Emergy		CEP (2006)
Est. Cost of Vech.		
-	1.61E+06 \$/yr	_
14 Goods (Pesti, herbicides)	4.53E+06g/yr	estimate
	2.49E+10sej/g	
emergy=	1.13E+17sej/yr	
	7.98E+05\$/yr	
15 Replanting		
Total Cost=	7.08E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism		
Tourist Time	2.25E+07 visits/yr	USFS, 2004
average stay	1.90E+01hrs	
Total Hours of Stay	•	
avg. energy/hr	1.04E+02kcal/hr	
total energy	ccal/hr*hrs*4186J/Kcal	
	1.86E+14J/y	
- Transformity	1.50E+14,5/y 1.50E+07 sej/J	
MTB Draft ~ $6/8/07$		10

17 Labor

1 / Labor		
FS	4.08E+06hrs/yr	estimate
Contractors	2.75E+06hrs/yr	estimate
Total Labor	8.80E+06hrs/yr	
Unit Emergy Value	6.30E+13 sej/hr	Odum, 1996
18 Electricity	3713620sq ft	EIA, 1992
	37000btu/ft ² /yr	
	1.37E+11btu/yr	
energy=h	otu/yr*1055 j/btu	
6.	1.45E+14J	
Transformity	-	Odum, 1996
5	3.62E+06\$/yr	Odulli, 1990
Regional FS budget	2.41E+08\$/yr	
6	1.90E+12sej/\$	CEP (2006)
19 Services		
	2.72E+08\$/yr	estimate
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20 Payment for timber	5.80E+07\$/yr	USFS, 2007
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Payments for Extracted 21Minerals	1.95E+08\$/y	USFS, 2006 (unpub)
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	4.69E+06\$/yr	USFS, 2006 (unpub)
5	-	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:		
23 ExtractedFirewood		
mass	4.91E+07kg	USFS, 2005
energy=r	nass*1000g/kg15000j/g	
=	7.36E+14J/yr	
Transformity		Brown & Bardi (2001)
24 Harvested Wood	$1.73E+06{\rm m}^{3}/{\rm yr}$	USFS, 2005
	$5.40E + 05 g/m^3$	
mass	9.36E+11g/yr	
energy=g	;*15000j/g	
=	1.40E+16J/yr	
Transformity (w/o	•	
· · · · · · · · · · · · · · · · · · ·	5.04E+04	
25 Water, Chemical potential		
Total Export From	1.915 • 10 ··· 42/	S. 1.11 2000
	1.81E+10m^3/yr	Sedell, 2000
	M^3/yr * 1000 kg/M^3 * 4940 J/kg	
0	8.97E+16J/yr	
•	8.10E+04 sej/J	Odum, 2000
26 Water, Geopotential Energy		
-	volume)(elevation)(density)(gravity)	
avg. elevation		USGS, 2006
•	8.89E+16J	
Transformity	4.70E+04 sej/J	Odum, 2000
27 Minerals	2.81E+11g/yr	estimate
Sp. Emergy (avg)=	8.16E+09sej/g	
MTB Draft ~ $6/8/07$		104
		104

28 Fossil Fuels		
(National data only)		
29 Hunting % Dry Weight for		
	2.50E+01%	
	3.45E+05Big Game/y	USFWS, 2002
e	5.68E+04g/Game	001100,2002
energy content	÷	
	Game/yr*avg mass*(% dry weight)*J/g	
61	1.30E+16J/yr	
Transformity=	•	Brown et al, 2005
•	3.89E+21sej	
	1.31E+06Small Game/yr	USFWS, 2002
	3.30E+03g/animal	001110,2002
energy content	6	
	^{t*} avg mass*(percent dry weight)J/g	
	6.88E+14J/yr	
Transformity=		
•	8.26E+19sej	
Migratory Birds	0.202.12009	
	1.03E+06#/yr	USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content	8.83E+03J/g	
energy=#	Game/yr*avg mass*(% dry weight)*J/g	
	2.97E+12J/yr	
Transformity=	U U	
	3.00E+17 sej	
Other Species Extracted		USFWS, 2002
÷	6.35E+03g	
energy content		
energy=#	Game/yr*avg mass*(% dry weight)*J/g	
	1.16E+12J/yr	
Transformity=	5	
	1.74E+17 sej	
Sum of Emergy from	3.98E+21 sej	
30 Fishing	6.41E+06fish caught	
avg. mass	4.54E+02g/fish	assume avg weight $= 1$ lb
energy content	1.88E+04J/g	(4.5Cal/G*4187 J/cal)
Energy Fish Caught	1.09E+13J	assume 20% dry weight
Transformity=	1.68E+07 sej/J	assume 20% dry weight
31 Research Information	1.68E+02# of papers	USFS, 2007
average time spent	8.05E+02hours/paper	0313, 2007
research hours	166076.8hours/yr	
Transformity	2.35E+14sej/hr	Odum, 1996
total sej of research	3.90E+19sej	Odulli, 1990
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
32 Hydroelectric Power	1.9011125670	CEI (2000)
(National Data Only)		
Image Exported w/		
33 Tourists		
MTB Draft ~ $6/8/07$		10

Number of toursits	0.00E+00
Percent forest	
experienced	0.10%
Total Env. & Economic	
Assets	3.85E+23 sej
Emergy of image	-
exported =	3.85E+20sej
Payments to State and	-
34 Local Gov't	1.48E+07\$/yr
Unit Emergy Value	1.90E+12sej/\$
35 Payments for FS Labor	1.07E+08\$/yr
Unit Emergy Value	1.90E+12sej/\$

USFS, 2006

estimate

From Table A3-10

USFS, 2006 (unpub) CEP (2006) USFS, 2006 (unpub) CEP (2006)

APPENDIA A-9. Annual emergy	nows suppo	nting Region			Fulest System
Note Item	Units	Quantity	Emergy Intensity	Solar Emergy $(x + 10^{18} \text{ asi})$	EmDollars $(x + 10^6 \text{ Em}^{4})$
	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$
RENEWABLE RESOURCES:	т	5.5(E. 20	1.005.00		202.5
1 Sunlight	J	5.56E+20	1.00E+00	555.7	292.5
2 Rain Chemical Potential	J	7.78E+17	3.10E+04	24103.0	12685.8
3 Transpiration	J	1.31E+17	3.06E+04	4010.4	2110.7
4 Rain Geopotential	J	4.70E+17	4.70E+04	22110.9	11637.3
5 Wind, Kinetic	J	4.85E+17	2.45E+03	1187.6	625.1
6 Hurricanes	J	0.00E+00	6.49E+03	0.0	0.0
7 Waves	J	5.91E+17	5.10E+04	30159.2	15873.2
8 Tides	J	1.96E+17	2.43E+04	4752.9	2501.5
9 Earth Cycle	J	1.89E+17	1.20E+04	2266.4	1192.8
INDIGENOUS NONRENEWABLE			1 (01 00		0.0
10 Soil Loss (harvesting)	g	1.31E+09	1.68E+09	2.2	0.0
Top soil loss (harvesting)	J	8.09E+12	7.40E+04	0.6	0.0
11 Miscellaneous Products (plants)) J		1.80E+04	0.0	0.0
IMPORTS:	-				
12 Petroleum Products	J	4.62E+13	1.11E+05	5.2	2.7
13 Machinary, Equipment	g	1.10E+08	1.13E+10	1.2	0.7
14 Misc Goods (Pesticides, herb.s)	g \$	8.23E+06	1E9 - 7 E9	0.2	0.1
15 Seedlings	\$	1.76E+05	1.90E+12	0.3	0.2
16 Tourist Time	J	2.40E+13	1.50E+07	358.7	188.8
17 Labor	hours	5.62E+06	6.30E+13	354.4	186.5
18 Electricity	J	2.57E+13	2.92E+05	7.5	3.9
19 Services	\$	1.66E+08	1.90E+12	315.0	165.8
ECONOMIC PAYMENTS RECEIV					
20 Payment for timber	\$	5.79E+05	1.90E+12	1.1	$0.\epsilon$
21 Payments for minereals extract		3.35E+07	1.90E+12	63.7	33.5
22 Fee Payments (hunting, fishing, e	tc) \$	2.71E+06	1.90E+12	5.2	2.7
EXPORTS:					
23 Extracted Firewood	J	1.34E+15	3.60E+04	48.1	0.3
24 Harvested Wood	J	2.41E+15	5.04E+04	121.3	63.8
25 Water, Chemical Potential	J	3.08E+17	8.10E+04	24968.7	13141.4
26 Water, Geopotential	J	6.12E+16	4.70E+04	2874.1	1512.7
27 Minerals	g J	4.82E+10	8.16E+09	393.6	207.1
28 Fossil Fuels	J				
29 Harvested wildlife	J	2.96E+14	1E5 - 9.9E5	280.1	147.4
30 Harvested Fish	J	1.41E+12	1.68E+07	23.7	12.5
31 Information (research)	hrs	3.09E+04	2.35E+14	7.3	3.8
32 Hydroelectric power	J				
33 Image Exported with Tourists	% area	0.10%		4908.5	2583.4
ECONOMIC PAYMENTS MADE					
34 Payments to St. and Local Gov'		8.24E+06	1.90E+12	15.7	8.2
35 Payments for Labor	\$	8.02E+07	1.90E+12	152.4	80.2

APPENDIX A-9. Annua	l emergy flo	ows supporting	Region 10	of the	US National	Forest System

Footnotes to Table A -9		
RENEWABLE RESOURCES:		
1 Solar Insolation		Sources
Land Area	8.89E+10m^2	
Insolation	7.62E+09J/m^2/year	NREL, 2006
	1.80E-01(% given as a decimal)	
Energy(J) = (a	rea)*(avg insolation)*(1-albedo) 5.56E+20J	
Transformity	1.00E+00sej/J	
2 Rain	1.002.00000	
Chemical Potential		
Land Area	8.89E+10m^2	
Rain	1.77m/yr	NOAA, 2006
Total Volume Rain	1.57E+11m^3	,
	olume*1000kg/m^3*4940J/kg	
energy	7.78E+17	
Transformity	3.10E+04sej/J	Odum, (2000)
3 Evapotranspiration	2.99E-01m/m ² /yr	, ()
volume=	2.66E+10m^3	
	ol*1000Kg/m^3*4940J/kg	
Rain ET Energy	1.31E+17J/yr	
Transformity	3.06E+04sej/J	Odum, (2000)
4 Rain Geopotential	J -	
Rain	1.47E+00m/yr	NOAA, 2006
Mean Elevation Change	3.05E+02m)
Land Area	8.89E+10m^2	
	rea)(rainfall)(avg change in elevation)	(density)(gravity)
energy=	4.70E+17J	())(8))
Transformity	4.70E+04sej/J	Odum, (2000)
5 Wind, Kinetic	3	
Area	8.89E+10	
air density	1.30E+00kg/m^3	
avg annual wind velocity	4.21E+00mps observed winds are ab	NOAA, 2006 out 0.6 of geostrophic
Geostrophic wind	7.02E+00wind	6 1
Drag Coeff.	2.00E-03	
Energy=ar	rea*density*dragcoef*(Geos-grndVel)^3*31500000
energy	4.85E+17	
Transformity	2.45E+03sej/J	Odum (2000)
6 Hurricanes None		
7 Waves		
Shore length =	9.75E+05m	
Wave height =	1.86E+00m	
e	shore length)(1/8)(density)(gravity)(wa _m)(1/8)(1.025E3kg/m ³)(9.8	we height ^{2})(velocity)
=m	$/sec^{2}(_m)^{2}(_m/sec)(3.14E7s/yr)$	
Energy(J) =	5.91E+17J/yr	
Transformity =	-	
8 Tides	-	
MTB Draft ~ $6/8/07$		

Cont Shelf Area = 5.14E+09m^2 Avg Tide Range = 3.28E+00m Density = 1.03E+03kg/m^3 Tides/year = 7.06E+02 (number of tides in 365 days) $Energy(J) = (shelf)(0.5)(tides/y)(mean tidal range)^2$ (density of seawater)(gravity) $=(__m^2)^*(0.5)^*(__yr)^*(__m)^2^*(__kg/m^3)$ *(9.8m/s^2) 1.96E+17J/yr = Transformity = 2.43E+04sej/J 9 Earth Cycle 6.74E+01miliwatts/m² IHFC, 2005 Heat Flow 8.89E+10m^2 area energy=miliwatts/m^2*area*sec/yr 2.12E+06J/m^2 energy= 1.89E+17J/yr Transformity 1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 1.31E+09g/yr estimate Top Soil Loss (3.5% of total SL) 3.76E+08g/yr energy=g of C*5.4 kca'/g*4184 J/cal 8.09E+12J Transformity= 7.40E+04sej/j 11 Misc Products (plants) g/yr energy=g*3.5kcal/g*4186J/Cal energy= joules 1.80E+04sej/J Transformity CEP (2006) **IMPORTS:** 12 Petroleum Products Forest Service Use 1.65E+05gal/yr energy=gal*13e7j/gal 2.15E+13J/yr energy= FS Building Use 6.58E+05sq feet BTU/sq 6.66E+04ft/yr EIA, 1992 energy use =BTU/sqft/yr*sq ft*1055 joules/BTU 4.62E+13J/yr 6.77E+13J/yr Total Fuel Use Transformity 1.11E+05sej/J Odum, (1996) Est. Cost=gal*\$2/gal+MMBTUs*\$14/MMBTU 9.44E+05\$/yr 13 Machinery, Equipment FS Vechile mass 2.2E+09g avg. vehicle lifespan 2.00E+01yrs use per y = vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.10E+08g Specific Emergy CEP (2006) sej/g CEP (2006) NFS, 2005 14 Goods (Pest/, herbicides) 8.23E+06g/yr 2.49E+10sej/g

emergy=	2.05E+17sej/yr	
Est. for cost	1.45E+06\$/yr	
15 Replanting		
Total Cost=	1.76E+05\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
16 Tourism		
Tourist Time	2.90E+06visits/yr	NVUM. 2005
average stay	1.90E+01hrs	
Total Hours of Stay	5.51E+07hours/yr	
avg. energy/hr	1.04E+02kcal/hr	
total energy expenditure=0		
energy=	2.40E+13J/y	
•	1.50E+07 sej/J	Odum, 1996
17 Labor		
FS	3.06E+06hrs/yr	NFS, 2005
Contractors	1.31E+06hrs/yr	
Total Labor	5.62E+06hrs/yr	
Unit Engineers Value	(20E · 12····//	based on USA emergy use (1.9E25
Unit Emergy Value	6.30E+13sej/hr	sej/yr) and work force of 1.5 E8 workers
18 Electricity	658067sq ft	NFS, 2005
	37000btu/ft ² /yr	EIA, 1992
	2.43E+10btu/yr	
	otu/yr*1055 j/btu	
energy=	2.57E+13J	0.1
Transformity		Odum, 1996
Est. Cost=1	3TU/yr/3412btu/kwh*\$	0.09/kwh
Design 1 EQ has here	6.42E+05\$/yr	
Regional FS budget	1.47E+08\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
19 Services	1.66E+08\$/yr	NFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
- 8J -	J '	
20 Payment for timber	5.79E+05\$/yr	NFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
	-	
Payments for Extracted		
21 Minerals	3.35E+07\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments	2.71E+06\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:	5	
23 Extracted Firewood		
mass	8.91E+07kg	USFS, 2005
energy=r	nass*1000g/kg15000j/	
energy=	1.34E+15J/yr	
Transformity	3.60E+04sej/J	Brown & Bardi (2001)
24 Harvested Wood	2.97E+05m ³ /yr	USFS, 2005
	$5.40E + 05g/m^{3}$	
	-	110

mass	1.60E+11g/yr	
energy=g*	*15000j/g	
energy=	2.41E+15J/yr	
Transformity (w/o		
services)	5.04E+04	
25 Water, Chemical potential		
	olume)(elevation)(density)(gravity)	
Total Export From Streams	6.24E+10m^3/yr	Sedell, 2000
	$^{3}/yr * 1000 \text{ kg/M}^3 * 4940 \text{ J/kg}$	Sedell, 2000
	3.08E+17	
	8.10E+04sej/J	Odum, 2000
Transformity Water, Geopotential	0.10E+04sej/J	Odulli, 2000
	olume)(elevation)(density)(gravity)	
avg. elevation	1.00E+02m	USGS, 2006
8	6.12E+16J/yr	
Transformity	4.70E+04sej/J	Odum, 2000
27 Minerals	4.82E+10g/yr	estimate
Sp. Emergy (avg)=	8.16E + 09sej/g	
28 Fossil Fuels	J.B	
(National data only)		
29 Hunting		
% Dry Weight for Wildlife	2.50E+01%	
	Big	
Big Game Extracted	7.47E+03Game/y	USFWS, 2002
avg. mass	5.68E+04g/Game	
energy content	2.65E+04J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
energy=	2.81E+14J/yr	
Transformity=	9.90E+05sej/J	Brown et al, 2006
Emergy=	2.78E+20sej	
Small Game Extracted	2.84E+04Small Game/yr	USFWS, 2002
avg. mass	3.30E+03g/animal	
energy content	6.37E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
energy=	1.49E+13J/yr	
Transformity=	1.20E+05sej/J	Brown et al, 2006
Emergy=	1.79E+18sej	
Migratory Birds Extracted	2.24E+04#/yr	USFWS, 2002
avg. mass	1.30E+03g/bird	
energy content	8.83E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
energy=	6.43E+10J/yr	
Transformity=	1.01E+05sej/J	Brown et al, 2006
Emergy=	6.50E+15sej	
Other Species Extracted	2.49E+03#/yr	USFWS, 2002
avg. mass	6.35E+03g	
energy content	6.37E+03J/g	
energy=#0	Game/yr*avg mass*(% dry weight)*J/g	
	2.52E+10J/yr	
Transformity=	1.50E+05sej/J	Brown et al, 2006
MTB Draft $\sim 6/8/07$		

