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Soil erosion represents a significant, often hidden cost of land conversion to 

human use. It is particularly acute in sub-Saharan Africa, where long-term dependence 

on soil functional capacity is profound and intervention resources are scarce. This 

dissertation explores soil erosion, focusing on densely populated regions of western 

Kenya, in two complimentary ways. First, emergy evaluation, which allows comparison 

of ecological and economic flows in common units, quantified erosion severity at three 

scales (national, district and landuse subsystem). Second, probabilistic erosion risk 

models were calibrated based on empirical observations across the Awach River basin. 

Emergy analysis revealed that over 4% of national emergy use is lost topsoil; soil 

loss severity increases at the district (2.4 to 14.2%) and landuse subsystem scale (14-

76%). Agricultural benefit (agricultural yields given natural capital costs) ranges from a 

high 7.6 nationally to 2.25 for Nyando District; landuses ranged between 7.4 and 1.32. 
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Field observation of potential soil erosion predictors was undertaken at 420 sites 

distributed throughout the study basin. Tree-based regression models allowed inference 

of soil properties from visual/near infrared reflectance spectra based on an existing library 

of laboratory-analyzed samples. Properties successfully delineated included degradation 

status, infiltration class « 60 mm/h) and 13 soil performance measures. 

Erosion risk was conceptually divided into three factors - site protection, 

detachment resistance and hydrologic/terrain risk - to which observed variables were 

assigned. Graphical models selected variables conditionally associated with degradation, 

and multivariate logistic regression quantified effect strength and direction. Resulting 

models correctly classified 73, 74 and 76% of sites, respectively; an integrated risk model 

increased accuracy to 84%. The most significant predictors of risk were infiltration class, 

ground cover and soil organic carbon content. 

Satellite imagery facilitated spatial inventory of degradation, infiltration and land 

use. Over 46% of the basin was classified as degraded (27% severely) by a screening 

model with 86% accuracy. Infiltration class was classified with 82% accuracy; land use 

(8 classes) with 73% accuracy. Landuse change trajectories were inferred by comparing a 

1 986 scene with a 2001 scene. Markov models, both spatially indiscriminate and risk

weighted, were developed to compare landuse change scenarios for erosion attenuation 

and emergy-based agricultural benefit. Results suggest limited protective effect of 

moderate changes in landuse change patterns; cattle density reduction and reforestation 

appear most promising. Extreme changes in landuse were observed to restore the basin, 

but were highly unrealistic. Spatially targeting low risk landuses to high-risk sites 

provided small but significant improvement. 
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INTRODUCTION 

Statement of the Problem 

Soil is functionally a nonrenewable resource. While soil development occurs over 

centuries, the world's growing population is actively depleting the resource over decades. 

As a nonrenewable resource, and the basis for 97% of all food production (Pimentel 

1993), strategies to protect soil from depletion at rates faster than replacement are critical 

for developing sustainable economies. 

Concern over soil erosion by water, the primary mechanism for soil degradation 

on arable land, has existed worldwide for decades (Sanchez 1973, Kirkby 1980, Pimentel 

1993, Morgan 1995). While the problem has been documented on every continent, the 

consequences are especially acute in the semi-humid and humid tropics where poverty, 

fragile soils, high popUlation densities and intense climatic inputs converge, as is the case 

in much of sub-Saharan Africa (Lal, 1985). Soil loss has ecological and economic 

impacts at many scales, ranging from the field scale, where nutrient depletion, degraded 

soil structure and lost organic matter affect farm livelihoods, to the watershed and 

national scale, where sediment and nutrient loads adversely affect important waterways 

and ecosystems (Morgan, 1995). Several studies (Smaling 1993, Sanchez et al. 1