Emergy= Sum of Emergy from	3.77E+15sej		
Game	2.80E+20sej		
30 Fishing	8.27E+05fish caugh		
avg. mass	4.54E+02g/fish	assume avg weight $= 1$ lb	
energy content	1.88E+04J/g	(4.5Cal/G*4187 J/cal)	
Energy Fish Caught	1.41E+12J	assume 20% dry weight	
Transformity=	1.68E+07sej/J		
31 Research Information	-		
research hours	30898.01hours/yr		
Transformity	2.35E+14sej/hr		
total sej of research	7.26E+18sej		
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
32 Hydroelectric Power	J *		
(National Data Only)			
33 Image Exported with Tourists	5		
Number of tourists	2.90E+06	USFS, 2006	
Percent forest experienced	0.10%	estimate	
Total Env. & Economic	0.1070	estimate	
Assets	4.91E+24sej	From Table A3-10	
Emergy of image	5		
exported =	4.91E+21sej		
34 Payments to State	8.24E+06\$/yr	USFS, 2006 (unpub)	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
35 Payments for FS Labor	8.02E+07\$/yr	USFS, 2006 (unpub)	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)	
	5		

			Emergy	Salan Emeran	Emplana
Note Item	Units	Quantity	Intensity (sej/unit)	Solar Emergy (x10 ¹⁸ sej)	EmDollars $(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS	emis	Quantity	(30); (1110)	(110 50)	(
1 Tree Biomass	J	1.18E+19	3.62E+04	428144.8	225339.4
2 Herb./Shrub Biomass	J	5.83E+17	17976	10475.4	5513.4
3 Land Area	ha	1.03E+07	1.05E+15	10812.1	5690.6
4 Soil OM	J	1.57E+19	1.24E+04	195211.6	102742.9
5 Ground Water	J	1.91E+17	3.02E+05	57684.5	30360.3
6 Surface Water	J	9.70E+16	8.10E+04	7854.6	4134.0
ECONOMIC ASSETS					
7 Roads (dirt)	\$	2.30E+08	1.90E+12	437.7	230.4
8 Roads (gravel)	g	1.50E+13	1.68E+09	25219.9	13273.6
9 Roads (paved)	g	5.52E+11	2.77E+09	1529.2	804.8
10 Machinery & tools	g	8.16E+09	1.13E+10	91.8	48.3
11 Office Equipment	g	4.10E+09	1.13E+10	46.2	24.3
12 Buildings	g	1.09E+11	6.50E+09	707.5	372.4
13 Minerals (g)	g	NA	4.54E+09	NA	NA
13a Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS Info.Value of Indian					
14Artifacts	J	6.98E+15	1.89E+07	132082.0	69516.9
15 Value of Critical Species	# of in	d.1.50E+01	2.26E+22	338366.3	178087.5

APPENDIX B-1. Emergy in stored assets of Region 1 - US National Forest System

Notes to Table B-1 ENVIRONMENTAL ASSETS

ENVIRONMENTAL ASSETS		
1 Tree Biomass	1.50E+0\$m^3	USFS, 2005
	5.40E+02kg/m^3	
mass=r	n^3*kg/m^3*1000g/kg	
=	8.07E+14g	
	3.50E+0CKcal/g of Tree Biomass	
energy=g	*4.5kcal/g*4186J/kcal	
=	1.18E+19J	
Transformity	3.62E+04 sej/J	
2 Total Understory	3.98E+07mt	USFS, 2005
	1.00E+06g/mt	
mass=t	ons*g/ton	
=	3.98E+13g	
energy=g	;*3.5kcal/g*4186J/kcal	
=	5.83E+17J	
Transformity	9.79E+03sej/J	
3 Land Area	1.03E+07ha	
(emergy of land structure)	1.05E+15 sej/ha	
4 Soil OM	6.95E+08mt	COLE, 2006
mass OM=	6.95E+14g	
Energy=r	nassOM* 5.4 kcal/g of OM * 4186 j/kcal	
	-	

	1.57E+19J	
Transformity	1.24E+04 sej/J	
5 Ground Water	5	
Density of water	100Ckg/m3	
Gibbs Free energy of water	494CJ/kg	
Volume	3.86E+1Cm3	USGS, 2005
	olume*1000kg/m^3*4940J/kg	0000, 2005
energy=v	1.91E+17J	
transformity		$\mathbf{D}_{\text{upp}} = \mathbf{f}_1 \left(2001 \right)$
transformity	2.79E+05sej/J	Buenfil (2001)
6 Surface Water		0 1 11 2000
volume	1.96E+1Cm^3	Sedell, 2000
Density of water	100Ckg/m3	
Gibbs Free energy of water	494CJ/kg	
energy=v	olume*1000kg/m^3*4940J/kg	
=	9.70E+16J	
Transformity	8.10E+04sej/J	
ECONOMIC ASSETS		
		USFS, 2006
7 Roads, Dirt	3.84E+04miles	(unpub)
	6.00E+03\$/mile	
	2.30E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
		USFS, 2006
8 Roads, Gravel	2.12E+07m length	(unpub)
	5.00E+0Cm width	
depth=	1.02E-01m of gravel	
volume=	1.08E+07m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
mass gravel=n	n^3*kg/m^3*1000g/kg	
=	1.50E+13g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
х ст		USFS, 2006
9 Paved Roads	7.23E+05m	(unpub)
area=	6.70E+0Cm^2	
depth=	5.08E-02m depth	
volume=	2.46E+05m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
	n^3*kg/m^3*1000g/kg	
1 =	5.52E+11g	
Specific Emergy	e	Odum (1996)
Speeme Emergy	21772103 30378	USFS, 2006
10 Machinery	1.80E+07lbs	(unpub)
	4.54E+02g/lb	_
mass machinery=1	bs*g/lb	
=	8.16E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
~reente Emergy		
11 Office Equipment	1.50E+01kg/m2 area	estimate
11 Since Equipment	1.501 / 0 IKG/III2 alou	ostillato
mass office equipment=S	A*kg/m2*1000g/kg	
=	4.10E+09g	
<i>MTB Draft</i> ~ 6/8/07		

	Specific Emergy	1.13E+10	sej/g	CEP (2006)
12 Buildings		2.73E+0)5m^2	USFS, 2006 (unpub)
12 Dunungs	Building Mass=			(unpub)
	Specific Emergy		e	Buranakarn, 1998
13 Minerals	speeme zmergy	0.002.00	~ _], 8	2
Data NA	A for Regions			
SOCIETAL AS	e			
Emergy of	Cultural			
14 Information				
Native	e Americans on FS			
	lands (peak)			estimate
e	energy per capita=(2	2500Cal/day)	*(365 d/y)*(4186J/Cal)	
	=	3.82E+0)\$J/yr	
Yrs to de	evelop information	2.50E+0	02	
Energ	gy of Population=(opulation)*	(J/yr/Indian)*(year)	
	Energy =	-		
	Transformity		sej/J	
15 Value of Cr	itical Species		u u u u u u u u u u u u u u u u u u u	
Endar	ngered/Threatened			
	Species	1	5	USFWS, 2006
	Percent of pop	27.80	%%	
average e	mergy per species	3.96E+2	24sej/species	
C			% of total Pop in FS land.*Em	. Required to dev.
	n critical species=s	pecies		
Emergy	in Critical Species			
	(sum of above)	1.65E+2	Zosej	

Note Item	Units	Quantity	Emergy Intensity (sej/unit)	Solar Emergy (x10 ¹⁸ sej)	EmDollars (x10 ⁶ Em\$)
ENVIRONMENTAL ASSETS		-	· •		· · · ·
1 Tree Biomass	J	8.63E+18	3.62E+04	312275.2	164355.4
2 Herb. /Shrub Biomass	J	6.63E+17	17976	11926.7	6277.2
3 Land Area	ha	8.94E+06	1.05E+15	9383.7	4938.8
4 Soil OM	J	1.01E+19	1.24E+04	125035.8	65808.3
5 Ground Water	J	1.99E+17	3.02E+05	60076.8	31619.4
6 Surface Water	J	5.57E+16	8.10E+04	4513.5	2375.6
ECONOMIC ASSETS					
7 Roads (dirt)	\$	1.52E+08	1.90E+12	289.7	152.5
8 Roads (gravel)	g	7.31E+12	1.68E+09	12281.2	6463.8
9 Roads (paved)	g	1.33E+11	2.77E+09	368.2	193.8
10 Machinery & tools	g	8.45E+09	1.13E+10	95.1	50.1
11 Office Equipment	g	2.62E+09	1.13E+10	29.5	15.5
12 Buildings	g	6.96E+10	6.50E+09	452.4	238.1
13 Minerals (g)	g	NA	4.54E+09	NA	NA
13a Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS Info. Value of Indian					
14Artifacts	J	6.98E+15	1.89E+07	132082.0	69516.9
15 Value of Critical Species	# of inc	l. 1.60E+01	2.26E+22	360924.0	1899.6

APPENDIX B-2. Emergy in stored assets of Region 2 - US National Forest System

Notes to Table B- 2

Notes to Table D- 2		
ENVIRONMENTAL ASSETS		
1 Tree Biomass	8.48E+08m^3	NFS, 2005
	5.40E+02kg/m^3	
mass=r	n^3*kg/m^3*1000g/kg	
	4.58E+14g	
	4.50E+0CCal/g of Tree Biomass	
energy=g	g*4.5kcal/g*4186J/kcal	
=	8.63E+18J	
Transformity	3.62E+04 sej/J	
2 Total Understory	4.53E+07mt	NFS, 2005
2	$1.00E+0\epsilon g/mt$	
mass=t	ons*g/ton	
=	4.53E+13g	
energy=g	g*3.5kcal/g*4186J/kcal	
=	6.63E+17J	
Transformity	9.79E+03sej/J	
3 Land Area	5	
(emergy of land structure)	1.05E+15 sej/ha	
	5	
4 Soil OM	4.45E+08mt	
mass OM=	4.45E+14g	
MTP Duct $6/9/07$	C C	

Energy=n	nassOM* 5.4 Cal/g of OM * 4186 j/Cal	
	1.01E+19J	
Transformity	1.24E+04 sej/J	
5 Ground Water		
Density of water	100Ckg/m3	
Gibbs Free energy of water	494CJ/kg	
Volume	4.02E+1Cm3	
energy=v	olume*1000kg/m^3*4940J/kg	
=	1.99E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
6 Surface Water	5	
volume	1.13E+1(m^3	Sedell, 2000
Density of water	100Ckg/m3	,
Gibbs Free energy of water	494CJ/kg	
÷.	olume*1000kg/m^3*4940J/kg	
	5.57E+16J	
Transformity	8.10E+04sej/J	
ECONOMIC ASSETS		
7 Roads, Dirt	2.54E+04miles	USFS, 2006 (unpub)
7 Roads, Dift	6.00E+03\$/mile	0010, 2000 (unpub)
	1.52E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
8 Roads, Gravel	1.03E+07m length	USFS, 2006 (unpub)
o Roads, Graver	5.00E+0Cm width	0313, 2000 (unpub)
donth-		
depth= volume=	5.24E+06m ³ of limerock	
density=	$1.39E+0.3kg/m^{3}$ gravel	
mass graver=m	n^3*kg/m^3*1000g/kg	
San sifin Emana	7.31E+12g	O_{durn} (1006)
Specific Emergy	1.68E+09sej/g	Odum (1996)
9 Paved Roads	1.74E+05m	USFS, 2006 (unpub)
area=	6.70E+0Cm^2	
depth=	5.08E-02m depth	
volume=	$5.92E+04m^3$ of asphalt	
	$2.24E+03kg/m^3$ asphalt	
•	n^3*kg/m^3*1000g/kg	
=	1.33E+11g	0.1 (100.6)
Specific Emergy		Odum (1996)
10 Machinery	1.86E+07lbs	USFS, 2006 (unpub)
	4.54E+02g/lb	
mass machinery=1	-	
=	8.45E+09g	
Specific Emergy		CEP (2006)
11 Office Equipment	$1.50E + 01 kg/m^2$	
mass office equipment=S		
=	2.62E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Buildings	1.75E+05m^2	USFS, 2006 (unpub)
Building Mass=	6.96E+1Cg	

Specific Emergy	6.50E+09	sej/g (avg)	Buranakarn, 1998
13 Minerals			
Data NA for Regions			
CULTURAL ASSETS			
Emergy of Cultural			
14Information			
Native Americans on FS			
lands (peak)	7.31E+0)3people	estimate
energy per capita=(2	2500Cal/day)*(365 d/y)*(4186J/Cal)	
=	3.82E+0)\$J/yr	
Yrs to develop			
information	2.50E+0)2	estimate
Energy of Population=()	population)*	(J/yr/Indian)*(year)	
Energy =	6.98E+1	15J	
Transformity	1.89E+07	sej/J	
15 Value of Critical Species			
Endangered/Threatened			
Species	1	le	USFWS, 2006
Percent of pop	27.80	%%	
average emergy per species		24sej/species	
		%of total Pop in FS land.*Em.	Required to develop
Em. In critical species=species	pecies		
Emergy in Critical Species			
(sum of above)	1.76E+2	25sej	

			Emergy	Solar Emoral	EmDollars
NoteItem	Units	Quantity	Intensity (sej/unit)	Solar Emergy (x10 ¹⁸ sej)	$(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS			× 3		
1 Tree Biomass	J	2.71E+18	3.62E+04	97990.0	51573.7
2 Herbacesou/Shrub Biomass	J	6.86E+17	17976	12331.9	6490.5
3 Land Area	ha	8.42E+06	1.05E+15	8840.6	4653.0
4 Soil OM	J	7.84E+18	1.24E+04	97495.8	51313.6
Ground Water (drinking	-				
5aquifer)	J	2.86E+17	3.02E+05	86589.8	45573.6
6 Surface Water	J	4.50E+16	8.10E+04	3647.9	1920.0
ECONOMIC ASSETS					
7 Roads (dirt)	\$	2.80E+08	1.90E+12	532.0	280.0
8 Roads (gravel)	g	5.32E+12	1.68E+09	8935.2	4702.7
9 Roads (paved)	g	1.64E+11	2.77E+09	455.1	239.5
10 Machinery & tools	g	9.48E+09	1.13E+10	106.7	56.1
11 Office Equipment	g	3.22E+09	1.13E+10	36.2	19.1
12 Buildings	g	8.54E+10	6.50E+09	554.9	292.0
13 Minerals (g)	g	NA	4.54E+09	NA	NA
13a Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS					
14 Info.Value of Indian Artifacts	J	1.49E+17	1.89E+07	2810976.6	1479461.3
15 Value of Critical Species	# of ind.	. 5.50E+01	2.26E+22	1240676.3	6529.9

APPENDIX B - 3. Emergy in stored assets of Region 3 - US National Forest System

Notes to Table B-3

ENVIRONMENTAL ASSETS		
1 Tree Biomass	3.42E+08m^3	USFS, 2005
	5.40E+02kg/m^3	
mass=1	n^3*kg/m^3*1000g/kg	
=	1.85E+14g	
	3.50E+00Kcal/g of Tree Biomass	
energy=g	g*4.5kcal/g*4186J/kcal	
=	2.71E+18J	
Transformity	3.62E+04 sej/J	
2 Total Understory	4.68E+07mt	COLE, 2005
	1.00E+06g/mt	
mass=t	ons*g/ton	
=	4.68E+13g	
energy=g	g*3.5kcal/g*4186J/kcal	
=	6.86E+17J	
Transformity	9.79E+03sej/J	
3 Land Area	8.42E+06ha	USFS, 2007
(emergy of land structure)	1.05E+15 sej/ha	
4 Soil OM	3.47E+08mt	COLE, 2005
mass OM=	3.47E+14g	
Energy=1	nassOM* 5.4 kcal/g of OM * 4186 j/kcal	

	7.84E+18J	
Transformity	1.24E+04 sej/J	
5 Ground Water		
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	
Volume	5.80E+10m3	USGS, 2005
	olume*1000kg/m^3*4940J/kg	
=	2.86E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
6 Surface Water	5	
volume	9.12E+09m^3	Sedell, 2000
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	
	olume*1000kg/m^3*4940J/kg	
=	4.50E+16J	
Transformity	1.04E+06sej/J	
ECONOMIC ASSETS	5	
7 Roads, Dirt	4.67E+04miles	USFS, 2006 (unpub)
	6.00E+03\$/mile	
	2.80E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
8 Roads, Gravel	7.51E+06m length	USFS, 2006 (unpub)
	5.00E+00m width	
depth=	0.1016m of gravel	
volume=	3.82E+06m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
	n^3*kg/m^3*1000g/kg	
mass gravel=	5.32E+12g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
9 Paved Roads	215055.56m	
width=	6.7m^2	USFS, 2006 (unpub)
depth=	5.08E-02m depth	
volume=	7.32E+04m ³ of asphalt	
density=	2.24E+03kg/m ³ asphalt	
-	n^3*kg/m^3*1000g/kg	
asphalt	1.64E+11g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
10 Machinery	2.09E+07lbs	USFS, 2006 (unpub)
	4.54E+02g/lb	· • ·
mass machinery=	9.48E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
11 Office Equipment	1.50E+01kg/m2	
	-	
mass office equipment=b	uildingSA*kg/m2*1000g/kg	
=	3.22E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Buildings	2.14E+05m^2	USFS, 2006 (unpub)
Building Mass=	8.54E+10g	
Specific Emergy	6.50E+09 sej/g avg	Buranakarn, 1998
MTB Draft ~ 6/8/07		12
$W = D = D T u = 2 \sim 0.0 / 0 / 1$		

13	Minerals		
	Data NA for Regions		
CUI	LTURAL ASSETS		
14	Emergy of Cultural Informat Native Americans on FS		
		1.56E+05people	estimate
	energy per capita=(2	2500Cal/day)*(365 d/y)*(41	186J/Cal)
	=	3.82E+09J/yr	
	Yrs to develop information	2.50E+02	estimate
	Energy of Population=(population)*(J/yr/Indian)*(year)
	Energy =	1.49E+17J	
	Transformity	1.89E+07 sej/J	
15	Value of Critical Species Endangered/Threatened		
	Species	55	USFWS , 2006
	Percent of pop	27.80%%	
	average emergy per species	3.96E+24sej/species	n FS land.*Em. Required to develop
	Em. In critical species=s Emergy in Critical Species		i i b land. Ent. Required to develop
		6.05E+25sej	

			Emergy Intensity	Solar Emergy	EmDollars			
Note Item	Units	Quantity	(sej/unit)	$(x10^{18}sej)$	$(x10^{6} \text{ Em}\$)$			
ENVIRONMENTAL ASSETS	т	7 400 19	2 625 .04	267924 5	140065 5			
1 Tree Biomass 2 Herb/Shrub Biomass	J J	7.40E+18 1.12E+18	3.62E+04 17976	267834.5 20150.5	140965.5 10605.5			
3 Land Area	J ha	1.12E+18 1.30E+07	1.05E+15	13605.4	7160.8			
4 Soil OM	J	1.65E+19	1.24E+04	205249.9	108026.3			
5 Ground Water	J	2.88E+17	3.02E+05	87105.3	45844.9			
6 Surface Water	J	6.98E+16	8.10E+04	5655.7	2976.7			
ECONOMIC ASSETS	v	0.002.10		000007	_,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
7 Roads (dirt)	\$	5.21E+07	1.90E+12	99.1	52.1			
8 Roads (gravel)	g	8.69E+12	1.68E+09	14594.5	7681.3			
9 Roads (paved)	g	5.16E+11	2.77E+09	1429.9	752.6			
10 Machinery & tools	g	8.74E+09	1.13E+10	98.4	51.8			
11 Office Equipment	g	3.62E+09	1.13E+10	40.7	21.4			
12 Buildings	g	9.60E+10	6.50E+09	624.0	328.4			
13 Minerals (g)		NA	4.54E+09	NA	NA			
13b Minerals (\$)	g \$	NA	1.90E+12	NA	NA			
CULTURAL ASSETS								
14 Info. Value of Indian Artifa	cts J	6.98E+15	1.89E+07	132082.0	69516.9			
15 Value of Critical Species	# of ind.	2.70E+01	2.26E+22	609059.3	3205.6			
Notes to Table B-4 ENVIRONMENTAL ASSETS								
1 Tree Biomass		E+08m^3		USFS	5, 2004			
		E+02kg/m^3						
	$mass = m^3 kg/m^3 1000g/kg$							
= 5.05E+14g 3.50E+00Kcal/g of Tree Biomass								
oporav-c		g*4186J/kca		1888				
=	7.40E		11					
– Transformity	3.62E+0							
2 Total Understory		E+07mt		COLI	E, 2006			
2 Total Olderstory		E+06g/mt		COL	2, 2000			
mass=t	ons*g/ton	2100 <u>5</u> /III						
=	-	E+13g						
		g*4186J/kca	1					
=	1.12E							
Transformity	9.79E	E+03sej/J						
3 Land Area	1.30E	E+07ha		USFS	5, 2007			
(emergy of land structure)	1.05E+1	5 sej/ha						
4 Soil OM	7.30E	E+08mt		COLI	E, 2006			
mass OM=		E+14g						
Energy=r	Energy=massOM* 5.4 kcal/g of OM * 4186 j/kcal							
	1.65E	E+19J						

APPENDIX B - 4. Emergy in stored assets of Region 4 - US National Forest System

Transformity	1.24E+04 sej/J	
5 Ground Water	5	
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	USGS, 2005
Volume	5.83E+10m3	,
energy=v	olume*1000kg/m^3*4940J/kg	
energy=	2.88E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
6 Surface Water		
volume	1.41E+10m^3	Sedell, 2000
Density of water	1000kg/m3	50001, 2000
Gibbs Free energy of water	4940J/kg	
	olume*1000kg/m^3*4940J/kg	
energy=v	6.98E+16J	
– Transformity	8.10E+04sej/J	Odum, 2000
ECONOMIC ASSETS	8.10E+04scj/J	Odulli, 2000
ECONOMIC ASSETS		USFS, 2006
7 Roads, Dirt	5.21E+07miles	(unpub)
	6.00E+03\$/mile	(
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Chit Emergy Value	1.20011120070	USFS, 2006
8 Roads, Gravel	1.23E+07m length	(unpub)
	5.00E+00m width	
depth=	0.1016m of gravel	
volume=	6.23E+06m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
	n^3*kg/m^3*1000g/kg	
=	8.69E+12g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
		USFS, 2006
9 Paved Roads	675669.62m	(unpub)
width=	6.7m^2	
depth=	5.08E-02m depth	
volume=	2.30E+05m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
mass asphalt=n	n^3*kg/m^3*1000g/kg	
=	5.16E+11g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
		USFS, 2006
10 Machinery	1.93E+07lbs	(unpub)
	4.54E+02g/lb	
mass machinery=	8.74E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
11 Office Equipment	1.50E+01kg/m2	
mass office equipment=b	uilding(m ²)*kg/m2*1000g/kg	
=	3.62E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Buildings	2.41E+05m^2	USFS, 2006
Building Mass=	9.60E+10g	(unpub)
	2.00D+10g	
MTB Draft $\sim 6/8/07$		

123

Specific Emergy	6.50E+09	sej/g	Buranakarn, 1998
13 Minerals			
Data NA for Regions			
CULTURAL ASSETS			
14 Emergy of Cultural Information	on		
Native Americans on FS			
lands (peak)	3.44E+0	4people	estimate
energy per capita=(2500Cal/day)	*(365 d/y)*(4186.	J/Cal)
=	3.82E+0	9J/yr	
Yrs to develop information	2.50E+0	12	estimate
Energy of Population=(population)*(J/yr/Indian)*(year	·)
Energy =	6.98E+1	• •	
Transformity	1.89E+07	sej/J	
15 Value of Critical Species		5	
Endangered/Threatened			
Species	2	.7	USFWS, 2006
Percent of pop	2.78E-0	1%	
average emergy per species	3.96E+2	4sej/species	
			S land.*Em. Required to develop
Em. In critical species=s	pecies		
Emergy in Critical Species			
(sum of above)	6.05E+2	.5sej	

81		8		ť	
			Emergy		
NoteItem	Units	Quantity	Intensity (sej/unit)	Solar Emergy $(x 10^{18} \text{sei})$	$(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS	emits	Quantity	(50), ann)	(110 50)	(ATO LIIIQ)
1 Tree Biomass	J	1.01E+19	3.62E+04	367249.9	193289.4
2 Herb/Shrub Biomass	J	7.55E+17	17976	13565.2	7139.6
3 Land Area	ha	8.17E+06	1.05E+15	8573.9	4512.6
4 Soil OM	J	8.15E+18	1.24E+04	101294.4	53312.8
5 Ground Water	J	1.82E+17	3.02E+05	54892.3	28890.7
6 Surface Water	J	2.02E+17	8.10E+04	16387.1	8624.8
ECONOMIC ASSETS					
7 Roads (dirt)	\$	2.01E+08	1.90E+12	381.9	201.0
8 Roads (gravel)	g	1.13E+13	1.68E+09	18994.5	9997.1
9 Roads (paved)	g	1.14E+12	2.77E+09	3148.8	1657.3
10 Machinery & tools	g	2.28E+10	1.13E+10	256.3	134.9
11 Office Equipment	g	6.81E+09	1.13E+10	76.7	40.4
12 Buildings	g	1.81E+11	6.50E+09	1175.0	618.4
13 Minerals (g)	g \$	NA	4.54E+09	NA	NA
13a Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS					
14 Info. Value of Indian Artifacts	J	6.98E+15	1.89E+07	132082.0	69516.9
15 Value of Critical Species	# of ind.	1.02E+02	2.26E+22	2300890.5	12110.0
Notes to Table B- 5 ENVIRONMENTAL ASSETS					
1 Tree Biomass	1.28E+09 5.40E+02			USFS, 2004	
mass=m^3	*kg/m^3*10	e			
=	6.93E+14				
	3.50E+00	Kcal/g of Tre	ee Biomass		
energy=g*4.	5kcal/g*418	6J/kcal			
=	1.01E+19	J			
Transformity 3	.62E+04	sej/J			
2 Total Understory	5.15E+07	mt		COLE, 2005	5
	1.00E+06	g/mt			
mass=	5.15E+13	g			
energy=g*3.	5kcal/g*418	6J/kcal			
=	7.55E+17	J			
Transformity	9.79E+03	sej/J			
3 Land Area	8.17E+06	ha		USFS, 2007	
		sej/ha			
Soil OM	3.60E+08			COLE, 2006	5
mass OM=	3.60E+14	0			
Energy=mass	SOM* 5.4 k 8.15E+18	-	* 4186 j/kcal		
Transformity 1		sej/J			

APPENDIX B - 5. Emergy in stored assets of Region 5 - US National Forest System

5 Ground Water		
Density of water	100Ckg/m3	
Gibbs Free energy of water	494(J/kg	
Volume	3.67E+1(m3	USGS, 2005
energy=v	olume*1000kg/m^3*4940J/kg	
=	1.82E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
6 Surface Water	5	
volume	4.10E+1(m^3	Sedell, 2000
Density of water	100Ckg/m3	
Gibbs Free energy of water	494(J/kg	
	olume*1000kg/m^3*4940J/kg	
=	2.02E+17J	
Transformity	1.04E+06sej/J	Odum, 2000
ECONOMIC ASSETS	5	,
7 Roads, Dirt	3.35E+04miles	USFS, (unpub.)
,	6.00E+03\$/mile	
	2.01E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
8 Roads, Gravel	1.60E+07m length	NFS, 2005
,	5.00E+0Cm width	
depth=	0.1016m of gravel	
volume=	8.11E+06m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
•	n^3*kg/m^3*1000g/kg	
=	1.13E+13g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
9 Paved Roads	1487943.7m	USFS, (unpub.)
width=	6.7m^2	
depth=	5.08E-02m depth	
volume=	5.06E+05m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
-	n^3*kg/m^3*1000g/kg	
=	1.14E+12g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
10 Machinery	5.02E+07lbs	USFS, (unpub.)
,	4.54E+02g/lb	
mass machinery=	2.28E+1(g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
11 Office Equipment	$1.50E + 01 kg/m^2$	estimate
	Building SA*kg/m2*1000g/kg	
=	6.81E+0 ⁹ g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
Value	\$	NFS, 2005
12 Buildings	4.54E+05m^2	USFS, (unpub.)
Building Mass=	1.81E+11g	· · · · · /
Specific Emergy	6.50E+09 sej/g	Buranakarn, 1998
13 Minerals		
Data NA for Regions		

CULTURAL ASSETS 14 Emergy of Cultural Informat Native Americans on FS lands (peak) energy per capita=(2)	ion 3.73E+05people 2500Cal/day)*(365 d/y)*(4186J/Cal)	estimate
=	3.82E+09J/yr	
Yrs to develop information	2.50E+02	estimate
Energy of Population=(p	population)*(J/yr/Indian)*(year)	
Energy =	6.98E+15J	
Transformity	1.89E+07 sej/J	
15 Value of Critical Species		
Endangered/Threatened		
Species	1.02E+02	USFWS, 2006
Percent of pop	2.78E-01%	
average emergy per species	3.96E+24sej/species	
#	of species*% of total Pop in FS land.*En	n. Required to develop
Em. In critical species=sp	pecies	
Emergy in Critical Species		
(sum of above)	1.12E+2(sej	

			Emergy		
NoteItem	Units	Quantity	Intensity (sej/unit)	Solar Emergy $(x10^{18}sej)$	EmDollars $(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS	Ollits	Quantity	(sej/unit)	(110 50)	(110 Lint)
1 Tree Biomass	J	2.19E+19	3.62E+04	791605.8	416634.6
2 Herb/Shrub Biomass	J	1.14E+18	17976	20458.1	10767.4
3 Land Area	ha	1.00E+07	1.05E+15	10537.1	5545.8
4 Soil OM	J	3.08E+19	1.24E+04	383022.5	201590.8
5 Glaciers	g	1.96E+14	6.46E+06	1266.8	666.7
6 Ground Water	J	4.46E+17	2.79E+05	124427.7	65488.2
7 Surface Water	J	2.72E+17	8.10E+04	22041.8	11600.9
ECONOMIC ASSETS					
8 Roads (dirt)	\$	4.82E+08	1.90E+12	915.7	481.9
9 Roads (gravel)	g	1.27E+13	1.68E+09	21356.6	11240.3
10 Roads (paved)	g	1.10E+12	2.77E+09	3035.6	1597.7
11 Machinery & tools	g	1.70E+10	1.13E+10	191.7	100.9
12 Office Equipment	g	7.08E+09	1.13E+10	79.7	42.0
13 Buildings	g	1.88E+11	6.50E+09	1221.9	643.1
14 Minerals (g)	g \$	NA	4.54E+09	NA	NA
14b Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS					
15 Info.Value of Indian Artifacts	J	6.98E+15	1.89E+07	132082.0	69516.9
16 Value of Critical Species	# of ind.	2.20E+01	2.26E+22	496270.5	2612.0

APPENDIX B - 6. Emergy in stored assets of Region 6 - US National Forest System

Notes to Table B-6

ENVIRONMENTAL ASSETS		
1 Tree Biomass	2.76E+09m^3	USFS, 2004
	5.40E+02kg/m^3	
mass=	m^3*kg/m^3*1000g/kg	
=	= 1.49E+15g	
	3.50E+0CKcal/g of Tree Biomass	
energy=	g*4.5kcal/g*4186J/kcal	
=	= 2.19E+19J	
Transformity	3.62E+04 sej/J	
2 Total Understory	7.77E+07mt	COLE, 2005
	1.00E+06g/mt	
mass=	tons*g/ton	
=	= 7.77E + 13g	
energy=	g*3.5kcal/g*4186J/kcal	
=	= 1.14E + 18J	
Transformity	9.79E+03sej/J	
3 Land Area	1.00E+07ha	USFS, 2007
(emergy of land structure)) 1.05E+15sej/ha	
4 Soil OM	1.36E+09mt	COLE, 2005
mass OM=	= 1.36E+15g	
Energy=	massOM* 5.4 kcal/g of OM * 4186	

j	/kcal	
	3.08E+19J	
Transformity	1.24E+04sej/J	
5 Glaciers	2.13E+08m^3	USGS, 2005
density=	9.20E+05g/m^3	
•	1.96E+14g	
specific emergy=	6.46E+06sej/g	
6 Ground Water	50	
Density of water	1000kg/m3	
Gibbs Free energy of water	494CJ/kg	
Volume	9.03E+1Cm3	USGS, 2005
	volume*1000kg/m^3*4940J/kg	0000, 2000
=	4.46E+17J	
- transformity	2.79E+05sej/J	Buenfil (2001)
7 Surface Water	2.171110336/13	Duchini (2001)
volume	5.51E+1Cm^3	Sedell, 2000
Density of water		Seden, 2000
-	100Ckg/m3	
Gibbs Free energy of water	494(J/kg	
energy=v	volume*1000kg/m^3*4940J/kg	
=	2.72E+17J	
Transformity	1.04E+06sej/J	
ECONOMIC ASSETS		
8 Roads, Dirt	8.03E+04miles	USFS, (unpub)
	6.00E+03\$/mile	
	4.82E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
9 Roads, Gravel	1.80E+07m length	USFS, (unpub)
	5.00E+0Cm width	
depth=	0.1016m of gravel	
volume=	9.12E+06m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
mass gravel=r	n^3*kg/m^3*1000g/kg	
=	1.27E+13g	
Specific Emergy	1.68E+05sej/g	Odum (1996)
10 Paved Roads	1434452.5m length	USFS, (unpub)
width=	6.7m^2	-
depth=	5.08E-02m depth	
	4.88E+05m^3 of asphalt	
density=	2.24E+03kg/m^3 asphalt	
	n^3*kg/m^3*1000g/kg	
=	1.10E+12g	
Specific Emergy	e	Odum (1996)
11 Machinery	3.75E+07lbs	USFS, (unpub)
	4.54E+02g/lb	••••••••••••••••••••••••••••••••••••••
mass machinery=1	e	
=	1.70E+1(g	
- Specific Emergy	e	CEP (2006)
12 Office Equipment	1.50E+01kg/m2	CEI (2000)
	ouildingSA*kg/m2*1000g/kg	
inass once equipment-t		

	=	7.08E+09g	
	Specific Emergy	1.13E+10 sej/g	CEP (2006)
13 Buildings		4.72E+05m^2	USFS, (unpub)
-	Building Mass=	1.88E+11g	_
	Specific Emergy	6.50E+09 sej/g (avg)	Buranakarn, 1998
14Minerals			
Data NA	A for Regions		
CULTURAL A	SSETS		
	Cultural Informati	on	
Native	Americans on FS		
	· •	2.48E+05people	estimate
e	nergy per capita=(2500Cal/day)*(365 d/y)*(4186J/Cal)	
	=	3.82E+0\$J/yr	
Yrs to de	velop information	2.50E+02	estimate
Energ	gy of Population=(population)*(J/yr/Indian)*(year)	
	Energy =	6.98E+15J	
	Transformity	1.89E+07 sej/J	
16 Value of C	ritical Species		
Endan	gered/Threatened		
	Species		USFWS, 2006
	Percent of pop		
average e	mergy per species		
E. I		t of species*% of total Pop in FS land.*E	im. Required to
	n critical species=c	levelop species	
Linergy	in Critical Species (sum of above)	2.42E+25sej	
		2. 1212 1 2300J	

			Emergy Intensity	Solar Emergy	EmDollars
Note Item	Units	Quantity	(sej/unit)	$(x10^{18} \text{sej})$	$(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS					<u>, </u>
1 Tree Biomass	J	5.16E+18	3.62E+04	186598.2	98209.6
2 Herb/Shrub Biomass	J	5.26E+17	17976	9449.5	4973.4
3 Land Area	ha	5.38E+06	1.05E+15	5652.6	2975.1
4 Soil OM	J	1.29E+19	1.24E+04	159755.5	84081.8
5 Peat	J	3.25E+16	3.09E+05	10043.0	5285.8
6 Ground Water	J	3.55E+17	3.02E+05	107227.5	56435.5
7 Surface Water	J	1.16E+17	8.10E+04	9398.4	4946.5
ECONOMIC ASSETS					
8 Roads (dirt)	\$	1.65E+08	1.90E+12	312.6	164.5
9 Roads (gravel)	g	1.11E+13	1.68E+09	18594.4	9786.5
10 Roads (paved)	g	5.92E+11	2.77E+09	1639.8	863.1
11 Machinery & tools	g	1.50E+10	1.13E+10	168.3	88.6
12 Office Equipment	g	4.81E+09	1.13E+10	54.1	28.5
13 Buildings	g	1.28E+11	6.50E+09	828.8	436.2
14 Minerals (g)	g	NA	4.54E+09	NA	NA
14a Minerals (\$)		NA	1.90E+12	NA	NA
CULTURAL ASSETS					
15 Info. Value of Indian Artifac	ts J	6.98E+15	1.89E+07	132082.0	69516.9
16 Value of Critical Species	# of ind.	1.96E+02	2.26E+22	4421319.0	23270.1

APPENDIX B - 7. Emergy in stored assets of Region 8 - US National Forest System

Notes to Table B-7 ENVIRONMENTAL ASSETS

ENVIRONMENTAL ASSETS		
1 Tree Biomass	6.52E+08m^3	USFS, 2004
	5.40E+02kg/m^3	
mass=m	n^3*kg/m^3*1000g/kg	
=	3.52E+14g	
	3.50E+0CKcal/g of Tree Biomass	
energy=g	*4.5kcal/g*4186J/kcal	
=	5.16E+18J	
Transformity	3.62E+04 sej/J	
2 Total Understory	3.59E+07mt	COLE, 2005
	1.00E+06g/mt	
mass=to	ons*g/ton	
=	3.59E+13g	
energy=g	*3.5kcal/g*4186J/kcal	
=	5.26E+17J	
Transformity	9.79E+03sej/J	
3 Land Area	5.38E+06ha	USFS, 2007
(emergy of land structure)	1.05E+15 sej/ha	
4 Soil OM	5.68E+08mt	COLE, 2006
mass OM=	5.68E+14g	
Energy=m	hassOM* 5.4 kcal/g of OM * 4186 j/kcal	
	- · ·	

=	1.29E+19J	
Transformity	1.24E+04 sej/J	
5 Peat	1.75E+05mt	estimate
mass Peat OM=m	nt*1e6g/mt	
=	1.44E+12g	
Energy=g	* 5.4 kcal/g of OM* 4186 J/kcal	
=	3.25E+16J	
Transformity	3.09E+05sej/J	
6 Ground Water	J -	
Density of water	100Ckg/m3	
Gibbs Free energy of water		
Volume	e	USGS, 2005
	olume*1000kg/m^3*4940J/kg	0505, 2005
	3.55E+17J	
transformity		Buenfil (2001)
7 Surface Water	2.7912+0.36/3	Ducinii (2001)
volume	2.349E+1Cm^3	Sedell, 2000
		Seden, 2000
Density of water	100Ckg/m3	
Gibbs Free energy of water	494CJ/kg	
	olume*1000kg/m^3*4940J/kg	
=	1.16E+17J	0.1 0000
Transformity	8.10E+04sej/J	Odum, 2000
ECONOMIC ASSETS		
8 Roads, Dirt	2.74E+04miles	USFS, (unpub)
	6.00E+03\$/mile	
	1.65E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
9 Roads, Gravel	1.56E+07m length	USFS, (unpub)
	5.00E+0Cm width	
depth=	ę	
volume=	7.94E+06m ³ of limerock	
density=	1.39E+03kg/m ³ gravel	
	n^3*kg/m^3*1000g/kg	
=	1.11E+13g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
10 Paved Roads	774876.7m length	USFS, (unpub)
width=	6.7m^2	_
depth=	5.08E-02m depth	
volume=	2.64E+05m^3 of asphalt	
density=	2.24E+03kg/m^3 asphalt	
-	n^3*kg/m^3*1000g/kg	
=	5.92E+11g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
11 Machinery	3.30E+07lbs	USFS, (unpub)
5	4.54E+02g/lb	
mass machinery=	1.50E+1Cg	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Office Equipment	1.50E+01kg/m2	estimate
- Since Equipment	1.5 0 2 1 0 116 112	ostimuto

132

mass office equipment=b	uildingSA*kg/m2*1000g/kg	
=	4.81E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
13 Buildings	3.20E+05m^2	USFS, (unpub)
Building Mass=	1.28E+11g	
Specific Emergy	6.50E+09 sej/g	Buranakarn, 1998
14 Minerals		
Data NA for Regions		
CULTURAL ASSETS		
15 Emergy of Cultural Informa Native Americans on FS	ation	
lands (peak)	9.75E+04people	estimate
energy per capita=(2	2500Cal/day)*(365 d/y)*(4186J/Cal)	
=	3.82E+09J/yr	
Yrs to develop	-	
information	2.50E+02	estimate
	population)*(J/yr/Indian)*(year)	
Energy =	6.98E+15J	
Transformity	1.89E+07 sej/J	
16 Value of Critical Species		
Endangered/Threatened		
Species	1.96E+02	USFWS, 2006
Percent of pop	2.78E-01%	
average emergy per species	3.96E+24sej/species of species*%of total Pop in FS land.*I	Em Required to develop
Em. In critical species=s		
Emergy in Critical Species		
(sum of above)	2.16E+26sej	

			Emergy		
NoteItem	Units	Quantity	Intensity (sej/unit)	Solar Emergy (x10 ¹⁸ sej)	EmDollars (x10 ⁶ Em\$)
ENVIRONMENTAL ASSETS		C	()	((
1 Tree Biomass	J	3.60E+18	3.62E+04	130401.2	68632.2
2 Herb/Shrub Biomass	J	2.43E+17	17976	4361.8	2295.7
3 Land Area	ha	4.89E+06	1.05E+15	5138.2	2704.3
4 Soil OM	J	1.67E+19	1.24E+04	207861.1	109400.6
5 Peat	J	1.19E+15	3.09E+05	366.8	193.0
6 Ground Water	J	1.91E+17	3.02E+05	57881.4	30463.9
7 Surface Water	J	8.97E+16	1.04E+06	93389.5	49152.4
ECONOMIC ASSETS					
8 Roads (dirt)	\$	1.21E+08	1.90E+12	230.51	121.3
9 Roads (gravel)	g	7.47E+12	1.68E+09	12545.1	6602.7
10 Roads (paved)	g	6.20E+11	2.77E+09	1719.8	905.2
11 Machinery & tools	g	7.24E+09	1.13E+10	81.5	42.9
12 Office Equipment	g	5.17E+09	1.13E+10	58.2	30.7
13 Buildings	g	1.37E+11	6.50E+09	892.5	469.7
14 Minerals (g)	g \$	NA	4.54E+09	NA	NA
14a Minerals (\$)	\$	NA	1.90E+12	NA	NA
CULTURAL ASSETS					
15 Info. Value of Indian Artifacts	J	6.98E+15	1.89E+07	132082.0	69516.9
16 Value of Critical Species	# of ind.	5.20E+01	2.26E+22	1173003.0	617370.0

APPENDIX B - 8. Emergy in stored assets of Region 9 - US National Forest System

Notes to Table B- 8

Notes to Table D- o		
ENVIRONMENTAL ASSETS		
1 Tree Biomass	4.55E+08m^3	NFS, 2005
	5.40E+02kg/m^3	
mass=1		
=	2.46E+14g	
	3.50E+00Kcal/g of Tree Biomass	
energy=	g*3.5kcal/g*4186J/kcal	
=	3.60E+18J	
Transformity	3.62E+04 sej/J	
2 Total Understory	1.66E+07mt	NFS, 2005
	1.00E+06g/mt	COLE, 2005
mass=t	tons*g/ton	
=	1.66E+13g	
energy=g	g*3.5kcal/g*4186J/kcal	
=	2.43E+17J	
Transformity	9.79E+03sej/J	
3 Land Area	4.89E+06ha	NFS, 2006
(emergy of land structure)		
4 Soil OM	7.40E+08mt	COLE, 2006
mass OM=	7.40E+14g	,
	0	

Energy=n	nassOM* 5.4 kcal/g of OM * 418 1.67E+19J	86 j/kcal
Transformity	1.24E+04 sej/J	
5 Peat	7.50E+04mt	estimate
	nt*1e6g/mt*70% OM	
=	5.25E+10g	
	hassPeat* 5.4 kcal/g of OM*100	0g/kg* 4186 I/kcal
=	1.19E+15J	
Transformity	2.52E+04sej/J	
6 Ground Water	210 22 10 10000	
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	
Volume	3.87E+10m3	USGS, 2005
	olume*1000kg/m^3*4940J/kg	0000, 2000
=	1.91E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
7 Surface Water	2.172.10000,0	
volume	1.81E+10m^3	Sedell, 2000
Density of water	1000kg/m3	5000H, 2000
Gibbs Free energy of water	4940J/kg	
	olume*1000kg/m^3*4940J/kg	
=	8.97E+16J	
Transformity	1.04E+06sej/J	
ECONOMIC ASSETS	110 12 10 000,0	
8 Roads, Dirt	2.02E+04miles	USFS, 2006 (unpub)
o Rouds, Dire	6.00E+03\$/mile	001 <i>0</i> , 2000 (anpa0)
	1.21E+08\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
9 Roads, Gravel	1.05E+07m length	USFS, 2006 (unpub)
	5.00E+00m width	001 <i>0</i> , 2000 (anpa0)
depth=	0.1016m of gravel	
volume=	5.36E+06m^3 of limerock	
density=	$1.39E+03kg/m^3$ gravel	
•	n^3*kg/m^3*1000g/kg	
=	7.47E+12g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
10 Paved Roads	812691.42m length	USFS, 2006 (unpub)
width=	6.7m^2	ests, 2000 (anpac)
depth=	5.08E-02m depth	
volume=	2.77E+05m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
	n^3*kg/m^3*1000g/kg	
=	6.20E+11g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
11 Machinery	1.60E+07lbs	USFS, 2006 (unpub)
5	4.54E+02g/lb	
mass machinery=	7.24E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Office Equipment	1.50E + 01 kg/m2	
1 1	0	

135

mass	office equipment=b	e	0 0 0	
	= Specific Emergy		sej/g	CEP (2006)
13 Buildings	Der'i l'ar Mana	3.45E+0		USFS, 2006 (unpub)
	Building Mass=		0	D 1 1000
	Specific Emergy	6.50E+09	sej/g (avg)	Buranakarn, 1998
14 Minerals				
	A for Regions			
CULTURAL A	SSETS			
	of Cultural Information	tion		
Nativ	e Americans on FS			
		1.15E+0		estimate
	energy per capita=(2	-		Cal)
	=	3.82E+0	•	
Yrs to d	evelop information	2.50E+0)2	estimate
Ener	gy of Population=(population)*	(J/yr/Indian)*(year)	
	Energy =	6.98E+1	5J	
	Transformity	1.89E+07	sej/J	
	Critical Species ngered/Threatened		-	
Liidu	Species	5.20E+0)1	USFWS , 2006
	Percent of pop	2.78E-0		,
average	emergy per species	3.96E+2 of species*9	24sej/species 6 of total Pop in FS	land.*Em. Required to develop
	In critical species=sj in Critical Species			
2	(sum of above)	5.72E+2	25sej	

			Emergy		
NoteItem	Units	Quantity	Intensity (sej/unit)	Solar Emergy $(x 10^{18} sej)$	EmDollars $(x10^6 \text{ Em}\$)$
ENVIRONMENTAL ASSETS	Units	Quantity	(sej/unit)	(x10 sej)	(XIU EIII\$)
1 Tree Biomass	J	5.79E+18	3.62E+04	209524.1	110275.8
2 Herb/Shrub Biomass	J	1.20E+18	17976	21498.6	11315.1
3 Land Area	ha	8.88E+06	1.05E+15	9321.0	4905.8
4 Soil OM	J	3.16E+19	1.24E+04	393301.9	207001.0
5 Glaciers	g	6.22E+17	6.46E+06	4021050.3	2116342.2
6 Peat	J	5.84E+15	2.52E+04	147.3	77.5
7 Ground Water	J	6.58E+17	3.02E+05	198917.7	104693.5
8 Surface Water	J	6.46E+17	8.10E+04	52354.2	27554.9
ECONOMIC ASSETS					
9 Roads (dirt)	\$	1.57E+07	1.90E+12	29.9	15.7
10 Roads (gravel)	g	1.26E+12	1.68E+09	2122.4	1117.1
11 Roads (paved)	g	2.11E+09	2.77E+09	5.9	3.1
12 Machinery & tools	g	2.19E+09	1.13E+10	24.7	13.0
13 Office Equipment	g	9.17E+08	1.13E+10	10.3	5.4
14 Buildings	g	2.43E+10	6.50E+09	158.2	83.2
15 Minerals (g) 15a Minerals (\$)	g \$	NA NA	4.54E+09 1.90E+12	NA NA	NA NA
CULTURAL ASSETS	φ	INA	1.90E+12	NA	INA
16 Info. Value of Indian Artifa	icts J	6.98E+15	1.89E+07	132082.0	69516.9
17 Value of Critical Species		d. 1.10E+01	2.26E+22	248135.3	130597.5
Notes to Table B-9					
ENVIRONMENTAL ASSETS					
1 Tree Biomass $7.32E+08m^3$				USFS, 2004	
		5.40E+02kg/m^3			
		m^3*1000g/	kg		
mass		5E+14g	of Tree Diama		
000100			of Tree Bioma	SS	
		l/g*4186J/kc 9E+18J	a1		
energy Transformi					
2 Total Understory	•	6E+07mt		USFS, 2004	
2 Total Childerstory		0E+06g/mt		COLE, 2005	
mass	s=tons*g/to	U		COLL, 2003	
	e	6E+13g			
energy=g*3.5 Cal/g*4186J/kcal					
	-	0E+18J			
Transformi	ty 9.7	9E+03sej/J			
3 Land Area		8E+06ha		USFS, 2007	
(emergy of land structur		+15 sej/ha			
4 Soil OM		0E+09mt		COLE, 2006	
mass OM	[= 1.4	0E+15g			
MTB Draft $\sim 6/8/07$					137

APPENDIX B - 9. Emergy in stored assets of Region 10 - US National Forest System

Energy=r	nassOM* 5.4 Cal/g of OM * 4186 j/k	cal
Turning	3.16E+19J	
Transformity	1.24E+04 sej/J	
5 Peat	2.58E+05mt	estimate
mass Peat OM=r	-	
=	2.58E+11g	* 4104 T/C 1
Energy=r	nass Peat* 5.4 kcal/g of OM*1000g/l	kg* 4184 J/Cal
=	5.84E+15J	
Transformity	2.52E+04sej/J	
6 Glaciers	6.77E+11m^3	USGS, 2005
density=	9.20E+05g/m^3	
mass=	6.22E+17g	
specific emergy=	6.46E+06sej/g	
7 Ground Water		
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	
Volume	1.33E+11m3	USGS, 2005
energy=v	olume*1000kg/m^3*4940J/kg	
energy=	6.58E+17J	
transformity	2.79E+05sej/J	Buenfil (2001)
8 Surface Water		
volume	1.31E+11m^3	Sedell, 2000
Density of water	1000kg/m3	
Gibbs Free energy of water	4940J/kg	
energy=v	olume*1000kg/m^3*4940J/kg	
=	6.46E+17J	
Transformity	8.10E+04sej/J	Odum, 2000
ECONOMIC ASSETS		
9 Roads, Dirt	2.62E+03miles	USFS, 2006 (unpub)
	6.00E+03\$/mile	
	1.57E+07\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
10 Roads, Gravel	1.78E+06m length	USFS, 2006 (unpub)
	5.00E+00m width	-
depth=	0.1016m of gravel	
volume=	9.06E+05m^3 of limerock	
density=	1.39E+03kg/m ³ gravel	
-	n^3*kg/m^3*1000g/kg	
=	1.26E+12g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
11 Paved Roads	2.77E+03m length	USFS, 2006 (unpub)
width=	6.7m^2	
depth=	5.08E-02m depth	
volume=	9.41E+02m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
	n^3*kg/m^3*1000g/kg	
=	2.11E+09g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
12 Machinery	4835710.2lbs	USFS, 2006 (unpub)
2		

	4.54E+02g/lb		
mass machinery=18	os*g/lb		
=	2.19E+09g		
Specific Emergy	1.13E+10 sej/g	CEP (2006)	
13 Office Equipment	1.50E+01kg/m2	estimate	
mass office equipment=b	uildingSA*kg/m2*1000g/kg		
=	9.17E+08g		
Specific Emergy	1.13E+10 sej/g	CEP (2006)	
14 Buildings	6.11E+04m^2	USFS, 2006 (unpub)	
Building Mass=	2.43E+10g		
Specific Emergy	6.50E+09	Buranakarn, 1998	
15 Minerals			
Data NA for Regions			
CULTURAL ASSETS			
Emergy of Cultural			
16Information Native Americans on FS lands			
(peak)	9.69E+04people	estimate	
(peak)	2500Cal/day)*(365	estimate	
energy per capita=d	/y)*(4186J/Čal)		
=	3.82E+09J/yr		
Yrs to develop information	2.50E+02	estimate	
Energy of Population=(population)*(J/yr/Indian)*(year)		
Energy =	6.98E+15J		
Transformity	1.89E+07 sej/J		
17 Value of Critical Species			
Endangered/Threatened Species	1.10E+01	USFWS, 2006	
Percent of por	2.78E-01%		
average emergy per species	3.96E+24sej/species		
	species*%of total Pop in FS land.*En	n. Required to develop	
Em. In critical species=species			
Emergy in Critical Species (sum of above)	1.21E+25sej		
	1.21L+2.50J		

APPENDIX C. Notes to Table 6. Summary of annual emergy flows supporting the US National Forest System

RENEWABLE RESOURCE	ES:		_	
1Solar Insolation	1 4		Source	
	nd Area	7.80E+11m^2	NDEL 2007	
	solation	6.83E+09J/m ² /year	NREL, 2006	
	Albedc	1.80E-01(% given as a decimal)		
E	nergy =(are	a)*(avg insolation)*(1-albedo) 4.37E+21J		
Trans	formity	1.00E+00 sej/J	Odum et.al, (2000)	
2 Rain	IoIIIIty		o duini o duii, (2000)	
Chemical Potential				
sum of the	regions	2.62E+18J/yr		
	formity	3.10E+04sej/J	Odum et.al, (2000)	
3 Transpiration				
Energy (sum		1 105 101/		
	gions)=	1.18E+18J/yr	0.1 (2000)	
	formity	3.06E+04sej/J	Odum et.al, (2000)	
4 Rain Geopotential	• • • • • • • • • • • • • • • • • • • •	1.000.101		
Energy (sum of r		1.08E+18J	$O_{1} = \frac{1}{2} (2000)$	
	formity	4.70E+04sej/J	Odum et.al, (2000)	
5 Wind, Kinetic	ragion	3.40E+18		
sum of the	formity	2.45E+03 sej/J	Odum (2000)	
6 Hurricanes	loinnty	2.45E+05sej/j	Odulli (2000)	
Energy (sum of r	regions)	3.38E+17j/yr		
	formity	6.49E+03 sej/J	Odum (2000)	
7 Wave	loimity	0.1711033673	Odulli (2000)	
sum of the	regions	6.07E+17J/yr		
Transfo		5.10E+04 sej/J	CEP, 2000	
8 Tidal	Jerre J			
sum of the	regions	1.96E+17J/yr		
Transfo		2.43E+04sej/J	CEP, 2000	
9 Earth Cycle	-	-		
sum of the	regions	2.10E+18J/yr		
	formity	1.13E+04 sej/J	Odum (2000)	
INDIGENOUS NONRENE	WABLE R	ESOURCES:		
10 Soil Loss			(this study)	
sum of the		9.73E+10g/yr		
	formity	1.68E+9 sej/g	Odum (2000)	
10a Soil OM Loss		0.045 1.01/		
sum of the	0	8.04E+13J/yr		
	formity	7.4E+04 sej/J	NEC 2005	
11 Misc. Products (Plant		1.40E+09g/yr	NFS, 2005	
e	=	*(3.5kcal/g)*(4186J/Cal) 2.05E+13joules		
Transf	formity	1.80E+04sej/J		
IMPORTS:	ormity	1.00270730/3		
12 Petroleum Products				
sum of the	regions	4.04E+15J/yr		
	formity	1.11E+05 sej/J	Odum, (1996)	
	5	J ^{. –}	. , ()	
$MTD D \dots \mathcal{L} (0/07)$				

13 Machinery, Equipment sum of the regions	4.95E+09g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
14 Misc. Goods (Pesticides, herbid		
sum of the regions	7.22E+07g/yr	
emergy=	1.79E+18sej/yr	
15 Seedlings		
Total Cost=	5.16E+07\$/yr	NFS, (2005)
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
Tourist Time	2.05E+08people/yr	NFS NVUM 2004
average stay	1.80E+01hrs	NFS NVUM 2005
Total Hours of Stay	3.69E+09hours/yr	
avg. energy/hr	1.04E+02kcal/hr	
total energy expenditure=(
energy=	1.69E+15J/y	
Transformity	1.50E+07 sej/J	Odum, 1996
17 Labor	-	
FS	7.77E+07hrs/yr	USFS, 2005
Contractors	4.42E+07hrs/yr	estimate
Total Labor	1.22E+08hrs/yr	
Unit Emergy Value	6.30E+13sej/hr	
18 Electricity		
Sum from regions	1.07E+15J	0.1 1000
Transformity	2.92E+05	Odum, 1996
19 Misc. Expenditures	2.97E+09\$/yr 1.00E+12cci/\$	CED(2006)
Unit Emergy Value	1.90E+12sej/\$ 5.64E+21sej/yr	CEP (2006)
emergy= 20 Payment Received for timber	2.24E+08\$/yr	UFSF, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
21 Payments for Ext. Minerals	2.84E+09\$/y	CER (2000)
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22 Fee Payments Received	5.05E+07\$/yr	USFS PAR, 2006
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
EXPORTS:	U U	
23 Extracted Firewood		
Sum of regions	1.17E+16J/yr	
Transformity	3.06E+04sej/J	Brown and Bardi (2001)
24 Harvested Wood		
sum of the regions	6.82E+12g/yr	
Energy=	1.02E+17J/yr	D
Transformity	5.04E+04	Brown, 2001
25 Water, Chemical potential Total Export From Streams	2.54E+11m^3/yr	USFS, 2000
joules =	1.26E+18J/yr	0313, 2000
Transformity	8.10E+04sej/J	Odum, 2000
26 Water, Geopotential Energy	5.10E 10 100/3	Sauni, 2000
sum of the regions	2.01E+18J/yr	
Transformity	4.70E+04sej/J	Odum, 2000
5	5	·
27 Minerals	4.16E+12g/yr	NFS, 2003
average specific emergy	mixed sej/g	see app. 3

	emergy=	6.06E+22sej/yr	see app. 3
28	Fossil Fuels		
	Oil	9.42E+17J/yr	FS, 2005
	Transformity	9.11E+04sej/J	
	Natural Gas	5.58E+16J/yr	FS, 2005
	Transformity	7.31E+04sej/J	
	Coal	5.20E+17J/yr	FS, 2005
	Transformity	6.59E+04sej/J	
	Total Fossil Fuel Emergy	1.24E+23	
29	Hunting		
	Sum of Emergy from Game	4.28E+22sej	see Appendix I
	Weighted Trans. For Game	1.10E+07sej/J	
30	Fishing		
	Sum of Regions =	9.97E+13J	assume 20% dry weight
	Transformity=	1.68E+07sej/J	
31	Information		
	Public information	3.60E+04hr/yr	Estimate
	Washington Office	1.00E+05hours	
	Research Information	1.21E+03# of papers	USFS, 2006
	Average time spent	8.05E+02hours/paper	Estimate
	Research hours	9.72E+05hours/yr	Estimate
	Total hours	1.11E+06	
	Transformity	2.35E+14sej/hr	Odum, 1996
32	Hydroelectric Power	15% of US total	estimate
	From FS lands	16000 M W	USFS, 2005
	=	1.6E+10watts	
	energy=(v	vatt)*(sec/yr)*(1J/sec)	
	=	5.05E+17Joules	
	Transformity =	120300.00sej/J	Odum, 1996
	Image Exported with		
33	Tourists		
	Sum of Regions	3.69E+09hrs	USFS, 2006
33	Payments to States	4.15E+08\$/yr	
	Unit Emergy Value	1.90E+12sej/\$	
34	Payments for FS Labor	1.32E+09\$/yr	
	Unit Emergy Value	1.90E+12sej/\$	

APPENDIX D - Notes to Table 7. Assets of National Forest System

ENVIRONMENTAL ASSETS 1 Tree Biomass

1	Tree Biomass		
	Sum of the regions	7.71E+19J	
	-	3.62E+04 sej/J	CEP, 2001
2	Total Understory	5	
	Sum of the regions	6.91E+18	
	Transformity		CEP, 2001
3	Land Area	5.15E10556JB	CHI, 2001
0	Sum of the regions	7 80F±07ha	
	emergy of land structure=		
1	Soil OM	U	COLE, 2006
4		mt 1.50E+20J	COLE, 2000
	Sum of the regions		CED 2002
~		1.24E+04 sej/J	CEP, 2002
3	Peat	2.055 1.01	
	Sum of the regions	3.95E+16J	
-	Transformity	3.09E+05sej/J	CEP, 2002
6	Glaciers		
	Sum of the regions	6.23E+17g	
	Specific Emergy=	6.46E+06sej/g	CEP, 2000
7	Ground Water		
	Sum of the regions	2.80E+18J	
	Transformity	2.79E+05sej/J	Buenfil (2001)
8	Surface Water	C C	
	Sum of the regions	1.59E+18J	
	Transformity	8.10E+04sej/J	Odum, 2000
9	Biodiversity	J -	_ ,
-	Primary Consumer	6.52E+13g	USFS, RPA 2004
	Specific emergy=	1.27E+09sej/g	0010,10112001
	Herbivores	1.30E+14g	Appendix I
	Specific emergy=	1.27E+09	Appendix 1
	Omnivores		Appendix 1
		7.17E+13g 2.31E+09	Appendix 1
	Specific emergy=		A
	Carnivores	3.03E+13g	Appendix 1
	Specific emergy=	8.19E+09	A 11 A
	Top Carnivores	5.05E+12g	Appendix 1
	Specific emergy=	8.19E+10	
	total Biodiversity=	1.08E+24sej	
EC	ONOMIC ASSETS		
10	Roads, Dirt		
	Sum of the regions	1.70E+09\$	
	Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
11	Roads, Gravel		
	Sum of the regions	8.01E+13g	
	Specific Emergy	1.68E+09sej/g	Odum (1996)
12	Paved Roads		
	Sum of the regions	4.81E+12g	
	8	O	

Spe 13 Machinery	cific Emergy	2.77E+09sej/g		Odum, 1996	
•	of the regions	9 90F+10g			
	e	1.13E+10 sej/g		CEP, 2006	
14 Office Equipment	enne Ennergy	1.15ETIO Sejrg		CEI, 2000	
· ·	of the regions	3 84E+10g			
	e	1.13E+10 sej/g		CEP (2006)	
15 Buildings	Zille Elliergy	1.15E110 50jg		FS, 2005	
e	of the regions	1.10E+12g		10, 2005	
Wash. Off	fice and Misc	1.101/125			
	Buildings	8.72E+10g			
	tota	1.19E+12			
Spe	ecific Emergy	6.50E+09			
16 Fossil Fuels	0.				
Oil	1	.0396E+18J		USGS, 2005	
	Transformity	1.53E+05sej/J		Odum, 1996	
Natural (•	.7023E+15J		USGS, 2005	
	Transformity			Odum, 1997	
Coal	5	4.59E+15g		EIA, 1999	
-	energy=(g	g coal (15000J/g)		,	
	=	6.88E+19J			
	Transformity	1.11E+05sej/J		Odum, 1996	
	Fuel Storage=	7.77E+24sej		0 a a ini, 177 0	
17 Minerals	t der Storage-	7.77ET2186J			
17 minorais	Gold=	1.17E+09g	est. 5% of total	US Reserves	
	Lead=	1.51E+13g	est. 5% of total		
	Silver=	9.33E+10g	est. 5% of total		
	Copper=	6.81E+12g	est. 5% of total		
	total=	4.41E+13g			
	value=	1.20E+11\$			
Sne		4.54E+09 sej/g	overage		
CULTURAL ASSETS	cific Energy .	+.J+L+09 Scj/g	average		
Emergy of Cultura	1				
18Information	-				
Native American					
	(peak)	1.20E+06people		estimate	
energ	y per capita=(2	2500Cal/day)*(365 d	/y)*(4186J/Cal)		
	=	3.82E+09J/yr			
Yrs to develop	p informatior	2.50E+02		estimate	
Energy of	f Population=(p	oopulation)*(J/yr/Ind	lian)*(year)		
	Energy =	1.15E+18J			
	Transformity	1.89E+07sej/J			
19 Value of Critical Sp	pecies				
Endang	gered Species	4.96E+02		USFWS, 2006	
P	ercent of por	3.17%	(% of Continen	tal Area)	
average emerg		3.96E+24sej/species			
	(#	t of Species)*(%of to	otal Pop in FS lar	nd)*(Em. Required to	0
	tical species=de				
	ritical Species	6.22E+25sej			
20 Biodiversity					20
	r of species =	1.09E+05		estimate	
<i>MTB Draft</i> ~ 6/8/07					14

Unit emergy value = USFS lands percent of NA land	1.22E+25	Odum 1996
=	0.03%	
Emergy =	3.97E+26	
21 Genetic resources		
Grams DNA =	1.15E+13	Appendix I
Energy (J) =	2.40E+17	
Specific Emergy (sej/g) =	1.22E+12	Odum, 1996
Emegy (sej) =	2.93E+29	

APPENDIX E.1 - Notes to Table 9 - Annual Emergy Flows Supporting Deschutes National Forest

RENEWABLE RESOUR	CES:	
1 Solar Insolation		Sources
Land Area	7.50E+09m^2	
Insolation	1.49E+07J/m^2/year	NASA SSE
	1.70E-01(% given as a decimal)	
Energy(J) = (area)*(avg insolation)*(1-albedo)	Gholz and Clark, 2000
	9.28E+16J	
5	1.00E+00sej/J	
2 Rain		
Chemical Potential		
	7.50E+09m^2	
Rain	5	NASA SSE
	4.46E+09m^3	
	/olume*1000kg/m^3*4940J/kg	
	2.20E+16	O_{1}
5	3.10E+04sej/J	Odum et.al, (2000)
3 Transpiration	0.263m/m ² /yr	GIS Coverage
Rain ET Energy	Vol*1000Kg/m^3*4940J/kg	
	3.06E+04sej/J	Odum et.al, (2000)
4 Rain Geopotential	5.00E+04Sej/J	Odulli $et.al, (2000)$
Runoff	0.332m/m^2/yr	NASA SSE
Mean Elevation	0.352m/m ² 2/yi	MASA SSE
Change	380.60m	
Land Area	7.50E+09m^2	
Energy(J) = (area)(runoff)(avg change in elevation)	(density)(gravity)
	9.29E+15J	
•	4.70E+04sej/J	Odum et.al, (2000)
5 Wind, Kinetic		
Area	7.50E+09m^2	
air density	1.30kg/m^3	
avg annual wind velocity	4.38mps	
Geostrophic wind	-	it 0.6 of geostrophic wind
Drag Coeff.	0.002	
0	area*density*drag coef*(Geos-grndVe	1)^3*31500000
	4.59E+16	
	2.45E+03sej/J	Odum (2000)
7 Waves	5	
None		
8 Tides		
None		
9 Earth Cycle		
Heat Flow	9.84E+01miliwatts/m ²	IHFC, 2005
	7.50E+09m^2	
Ũ	3.10E+06J/m^2	
	niliwatts/m^2*area*sec/yr	
MTB Draft $\sim 6/8/07$		

= 2.33E + 16J/yrTransformity 1.20E+04sej/J Odum (2000) INDIGENOUS NONRENEWABLE RESOURCES: 10 Soil Loss 2.52E+11g/yr Percent Org. Matter 4% Top Soil Loss 1.01E+10g/yr energy=mass OM*5.4kcal/g*4184J/kcal = 2.28E + 14JSoil Gain 0.00E+00g/yr NFS, 2005 **IMPORTS:** Petroleum 11Products Forest Service Use 2.35E+05gal/yr energy=gal*13e7j/gal energy= 3.05E+13J/yr FS Building Use 3.96E+05sq feet 6.66E+04BTU/sq ft/yr energy use =(BTU/sqft/yr) * (sq ft) * (1055 joules/BTU) 2.78E+13J/yr total= 5.83E+13 Odum, (1996) Transformity 1.11E+05sej/J 12 Machinery, Equipment 2.E+09g of vehicles FS avg. vehicle lifespan 2.00E+01yrs use per y =vehicles*g/vehicle*1/avg life of vehicle mass used per year 1.36E+08g CEP Specific Emergy (2006) sej/g CEP (2006) 13 Misc. Goods NFS, 2005 1.19E+06g/yr 14 Seedlings Seedlings 5.85E+06seedlings avg. mass 3.50E+00g/seedling Total Mass= 2.05E+07g/yr 15 Tourism Tourist Time 2.80E+06people/yr NFS, 2005 average stay 1.30E+01hrs Total Hours of Stay 3.64E+07hours/yr avg. energy/hi 1.04E+02kcal/hr total energy expenditure=kcal/hr*hrs*4186J/Kcal = 1.58E + 13J/yTransformity 1.50E+07 sej/J 16 Labor FS Employees 8.14E+05hrs/yr NFS, 2005 USA emergy use (1.9E25 sej/yr)/ of 1.5 E8 Unit Emergy Value 6.30E+13sej/hr workers 17 Electricity 3.96E+05sq ft NFS, 2005 37000btu/ft2/yr EIA, 1992

enerøy=(1.46E+10btu/yr btu/yr)*(1055 j/btu)	
	1.54E+13J	
Transformity		Odum, 1996
	3.86E+05\$/yr	- ,
18 Payment for timber Unit Emergy	-	NFS, 2005
	1.90E+12sej/\$	CEP (2006)
19 Extracted Minerals Unit Emergy	6.44E+04\$/y	
	1.90E+12sej/\$	CEP (2006)
20 Fee Payments Unit Emergy	3.15E+06\$/yr	
	1.90E+12sej/\$	CEP (2006)
EXPORTS:		
21 Extracted Firewood	1	
mass	1.12E+10g	
energy=r	nass*15000j/g	
=	1.68E+14J/yr	
	3.60E+04sej/J	Brown and Bardi (2001)
22 Harvested Timber		
-	g*15000j/	
energy=g		USFS, 2006
= Transformity (w/o	1.44E+15J/yr	
	5.04E+04 sej/j	
23 Water, Chemical Po Total Export		
From Streams Chemical	2.74E+09m^3/yr	
	M^3/yr * 1000 kg/M^3 * 4940 J/kg	
÷	1.36E+16	
Transformity	sej/J	
24 Water, Geopotential	1	
Geopotential=	(volume)(elevation)(density)(gravity)	
elevation=	1250m	
joules =	3.36E+16	
Transformity	7.77E+04sej/J	
25 Minerals	1.07E+10g/yr	USFS, 2006
26 Hunting % Dry Weight for		
Wildlife	2.50E+01%	
Deer Extracted		ODFW, 2006
	5.70E+04g	
energy content		
	#*avg mass*(% dry weight)*J/g	
	2.31E+13J	
<i>MTB Draft</i> ~ 6/8/07		

Transformity= 6.74E+05sej/J Transformities based on sej in diet/joules of animal Emergy= 1.56E+19sej Elk Extracted 1.11E+02# **ODFW**, 2006 avg. mass 2.70E+05g energy content 4.78E+03J/g energy=#*avg mass*(% dry weight)*J/g = 3.58E + 12JTransformity= 4.29E+07sej/J Emergy= 1.56E+19sej 4.00E+00#/yr Bear Extracted **ODFW**, 2006 avg. mass 1.02E+05g energy content 6873.714J/g energy=#*avg massr*(% dry weight)*J/g energy=#*avg mass*(% dry weight)*J/g = 7.02E+08JTransformity= 2.29E+09sej/J Emergy= 1.61E+18sej Upland Game **ODFW**, 2006 **Birds** Extracted 8.00E+03#/yr avg. mass 2.52E+02g energy content 7.95E+03J/g energy=#*avg mass*(% dry weight)*J/g = 4.01E + 09JTransformity= 3.30E+08sej/J Emergy= 1.32E+18sej Mid-Sized Game 7.55E+02#yr **ODFW**, 2006 Extracted avg. mass 6.35E+03g energy content 4.78E+03J/g energy=#*avg mass*(% dry weight)*J/g = 5.73E + 09J/yrTransformity= 5.23E+07sej/J Emergy= 3.00E+17sej Ducks Extracted 5.33E+03#/yr **ODFW**, 2006 avg. mass 1.30E+03g energy content 8.83E+03J/g energy=#*avg mass*(% dry weight)*J/g = 1.53E + 10J/yrTransformity= 5.92E+08sej/J Emergy = 9.06E + 18sejGeese Extracted 1.30E+03#/yr **ODFW**, 2006 avg. mass 4.00E+03g energy content 1.55E+04J/g energy=#*avg mass*(% dry weight)*J/g = 2.02E + 10JTransformity= 3.50E+07sej/J Emergy= 7.06E+17sej Mountain Lion 4.00E+00#/yr **ODFW**, 2006 avg. mass 7.48E+04g energy content 5.08E+03J/g energy=#*avg mass*(% dry weight)*J/g

=	3.80E+08J
Transformity=	1.34E+10sej/J
Emergy=	5.11E+18sej
Sum of Emergy from Game	3.37E+19sej

27 Fishing

avg. mass	4.54E+09g of fish	assume avg weight $= 6$ lb	ODFW, 2006
energy content	e e	(4.5Cal/G*4187 J/cal)	
Energy Fish	C	×	
Caught	1.71E+13J	assume 20% dry weight	
Transformity=	1.68E+07sej/J		
28 Information	1.20E+04hours of res	earch	
Transformity	2.35E+14sej/hr		
total sej of	-		
research	2.82E+18sej		
29 Payments to State	8.46E+06\$/yr	NFS, 2005	
Unit Emergy			
Value	1.90E+12sej/\$	CEP (2006)	
Payments for			
30 Labor	1.28E+07\$/yr	NFS, 2005	
Unit Emergy			
Value	1.90E+12sej/\$	CEP (2006)	

APPENDIX E.2 Notes to Table 10 - Annual Emergy Flows Supporting Osceola National Forest

RENEWABLE RESOURCES:		
1.Solar Insolation		
Land Area	6.56E+08m^2	
Insolation	5.84E+09J/m^2/year	NASA SSE
Albedo	1.80E-01(% given as a decimal)	
Energy(J) =(a	area)*(avg insolation)*(1-albedo)	Gholz and Clark, 2000
	3.14E+18J	
Transformity	1.00E+00sej/J	Odum et.al, (2000)
2.Rain		· · · · · · · · · · · · · · · · · · ·
Chemical Potential		
Land Area	6.56E+08m^2	
Rain	1.241m/yr	NASA SSE
Total Volume Rain		
	olume*1000kg/m^3*4940J/kg	
=	4.02E+15	
Transformity		Odum et.al, (2000)
3.Transpiration	9.67E-01m/m^2/yr	Ghjolz and Clark, 2000
	/ol*1000Kg/m^3*4940J/kg	5
Rain ET Energy		
Transformity		Odum et.al, (2000)
4.Rain Geopotential	5	
Rain	1.241m/yr	NASA SSE
Mean Elevation Change1	•	
e e	6.56E+08m^2	
	area)(rainfall)(avg change in elevation)(d	ensity)(gravity)
=	7.98E+14J	ensity)(gravity)
_ Transformity	4.70E+04sej/J	Odum at al. (2000)
5.Wind, Kinetic	4.70E+04sejjj	Odum et.al, (2000)
J. wind, Kinetic Area	6.56E+08	
air density	1.30E+00kg/m^3	
avg annual wind velocity	3.02E+00mps	
Geostrophic wind	*	0.6 of goostrophic wind
Drag Coeff.	5.03E+00 observed winds are about 2.00E-03	t 0.0 of geostrophic white
	rea*density*dragcoef*Geos^3*3150000	00
Ellergy=a	1.32E+15	50
_ Transformity	2.45E+03sej/J	Odum (2000)
6.Hurricanes	2.451+0536/3	Odulii (2000)
Avg energy/storm	5.00E+05KCAL/m^2/day	Odum et al, 1983
avg hurricane freq.	1.00E-01/yr	Odum et al, 1965
percent energy that is	1.00E 01/yi	
kinetic	3.00E+00%	
percent of energy		
dispersed to land	1.00E+01%	
avg. residence time	1.00E+00day/year	
area	6.56E+08m^2	
	.1/yr*1yr/365 days*5e5Kcal/m^2/day*.0	003*area in m^2*4186J/kcal
=	1.13E+12j/yr	
Transformity	6.49E+03sej/J	Odum (2000)
7 Waves		

7.Waves

8.Tides None 9.Earth Cycle Heat Flow 3.30E+01miliwatts/m ² area 6.56E+08m ²
9.Earth Cycle Heat Flow 3.30E+01miliwatts/m ² IHFC, 2005
Heat Flow 3.30E+01miliwatts/m ² IHFC, 2005
energy=miliwatts/m^2*area*sec/yr
$1.04E + 06J/m^{2}$
energy= $6.83E+14J/yr$
Transformity 5.80E+04sej/J Odum (2000)
INDIGENOUS NONRENEWABLE RESOURCES: 10.Soil Loss 0.00E+00g/yr
Top Soil Loss 0.00E+00g/yr
Soil Gain 0.00E+00g/yr NFS, 2005
IMPORTS:
11.Petroleum Products
Forest Service Use 3.41E+03gal/yr
energy=gal*13e7j/gal
= 4.44E + 11J/yr
Contractor Use $5.04E+0.3gal/yr$
energy = 6.55E + 11J/yr NFS, 2005 Total Fuel Use 1.10E+12J/yr
Transformity 1.11E+05sej/J Odum, (1996)
12.Machinary, Equipment
FS 6vehicles
avg. mass 2.87E+07g/vehicle
avg. vehicle lifespan 2.00E+01yrs
use per y =mass*#vehicle/avg life *% of use on FS
mass used per year 8.62E+06g
Contractors9vehiclespercent of use on FS land33%
percent of use on FS land 33% use per y =mass*#vehicle/avg life *% of use on FS
g used per year 4.31E+06g
Total (FS and
Contractors) = 1.29E + 07g
Specific Emergy 1.13E+10 sej/g CEP (2006)
12 Miss. Conde $0.00E \cdot 00e/em$ NES 2005
13.Misc. Goods 0.00E+00g/yr NFS, 2005 (See note 18 below)
14.Replanting
Seedlings 1.00E+05seedlings
avg. mass 3.50E+00g/seedling
Total Mass= 3.50E+05g/yr
Total Cost= 8.93E+04\$/yr
Unit Emergy Value 1.90E+12sej/\$ CEP (2006)
15.Tourism
Tourist Time1.50E+05people/yrNFS, 2005average stay1.20E+01hrs
Total Hours of Stay 1.80E+06hours/yr
avg. energy/hr 1.04E+02kcal/hr
total energy
expenditure=kcal/hr*hrs*4186J/Kcal
= 7.84E+11J/y The second se
Transformity 1.50E+07 sej/J Brown and Bardi (2001)
<i>MTB Draft</i> ~ $6/8/07$ 152

16.Labor		
FS Contractors Total Labor Unit Emergy Value 17.Electricity	2.08E+04hrs/yr 2.02E+03hrs/yr 2.28E+04hrs/yr 6.30E+13sej/hr 18000\$/yr 0.0735\$/kwh	NFS, 2005
	2.43E+05kwh	
energy=k	xwh*3.6e6 J/kwh	
= Transformity Unaccounted for FS	8.76E+11J 2.92E+05	Odum (1996)
18.budget	1.06E+06\$/yr	
Total Budget for Osceola from FS	2.37E+06\$/yr	S. Kett (2006)
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
19.Services	4.20E+04\$/yr	NFS, 2005
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
20.Payment for timber	9.65E+05\$/yr	NFS, 2005
Unit Emergy Value Payments for Extracted	1.90E+12sej/\$	CEP (2006)
21.Minerals	0.00E+00\$/y	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
22.Fee Payments Unit Emergy Value	3.47E+04\$/yr 1.90E+12sej/\$	CEP (2006)
EXPORTS:	1.70L+1236/Φ	CEI (2000)
23.Misc. Products (Plants)	1.81E+06g/yr	NFS, 2005
energy=g	g*3.5kcal/g*4186J/Kcal	
= Transformity	2.66E+10joules 1.80E+04sej/J	Brown and Bardi (2001)
24.Extracted Firewood	1.002+0430/3	Drown and Dardi (2001)
mass	3.34E+03kg	
energy=r	nass*1000g/kg15000j/g	
= Transformity	5.01E+10J/yr	Drovum and Dandi (2001)
Transformity 25.Harvested Wood	3.60E+04sej/J 2.74E+10g/yr	Brown and Bardi (2001) NFS, 2005
	;*15000j/g	~ ,
	3.36E+14J/yr	
Transformity (w/o services)	5.04E+04	Brown and Bardi (2001)
26.Water Chemical Potential		(
Total Export From Streams	5.64E+07m^3/yr	
	$M^{3/yr} \approx 1000 \text{ kg/M}^3 \approx 4940 \text{ J/kg}$	
joules =	2.79E+14	
transformity Water Geopotential	3.06E+04	Odum, 1996
Water, Geopotential 27.Energy		
	(volume)(elevation)(density)(gravity)	
= Transformity	6.08E+12 7.77E+04cci/U	Drovum and Dandi (2001)
Transformity 28.Minerals - (none)	7.77E+04sej/J 0.00E+00g/yr	Brown and Bardi (2001)
29.Hunting	0.7-	
<i>MTB Draft</i> ~ 6/8/07		1:

% Dry Weight for		
Wildlife	2.50E+01%	
Deer Extracted	2.74E+02deer/y	
avg. mass	4.72E+04g/deer	
energy content	2.65E+04J/g	
	avg mass(% dry weight)*J/g	FEUGO
=	4.26E+10J/yr	FFWCC
Transformity=	5.84E+05sej/J	This study
Emergy=	2.48E+16sej	
Hog Extracted	4.40E+01hog/yr	FFWCC
avg. mass	5.67E+04g/hog	
energy content	2.72E+04J/g of hog	
	avg mass(% dry weight)*J/g	
= Troce of compilation	8.48E+09J/yr	This study
Transformity=	1.70E+07sej/J	This study
Emergy=	1.44E+17sej	FFWCC
Turkey Extracted	5.60E+01turkey/yr 8.16E+03g/turkey	FFWCC
avg. mass	2.84E+04J/g turkey	
energy content	*avg mass*(% dry weight)*J/g	
energy=#	1.62E+09J/yr	
Transformity=	6.11E+05sej/J	This study
Emergy=	9.93E+14sej	This study
Grey Squirrel Extracted	2.32E+02squirrel/yr	FFWCC
avg. mass	5.50E+02g	ii wee
energy content	2.32E+04J/g	
	avg mass(% dry weight)*J/g	
energy=#	3.70E+08J/yr	
Transformity=	2.24E+07sej/J	This study
Emergy=	8.29E+15sej	This study
Sum of Emergy from	0.27211000	
Game	1.78E+17sej	
Weighted Trans. For		
Game	3.36E+06sej/J	
30.Fishing	5.63E+04fish caught	(estimate)
avg. mass	4.54E+02g/fish	
energy content	1.88E+04J/g	
	avg mass(% dry weight)*J/g	
Energy Fish Caught	9.59E+10J	
Transformity=	1.68E+07sej/J	Brown and Bardi (2001)
31.Information	3.00E+00research groups/year	
average time spent	2.00E+01days/group	
total days spent \$ Spent by outside	6.00E+01days/yr	
researchers	6.00E+03\$/yr	
\$ Spent by NFS	5.00E+03\$/yr	
\$ spent for Research in	5.00E+05\$#,yi	
© Osceola	1.10E+04\$/yr	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
32.Image Exported with Touri		
Tourism Time in NF's	1.80E+06hrs	NFS, 2005
site area=	2.07E+02ha	CEP (2006)
	1.20E+00sites/visit	
ha/visit	2.48E+02ha	NFS, 2005
MTB Draft ~ 6/8/07		1

use/ha/hour	2.56E+11sej/ha/hr	
emergy of image		
exported	1.15E+20sej/yr	
Unit emergy value	6.37E+13sej/visitor hour	CEP (2006)
33.Payments to State	5.94E+05\$/yr	
Unit Emergy Value	1.90E+12sej/\$	
34.Payments for FS Labor	4.18E+05\$/yr	USFS, 2005
Payments for Contractor		
Labor	3.23E+04\$/yr	
Total Labor Payments	4.50E+05\$/yr	
Unit Emergy Value	1.90E+12sej/\$	

APPENDIX F.1 - Notes to Table 11. Emergy Value of Deshutes National Forest Assets ECOLOGICAL ASSETS (Natural Capital) 1 Tree Biomass 3.92E+07m^3 NFS, 2005 5.40E+02kg/m^3 mass=m^3*kg/m^3*1000g/kg 2.12E+13g = 4.50E+0CKcal/g of Tree Biomass energy=g*.8% dry weight*4.5kcal/g*4186J/kcal 3.19E+17J 3.62E+04 Transformity sej/J 2 Shrubs and Herbaceous 2.31E+06mt NFS, 2005 mass=tons*g/ton 2.31E+12g = energy=g*0.3% dry weight*3.5kcal/g*4186J/kcal 1.02E+16J Transformity 9.79E+03sej/J 3 Land Area 7.50E+05ha emergy of land structure 1.05E+15 sej/ha 4 Soil OM 7.25E+07m^3 OM massOM=m^3*1100kg/m^3(Bulk Density)*1000g/kg 7.98E+13g Energy=massOM* 5.4 kcal/g of OM * 4186 j/kcal 1.80E+18J Transformity 1.24E+04 sej/J 5 Ground Water Density of water 100Ckg/m3 **US GWA**, 2000 Gibbs Free energy of 494(J/kg water Volume 1.39E+09m3 energy=volume*1000kg/m^3*4940J/kg 6.87E+15J = transformity 2.79E+05sej/J 6 Surface Water 1.93E+09m^3 volume Density of water 100Ckg/m3 Buenfil (2001) Gibbs Free energy of water 494CJ/kg energy=volume*1000kg/m^3*4940J/kg 9.54E+15J Transformity 1.04E+06sej/J ECONOMIC ASSETS 7 Roads, Dirt 6.00E+03\$/mi 7.08E+03 4.25E+07value of dirt roads Unit Emergy Value 1.90E+12sej/\$ 2.59E+06m length 8 Roads, Gravel 5.49E+0Cm width depth= 1.02E-01m of gravel volume= 1.44E+06m³ of limerock NFS, 2005

MTB Draft ~ 6/8/07

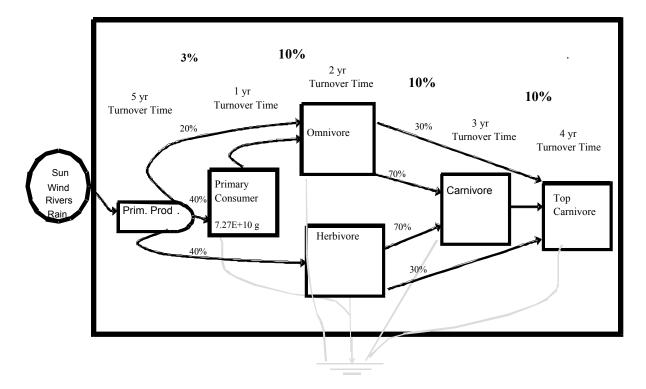
156

density=	1.39E+03kg/m ³ gravel	
mass gravel=m	1^3*kg/m^3*1000g/kg	
=	2.01E+12g	
value of gravel	5.00E+0C\$/ton	
	0.0011023kg/shrt ton	
Specific Emergy	1.68E+09sej/g	Odum, 1996
9 Paved Roads		
volume=	3.96E+05m^3 of asphalt	
density=	2.24E+03kg/m ³ asphalt	
mass asphalt=m	^3*kg/m^3*1000g/kg	
=	8.89E+11g	
Specific Emergy	2.77E+09 sej/g	Odum (1996)
10 Machinary	4.35E+06lbs	
-	4.54E+02g/lb	
mass machinary=lb	÷	NFS, 2005
=	1.97E+09g	
Specific Emergy	6	
11 Office Equipment	$1.50E + 01 kg/m^2$	CEP (2006)
	oldg area)* (kg/m^2) * $(1000g/kg)$	NFS, 2005
	5.93E+05g	,
Specific Emergy	6	
12 Buildings	3.96E+05m^2	CEP (2006)
total mass of materials		
Building Mass=		
Specific Emergy	-	
Energy Inputs (see calcs)=		
Emergy (see calcs)=	1.02E+21sej	
SOCIETAL ASSETS	1.02112150	
Info in Archeological		
13 Artifacts	1.03E+03# of Arch. Sites	NFS, 2005
Acres of Arch. Sites	1.61E+04acres	
density of Indian pop	1.45E+0CIndians/mi^2	
Estimate of avg Indian Pop	2.00E+03people	
e 1	500kcal/day*365 d/y*4186J/kcal	
Energy per capita	3.82E+09J/yr/Indian	
Yrs of cultural	·	
development	1.00E+03yrs	
Indian Info=In	idians on Des*energy/capita*yrs of cu	ltural dev.
Energy in Pop. Info	7.64E+15	
Transformity	1.24E+07sej/J	
14 Value of Critical Species		
Endangered/Threatened		
Species	6.00E+0C	NFS, 2005
Percent of pop	1.00%%	
average emergy per species	3.96E+24sej/species	
-	t of Spp)*(%of total Pop in FS land)*((Emergy to develop species)
Emergy in Critical Species	2.37E+23sej	

Tree Biomass	atural Capita 4.02E+06		NFS	, 2005
	4.02E+00 5.90E+02		INF O	, 2005
mace-r	n^3*kg/m^3			
=	2.37E+12	00		
		Kcal/g of Tree Bic	mass	
enerov=c	3*4.5kcal/g*	-	mass	
	4.46E+16			
Transformity		•	Broy	wn and Bardi (20
2 Shrubs	1.36E+06	•		, 2005
Sindos	9.07E+05		1110	, 2005
mass=t	ons*g/ton	0 /01		
=	1.23E+12	g		
Herbaceous Cover	2.71E+06	6		
-	ons*g/ton			
=	2.46E+12	g		
Shrub/Herb Total	3.69E+12	6		
energy=g	*3.5kcal/g*	•		
=	5.41E+16			
Transformity	9.79E+03	sej/J	Broy	vn and Bardi (20
3 Land Area	6.54E+04	5		× ×
Emergy of land =	1.05E+15	sej/ha	Odu	m,(1996)
Soil OM		5		
	Area	Depth of Topsoil	Volume	Organic Matter
Soil Storages	(m^2)	(m)	(m^3)	(m ³)
B Class (6% org)	3.7 E+08	0.508	1.87 E+08	11.28 E+06
C&D Class (2.5% org)	1.8 E+08	0.508	9.38 E+08	23.45 E+06
H Class (40% org)	6.8 E+08	0.9144	622 E+08	24.89 E+06
11 Class (40 /0 01g)				
TOTAL				38.51 E+06
TOTAL	n^3*1100kg	/m^3(Bulk Densit		
TOTAL	n^3*1100kg 4.24E+13	/m^3(Bulk Densit		
TOTAL massOM=r =	4.24E+13		y)*1000g/k	
TOTAL massOM=r =	4.24E+13	g kcal/g of OM * 4	y)*1000g/k	
TOTAL massOM=r = Energy=r	4.24E+13 nassOM* 5.4 3.47E+17	g kcal/g of OM * 4 J	y)*1000g/k; 186 j/kcal	
TOTAL massOM=r = Energy=r = Transformity	4.24E+13 nassOM* 5.4 3.47E+17	g kcal/g of OM * 4 J sej/J	y)*1000g/k 186 j/kcal Brov	g
TOTAL massOM=r = Energy=r = Transformity 5 Peat	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06	g kcal/g of OM * 4 J sej/J	y)*1000g/k 186 j/kcal Brov FFS	g vn and Bardi (20
TOTAL massOM=r = Energy=r = Transformity 5 Peat	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density)	y)*1000g/k 186 j/kcal Brov FFS	g vn and Bardi (20
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r =	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density)	y)*1000g/k 186 j/kcal Brov FFS	g vn and Bardi (20 , U of F
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r =	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12	g kcal/g of OM * 4 J sej/J im^3 n^3(Bulk Density) g 4 kcal/g of OM*10	y)*1000g/k 186 j/kcal Brov FFS	g vn and Bardi (20 , U of F
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r =	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5.4	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41	g vn and Bardi (20 , U of F
TOTAL massOM=r = Energy=r = Transformity Peat mass Peat OM=r = Energy=r = Transformity	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5. 2.85E+16	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 6 Peat mass Peat OM=r = Energy=r = Transformity	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5. 2.85E+16 3.09E+05	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r = Energy=r = Transformity 5 Ground Water	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5. 2.85E+16 3.09E+05	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J sej/J	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 6 Peat mass Peat OM=r = Energy=r = Transformity 6 Ground Water Density of water	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5. 2.85E+16 3.09E+05	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J sej/J kg/m3 J/kg	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 6 Peat mass Peat OM=r = Energy=r = Transformity 6 Ground Water Density of water Gibbs Free energy Volume	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5.4 2.85E+16 3.09E+05 1000 4940 1.05E+10	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J sej/J kg/m3 J/kg	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41 Brov	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r = Energy=r = Transformity 6 Ground Water Density of water Gibbs Free energy Volume	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5.4 2.85E+16 3.09E+05 1000 4940 1.05E+10	g kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J sej/J kg/m3 J/kg m3)kg/m^3*4940J/kg	y)*1000g/k 186 j/kcal Brov FFS) 000g/kg* 41 Brov	g vn and Bardi (20 , U of F 86 J/kcal
TOTAL massOM=r = Energy=r = Transformity 5 Peat mass Peat OM=r = Energy=r = Transformity 6 Ground Water Density of water Gibbs Free energy Volume energy=v	4.24E+13 nassOM* 5.4 3.47E+17 1.24E+04 3.15E+06 n^3*400kg/r 1.26E+12 nassPeat* 5. 2.85E+16 3.09E+05 1000 4940 1.05E+10 colume*1000 5.19E+16	kcal/g of OM * 4 J sej/J m^3 n^3(Bulk Density) g kcal/g of OM*10 J sej/J kg/m3 J/kg m3 Jkg/m^3*4940J/kg	y)*1000g/kg 186 j/kcal Brov FFS) 000g/kg* 41 Brov	g vn and Bardi (20 , U of F 86 J/kcal

7 Surface Water		
volume	1.04E+08m^3	
Density of water	1000kg/m3	
Gibbs Free energy of	0	
water	4940J/kg	
energy=v	olume*1000kg/m^3*4940J/kg	
energy=	5.14E+14J	
Transformity	1.04E+06sej/J	Brown and Bardi (2001)
ECONOMIC ASSETS	,	
8 Roads, Dirt	3.19E+06\$	
Unit Emergy Value	1.90E+12sej/\$	CEP (2006)
9 Roads, Gravel	3.40E+05m length	NFS, 2005
,	3.66E+00m width	,
area=	1.24E+06m^2	
	1.50E-01m of gravel	
volume=	-	
density=	1.39E+03kg/m ³ gravel	
•	n^3*kg/m^3*1000g/kg	
	2.60E+11g	
Specific Emergy	1.68E+09sej/g	Odum (1996)
10 Paved Roads	1.72E+05m	Odulli (1990)
	1.12E+06m^2	
depth=		
volume=		
	1	
density= mass gravel calculated	2.24E+03kg/m ³ asphalt	
as above		
grave	4.68E+11g	
e	n^3*kg/m^3*1000g/kg	
asphalt	6.38E+10g	
total mass	5.32E+11g	
	2.77E+09 sej/g	Odum (1996)
11 Machinary	3.80E+05lbs	
11 Machinary	4.54E+02g/lb	
mass machinary=1	6	
–	1.72E+08g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
12 Office Equipment	5.68E+05lbs	CEI (2000)
12 Onlee Equipment	4.54E+02g/lb	
mass office	4.34E+02g/10	
equipment=1	bs*g/lb	
=	2.58E+08g	
Specific Emergy	1.13E+10 sej/g	CEP (2006)
13 Buildings	50	
building area	3.52E+03m^2	Kett, 2005
mass per m^2s		,
emergy=	2.54E+18sej	
14 Phosphorus	9.07E+13g	USGS (1978)
value	2.27E+09\$	
	4.54E+09 sej/g	Odum, (1996)
	30	, , , - ,

CULTURAL ASSETS		
Info in Archeological		
15 Artifacts	3.21E+02# of Arch. Sites	USFS, 2005
Acres of Arch. Sites	3.90E+06M^2	
density of Timucuan		
рор	1.04E+01Indians/mi^2	
Estimat of Timucuan		
on Osc.	2.64E+03people	
energy per capita=25	500kcal/day*365 d/y*4186J/kcal	
=	3.82E+09J/yr/Indian	
Years of cultural		
development	-	
Timucuan Info=In	dians on Osc*energy/capita*yrs of	cultural dev.
Energy in Pop. Info	1.01E+16	
Transformity	1.24E+07sej/J	
16 Value of Critical Species		USFS, 2006
Red Cockaded		
Woodpecker	1.68E+02ind.	
Percent of pop	1.79E+00%	
Florida Black Bear	8.00E+01ind.	
Percent of pop	5.33E+00%	
Wood Stork	2.50E+01ind.	
Percent of pop	2.27E-01%	
Avg. Emergy of a		
Species	3.96E+24sej	
Em. In critical species=%	of total Pop. On Osc.*Em. Require	d to develop species
Emergy in Critical Spp	2.91E+23sej	* *
	5	


APPENDIX G - Fauna on USFS Lands

In calculating fauna biomass the concepts of trophic efficiency and turnover time were utilized to obtain an estimate for storage within the USFS system. Estimates for the storage of primary producers on USFS lands were available from USFS documents (USFS, 2004) and these numbers were used as the basis for consumers in the system. The primary production system is assumed to have an average turnover time of 5 years and a trophic energy transfer efficiency of 3%. The energy then transfers through consumption into primary, secondary, and tertiary consumers (see Fig. G.1 and Table G.1). All consumer trophic levels have an energy transfer efficiency of 10%, but have varying turnover times and flow paths (see Figure G.1), resulting in different emergy storages in the system.

Note	Item	Units	Quantity ^{1a}	UEV	Emergy
1	Primary Producer	g	5.43E+15	7.61E+07	4.14E+23
	Primary Consumer	-			
2	(Insects)	g	1.30E+13	6.34E+09	8.27E+22
3	Herbivore	g	2.61E+13	6.34E+09	1.65E+23
4	Omnivore	g	1.43E+13	1.15E+10	1.65E+23
5	Carnivore	g	4.24E+12	5.85E+10	2.48E+23
6	Top Carnivore	g	2.99E+12	1.11E+11	3.31E+23
					~
Note					Source
1	Primary Producer Storage				
	Tree Biomass	5.13E+15	g		Pugh, 2004
	Shrub/Herb Biomass	2.98E+14	g		COLE, 2005
	total PP Storage in NF's=	5.43E+15	g		
	turnover time	5	yrs		estimate
2	Drimory Consumar Starage				
2	Primary Consumer Storage Trophic Efficiency	3	%		
	percentage of PP	3	70		
	consumed by Primary				
	consumers	40	%		estimate
	Turnover Time of PC	1	yr		estimate
	Primary Consumers in	1	J -		
	NF's=	3%*40%*5	5.43E15 g PP/ 5	yr TT * 1yr S	torage
	=	1.30E+13	-		2
			-		

Table G.1. Storage of Biomass on USFS Lands

3	Herbivore Storage Trophic Efficiency Percentage of PP consumed by Herbivores Turnover Time of Herbivores Herbivore Storage in NF's=	40 2	% % yrs 5.43E15 g PP/5 yr TT * 2 yrs	estimate estimate Storage
	=	2.61E+13	g	
4	Omnivore Storage Trophic Efficiency from P P Trophic Efficiency from	3	%	
	PC	10	%	
	Percentage of PP consumed by Omnivores	20	%	estimate
	Percentage of PC consumed by Omnivores Turnover Time Omnivore Storage in NF's= =	(3%*20%*	yrs 5.43E15 g PP/5 yr TT + 10% Γ)* 2yrs Storage	estimate estimate * 6.52E13 g
5	Carnivore Storage Trophic Efficiency from Omnivores, Herbivores Percentage of Omnivores and Herbivores consumed Turnover Time Carnivore Storage on NF's=	70 3 (10%*2.61 Omni * *7	% yrs E13 g Herb * 70%/2 yr TT + 1 0%/ 2 yr TT)*3 yrs storage g	estimate estimate 0% * 1.43E13 g
6	Top Carnivore Trophic Efficiency Percentage of Omnivores and Herbivores consumed Percentage of Carnivores Consumed Turnover Time	30 100 4 (10%*2.61	yrs E13g Herb * 30%/ 2 yr TT + 1	
	Top Carnivore Storage on NF's= =	Omni * 30 storage 2.99E+12	%/ 2 yr TT+ 4.23E12 g Carn./. g	5 yr 11)*4 yr

Trophic Transfers Determining Fauna Storage

Figure G-1. Energy Transfer Across Trophic Level. Numbers that are **bolded** represent trophic efficiencies, numbers on pathways represent the percent of transfer from each trophic level to the next.

APPENDIX H - Emergy of Endangered Species

The emergy of a species is equal to the emergy that was required for the evolution of that species from its closest relative. The process of natural selection is captured in the genetic information of a species. Only the emergy of endangered species was quantified in this study because the emergy value represents the potential environmental work that will be lost if those species go extinct. An average value for emergy required to develop a species was estimated as follows: First, an average value for turnover time of species (Weir, 2007), 3 million years, and a median estimate for total number of species (10 million) was used. The renewable emergy budget of the globe was multiplied by three million and then divided by the 10 million species to obtain an estimate of emergy required per species (see Table H.1 note 1). There are approximately 496 endangered species supported by USFS lands and the USFS comprises 3.17% of the North American continent. The emergy per species was multiplied by these values to obtain an estimate for emergy embodied in the endangered species inhabiting USFS lands. A further improvement to the calculation could be made by looking at inhabitation on a per species basis to estimate how significant USFS lands are in provision of habitat. Ideally the evolutionary history and required habitat for development of each species would be analyzed in order to make a specific estimate for emergy required to develop the species.

Not e	Item	Units	Quantity	Emergy Intensities (sej/unit)	Solar Emergy (x10 ²¹ sej)	EmDollars (x10 ⁹ Em\$)
1	Endangered Species	# of species	4.96E+02	2.26E+22	62224.6	32749.8
No	1 Value of Critical Spe Endangered Sp Percent of emergy per spec Emergy in Cr	ecies 4.96E+0 f pop 3.17%	of Dev.*15.8 4 sej/ ecies)*(%of to	(% of Contine 33E24 sej/yr)/1 /species otal Pop in FS	USI ental Area) 0E6 species	urce FWS, 2006 equired to

sej

= 6.22E+25

Table H.1 Emergy of Endangered Species on USFS Lands

APPENDIX I – Emergy Evaluation of Game Hunting on USFS Lands

Estimates for harvested wildlife were based on a USFS document from 2002 that provided estimates for hours of hunting spent on US public lands. From this an estimate was made for number of game taken per hour, based on literature values (USFW). These values were then multiplied by 28.7%, the percentage of US public lands that are National Forests, to obtain an estimate for game taken from USFS lands. These estimates could have been improved if data was available for individual states, and if harvest data was taken for individual species rather than categories. This data may be available on an individual state basis but does not appear to exist in a national database as public information.

Note	Item	Units1	Quantity		
		C III C I	Quality	UEV	Emergy
1	Big Game	J	4.21E+16	9.90E+05	4.17E+22
2	Small Game	J	9.92E+15	1.20E+05	1.19E+21
3	Migratory Birds	J	2.92E+13	1.01E+05	2.95E+18
4	Other	J	1.57E+13	1.50E+05	2.35E+18
Notes					Source
	% Dry Weight for	2.50E+01	%		
	Wildlife				
1	Big Game Extracted	1.58E+06	Big		
	C		Game/y		
	avg. mass	5.68E+04	g/Game		
	energy content	1.88E+04	J/g		estimate
	energy=		*(avg mass)	*(% drv wei	
	v=	4.21E+16	J/yr	(, , , , , , , , , , , , , , , , , , ,	USFWS, 2002
	Transformity=	9.90E+05	sej/J		Brown et al, 200
	Emergy=	4.17E+22	sej		Dio wii et ui, 200
2	Small Game Extracted	6.38E+06	Small		USFWS, 2002
4		0.501+00	Game/yr		001 WD, 2002
	91/0 m999	3.30E+03	g/animal		
	avg. mass	1.88E+04	-		
	energy content		J/g	*(0/ 1	(-1,4)*(1/-)
	energy=	· · · · · · · · · · · · · · · · · · ·	*(avg mass)	(% dry we	ignt)*(J/g)
	=	9.92E+15	J/yr		D 1 000
	Transformity=	1.20E+05	sej/J		Brown et al, 200
	Emergy=	1.19E+21	sej		
3	Migratory Birds	4.78E+06	#/yr		USFWS, 2002
	Extracted				
		1.30E+03	g/bird		

Table I.1 Yearly Game Extracted From FS Lands

	energy content	1.88E+04	J/g	
	energy=	(#Game/yr)	*(avg	mass)*(% dry weight)*(J/g)
	=	2.92E+13	J/yr	
	Transformity=	1.01E+05	sej/J	Brown et al, 2005
	Emergy=	2.95E+18	sej	
4	Other Species	5.25E+05	#/yr	USFWS, 2002
	Extracted			
	avg. mass	6.35E+03	g	
	energy content	1.88E+04	J/g	
	energy=	(#Game/yr)	*(avg	mass)*(% dry weight)*(J/g)
	=	1.57E+13	J/yr	
	Transformity=	1.50E+05	sej/J	Brown et al, 2005
	Emergy=	2.35E+18	sej	

APPENDIX J - Emergy of Native American Cultural Information

The emergy embodied in Native American Artifacts is based on an assumed period of cultural innovation. It was assumed that the bulk of cultural innovation occurs over the first ten generations of a culture's development and then traditions are passed down over time. We estimated the average lifespan of Native Americans pre-colonization as 25 yrs, so ten generations equals 250 years. The estimate for the population of Native Americans on USFS lands was made using a population density map (Figure J.1). To obtain the emergy driving the system the time of cultural development were multiplied by the current renewable emergy driving the USFS (this assumes climatic conditions were similar during development). The emergy driving the civilization is then divided by the joules expended over that time period to obtain a transformity (see note 1). Further improvements on this calculation are possible with more extensive research into cultural development periods, which would likely require isolating populations and performing tailored calculations for each population. Accounting for cultural turnover and rate of cultural information innovation would improve the calculation. This is a fertile area for future research, merging emergy and anthropology.

				Emergy		EmDollars
		Uni		Intensities	Emergy	$(x10^{9})$
Note	Item	ts	Quantity	(sej/unit)	$(x10^{21}sej)$	Em\$)
1	Information Value of Artifacts	J	1.15E+18	1.89E+07	21728.1	11435.8

Table J.1 Emergy of Native American Cultural Information

Note	Source
1 Emergy of Cultural Information	
Native Americans on FS lands	
(peak)	1.20E+06 people estimate
energy per capita=	(2500Cal/day)*(365 d/y)*(4186J/Cal)
=	3.82E+09 J/yr
Yrs to develop information	2.50E+02 estimate
Energy of Population=	(population)*(J/yr/Indian)*(year)
=	1.15E+18 J
Renewable Emergy Budget	8.67E+22 sej/yr
	(Yrs. Of Development)*(Renewable Emergy per
Native American Info=	year)
Energy embodied in Pop. Info	2.17E+25 sej
Transformity =	Emergy of information / energy of population
=	1.89E+07 sej/J

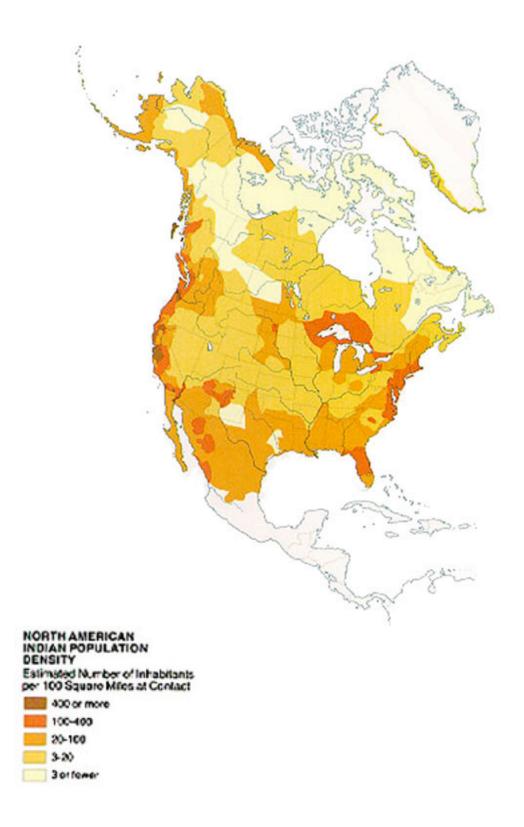


Figure J.1 Native American Population Density Estimate

APPENDIX K: Emergy in USFS Buildings

Some methods of emergy synthesis have been improved in the course of completion of this thesis. A previous evaluation of emergy content of buildings, <u>Evaluation of Recycling and Reuse of Building Materials Using the Emergy Analysis Method</u>, by V. Buranakarn completed in 1998, is the basis for the emergy in USFS buildings calculation. The material, energy and labor data in Buranakarn's study were updated using newer emergy intensities. In this way only the square meters of floor must be known for an estimate to be made for the emergy of the entire building. The square meters of floor are multiplied by the emergy value for each building component per m^2 for an estimate of the emergy embodied in the building. These estimates are based on the assumption of a two story office building. This calculation could be improved by obtaining standards for buildings of different heights and uses. Table A.1 shows the mass per m^2 values of building components, the Unit Emergy Values, and the Emergy per m^2 of the component. Table A.2 shows the calculation used to determine the emergy of USFS buildings.

Note	Item	Units	units per m^2	Emergy Intensity	Emergy Density (per m^2)
1	Cement	g	3.72E+04	3.70E+09	1.38E+14
2	Concrete	g	2.81E+04	2.12E+09	5.96E+13
3	Masonry, 8" CMU	g	9.29E+04	2.27E+09	2.11E+14
4	Masonry, 4" tile brick	g	2.98E+04	3.90E+09	1.16E+14
5	Structural Steel	g	1.42E+04	2.99E+09	4.24E+13
6	other metals	g	3.41E+04	2.99E+09	1.02E+14
7	Glass	g	8.26E+02	3.19E+09	2.64E+12
8	Dry Wall	g	1.01E+05	3.44E+09	3.49E+14
9	Vinyl tile, carpet	g	1.26E+04	9.86E+09	1.25E+14
10	Paint	g	4.55E+03	2.55E+10	1.16E+14
11	Electrical System	g	1.51E+03	1.13E+10	1.70E+13
12	Elevators	g	5.74E+03	1.13E+10	6.46E+13
13	HVAC	g	1.39E+04	1.13E+10	1.56E+14
14	Fire System	g	4.50E+03	1.13E+10	5.06E+13
15	Plumbing System	g	3.32E+03	1.13E+10	3.74E+13
16	Furnishings	g	1.34E+04	7.88E+09	1.05E+14
17	Water	j	4.93E+05	8.06E+04	3.98E+10
18	Fuel	j	5.97E+08	1.11E+05	6.62E+13
19	Electricity	j	4.73E+08	2.92E+05	1.38E+14
20	Machinery	g	1.48E+04	1.13E+10	1.66E+14
21	Labor	\$	5.25E+02	1.00E+12	5.25E+14

Table K-1. Emergy of Building Components on USFS Lands

Notes	to	Table	K-1
110105	ιU	1 4010	17 1

1 Cement

```
Sources
```

(4015 sq ft)(20 lb/sq ft)(454 g/lb)						
	=	36456200	g			
Specific Emergy		3.70E+09	sej/g	cement	Buranakarn, 1998	
<i>MTB Draft</i> ~ 6/8/07						

2	Concrete		(405 cu. Yd.)	(150 lb/cu.yd.)(454 g/lb)	
	Specific Emergy	=	27590500 2.12E+09		Buranakarn, 1998
3	Masonary, 8" CMU		(4015 sq. ft.)((50 lb/sq. ft.)(454 g/lb)	
	Specific Emergy	=	91140500 2.27E+09	g	Buranakarn, 1998
4	Masonary, 4" tile bri	ck			
	Specific Emergy	=	(4015 sq. ft.)(2916490 3.90E+09	6	Buranakarn, 1998
5	Structural Steel		(30560 lb)(45		
	Specific Emergy	=	13874240 2.99E+09	6	Odum, 1996
6	Other Metals			d)(454 g/lb)+(8153 lb metals)(454 g/lb)
	Specific Emergy	=	33512918 2.99E+09	g sej/g	Steel, Odum 1996
7	Glass			(1.64 lb/sq. ft. 1/8")(454	
	Specific Emergy	=	g/lb) 810081.28 3.19E+09		Buranakarn, 1998
8	Drywall		(2 sides)(10 l)	b/sg ft)(10044 sg ft)(454 g	(11.)
		=	99371520	b/sq. ft.)(10944 sq. ft.)(454 g ^g .,	
	Specific Emergy		3.44E+09	sej/g	Haukoos, 1995
9	Vinyl tile and carpet		· .)(2.5 lb/sq. ft.)(454 g/lb)	
	Specific Emergy	=	12371500 9.86E+09		Buranakarn, 1998
10	Paint		(2, (1, 1), (100))	44	(0, 11, / 1) (<i>A5</i> , A /11.)
		=	4464074.4		
	Specific Emergy		2.55E+10	sej/g	Buranakarn, 1998
11	Electrical System		(3252 lb)(454		
MTB	Specific Emergy Draft ~ 6/8/07	=	1476408 1.13E+10		machinery, Odum 1996 170

12	Elevators		(12400 lb)(45	54 g/lb)	
	Specific Emergy	=	562900 1.13E+10	g	machinery, Odum 1996
13	HVAC		g/lb)	3380 lb)+(7*1869 lb)}(454	
	Specific Emergy	=	13647240 1.13E+10		machinery, Odum 1996
14	Fire System		(9720 lb)(454	⊦g/lb)	
	Specific Emergy	=	326880 1.13E+10	e	machinery, Odum 1996
15	Plumbing		(7200 lb)(454	ه/lb)	
	Specific Emergy	=	3268800 1.13E+10	g	machinery, Odum 1996
16	Furnishings		(28750 lb)(45		
	Specific Emergy	=	13052500 7.88E+09		Burnanakarn, 1998
17	Water)(15 mo)(8 lb/gal)(454 g/lb)	(4.94 J/g)
	Transformity	=	484436160 8.06E+04		Odum, 1996
18	Fuel		(4447.4 gal)(J/Btu)	125000 Btu/gal)(1054	
	Transformity	=	5.89E+11 1.11E+05		Odum, 1996
19	Electricity				
			mo)*7700 kv kWh last mo)	9 kWh/mo trailer)+(14 wh/mo building+(14700 }(3.6E6 J/kWh)	
	Transformity	=	4.36E+11 2.92E+05		Odum, 1996
20	Machinery Average age of machinery Life expectancy		4.3 5	yrs yrs	
			5	<i></i>	

	lb/backhoe/2 2*15000 lb/fd lb/truck/12 m mo 10000+1500- 31833 lb (31833 lb)(45 14452182	g	0.1
Specific Emergy	1.13E+10	sej/g	Odum, 1996
21 Labor			
	(515252 \$/15	mo)	
=	515252		
Transformity	1.00E+12	sej/\$	Odum, 1996
22 Yield of Commercial Bu	ilding (g)	f 15	
	(390233922 g mo)	g 01 13	
_	390233922	a	
_	35801.277	6	
	397791.969	6 1	
23 Yield of Commercial Bu		g/sq m	
2.5 Tield of Commercial De	(10900 sq. ft))	
_	· •		
=	10900	sq It	
Yield of Commercial Bu 24 m)	uilding (sq.		
,	(10900 sq. ft)	0.009 sq. m/sq. ft_	
=	-	sq. m	
		*	
Table A.2 Emergy of USFS	Buildings		

Building Area= 2.79E+06 m^2

Note	Item	Unit	Units Per	Input	Emergy	Emergy
1			m^2	Resource	Intensity	2.025.20
1	Cement	g	3.72E+04	1.04E+11	3.70E+09	3.83E+20
2	Concrete	g	2.81E+04	7.84E+10	2.12E+09	1.66E+20
3	Masonry, 8" CMU	g	9.29E+04	2.59E+11	2.27E+09	5.87E+20
4	Masonry, 4" tile brick	g	2.98E+04	8.30E+10	3.90E+09	3.23E+20
5	Structural Steel	g	1.42E+04	3.95E+10	2.99E+09	1.18E+20
6	other metals	g	3.41E+04	9.52E+10	2.99E+09	2.85E+20
7	Glass	g	8.26E+02	2.30E+09	3.19E+09	7.35E+18
8	Dry Wall	g	1.01E+05	2.82E+11	3.44E+09	9.73E+20
9	Vinyl tile, carpet	g	1.26E+04	3.52E+10	9.86E+09	3.48E+20
10	Paint	g	4.55E+03	1.27E+10	2.55E+10	3.24E+20
11	Electrical System	g	1.51E+03	4.21E+09	1.13E+10	4.73E+19
12	Elevators	g	5.74E+03	1.60E+10	1.13E+10	1.80E+20
13	HVAC	g	1.39E+04	3.87E+10	1.13E+10	4.35E+20
14	Fire System	g	4.50E+03	1.25E+10	1.13E+10	1.41E+20
15	Plumbing System	g	3.32E+03	9.27E+09	1.13E+10	1.04E+20
16	Furnishings	g	1.34E+04	3.72E+10	7.88E+09	2.93E+20
17	Water	j	4.93E+05	1.38E+12	8.06E+04	1.11E+17
18	Fuel	j	5.97E+08	1.67E+15	1.11E+05	1.85E+20
19	Electricity	j	4.73E+08	1.32E+15	2.92E+05	3.85E+20
20	Machinery	g	1.48E+04	4.12E+10	1.13E+10	4.64E+20
21	Labor	g \$	5.25E+02	1.46E+09	1.90E+12	2.78E+21
					sum=	7.21E+21

Table K-2. Emergy of USFS Buildings

Notes t	to Table K-2			Source
1	Cement			
		3.72E+04	g/m^2	Buranakarn, 1998
	USFS Building	2 705 .06	A 2	
	Area	2.79E+06		
			m ² USFS Buildings	
		1.04E+11	e	
	Specific Emergy	3.70E+09	sej/g	Buranakarn, 1998
2	Concrete			
	units per m ²	2.81E+04	g/m^2	Buranakarn, 1998
	USFS Building			
	Area	2.79E+06		
	mass=	mass/m^2*	m^2 USFS Buildings	
	=	7.84E+10	g	
	Specific Emergy	2.12E+09	sej/g	Buranakarn, 1998
2	Masonry, 8"			
3	CMU			
	units per m ²	9.29E+04	g/m^2	Buranakarn, 1998
	USFS Building	2 705 .06	m ^ 2	
	Area	2.79E+06	III''Z	

	mass=	mass/m^2*	m ² USFS Buildings	
		2.59E+11		
	Specific Emergy	2.27E+09	sej/g	Buranakarn, 1998
4	Masonry, 4" tile brick			
	units per m ² USFS Building	2.98E+04	g/m^2	Buranakarn, 1998
	Area	2.79E+06	m^2	
	mass=	mass/m^2*	m ² USFS Buildings	
	=	8.30E+10	g	
	Specific Emergy	3.90E+09	sej/g	Buranakarn, 1998
5	Structural Steel			
	units per m ² USFS Building	1.42E+04	g/m^2	Buranakarn, 1998
	Area	2.79E+06	m^2	
	mass=	mass/m^2*	m ² USFS Buildings	
	=	3.95E+10	g	
	Specific Emergy	2.99E+09	sej/g	Odum, 1996
6				
	units per m ² USFS Building	3.41E+04	g/m^2	Buranakarn, 1998
	Area	2.79E+06	m^2	
			m ² USFS Buildings	
		9.52E+10	÷	
	Specific Emergy	2.99E+09	sej/g	Steel, Odum 1996
7	Glass			
·	units per m ²	8.26E+02	g/m^2	Buranakarn, 1998
	USFS Building Area	2.79E+06	m^2	
			m ² USFS Buildings	
		2.30E+09		
	Specific Emergy		÷	Buranakarn, 1998
	18)	,	30	
8	Dry Wall			
	units per m ² USFS Building	1.01E+05	g/m^2	Buranakarn, 1998
	Area	2.79E+06	m^2	
	mass=	mass/m^2*	m ² USFS Buildings	
		2.82E+11	g	
	Specific Emergy			Buranakarn, 1998
			-	
9	Vinyl tile, carpet			
	units per m ²	1.26E+04	g/m^2	Buranakarn, 1998
	USFS Building	1 70E.06	m \$ 2	
	Area	2.79E+06		
	mass=		m ² USFS Buildings	
	=	3.52E+10	g	

	Specific Emergy	9.86E+09	sej/g	Buranakarn, 1998	
10	Paint				
	units per m ² USFS Building	4.55E+03	g/m^2	Buranakarn, 1998	
	Area	2.79E+06	m^2		
			n^2 USFS Buildings		
	= Specific Emergy	1.27E+10 2.55E+10	6	Buranakarn, 1998	
				,	
11	Electrical System				
	units per m ²	1.51E+03	g/m^2	Buranakarn, 1998	
	USFS Building Area	2.79E+06	m^2		
			n^2 USFS Buildings		
		4.21E+09	÷		
	Specific Emergy	1.13E+10	sej/g	machinery, Odum	1996
12	Elevators				
	units per m ²	5.74E+03	g/m^2	Buranakarn, 1998	
	USFS Building Area	2.79E+06	m^2		
			n^2 USFS Buildings		
		1.60E+10			
	Specific Emergy	1.13E+10	sej/g	machinery, Odum	1996
13	HVAC				
	units per m ²	1.39E+04	g/m^2	Buranakarn, 1998	
	USFS [®] Building Area	2.79E+06	m^2		
	mass=	mass/m^2*n	n^2 USFS Buildings		
	=		6		1006
	Specific Emergy	1.13E+10	sej/g	machinery, Odum	1996
14	Fire System				
	units per m ²	4.50E+03	g/m^2	Buranakarn, 1998	
	USFS Building				
	Area	2.79E+06	m^2		
			n^2 USFS Buildings		
		1.25E+10	6		1007
	Specific Emergy	1.13E+10	sej/g	machinery, Odum	1990
15	Plumbing System				
	units per m ² USFS Building	3.32E+03	g/m^2	Buranakarn, 1998	
	Area	2.79E+06			
	mass=		n^2 USFS Buildings		
	= Spacific Emorgy	9.27E+09	6	machinamy Ody	1006
MTB Dra	Specific Emergy <i>uft</i> ~ 6/8/07	1.13E+10	פרויג גרויג	machinery, Odum	1996 175

10	Furnishings		
10	units per m ² USFS Building	1.34E+04 g/m^2	Buranakarn, 1998
	Area	2.79E+06 m^2	
		mass/m ² *m ² USFS Buildings	
		3.72E+10 g	
	Specific Emergy	7.88E+09 sej/g	Buranakarn, 1998
17	Water		
	units per m ² USFS Building	4.93E+05 g/m ²	Buranakarn, 1998
	Area	2.79E+06 m^2	
		mass/m ² *m ² USFS Buildings	
		1.38E+12 g	
	Transformity	8.06E+04 sej/g	Odum, 1996
18	Fuel		
	units per m ² USFS Building	5.97E+08 g/m ²	Buranakarn, 1998
	Area	2.79E+06 m^2	
		mass/m ² *m ² USFS Buildings	
		1.67E+15 g	
	Transformity	1.11E+05 sej/g	Odum, 1996
19	Electricity		
	units per m ² USFS Building	4.73E+08 g/m ²	Buranakarn, 1998
	units per m^2 USFS Building Area	4.73E+08 g/m ² 2.79E+06 m ²	Buranakarn, 1998
	USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings	Buranakarn, 1998
	USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g	
	USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g	Buranakarn, 1998 Odum, 1996
20	USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g	
20	USFS Building Area = Transformity Machinery units per m^2	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g	
20	USFS Building Area = Transformity Machinery	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g	Odum, 1996
20	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ²	Odum, 1996
20	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area mass= =	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g	Odum, 1996
20	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g	Odum, 1996
20	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area mass= =	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g	Odum, 1996 Buranakarn, 1998
	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area = Specific Emergy Labor units per m^2	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g	Odum, 1996 Buranakarn, 1998
	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area = Specific Emergy Labor units per m^2 USFS Building	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g 1.13E+10 sej/g 5.25E+02 g/m ²	Odum, 1996 Buranakarn, 1998 Odum, 1996
	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area = Specific Emergy Labor units per m^2 USFS Building Area	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g 1.13E+10 sej/g 5.25E+02 g/m ² 2.79E+06 m ²	Odum, 1996 Buranakarn, 1998 Odum, 1996
	USFS Building Area = Transformity Machinery units per m^2 USFS Building Area = Specific Emergy Labor units per m^2 USFS Building Area mass=	2.79E+06 m ² mass/m ² *m ² USFS Buildings 1.32E+15 g 2.92E+05 sej/g 1.48E+04 g/m ² 2.79E+06 m ² mass/m ² *m ² USFS Buildings 4.12E+10 g 1.13E+10 sej/g 5.25E+02 g/m ² 2.79E+06 m ²	Odum, 1996 Buranakarn, 1998 Odum, 1996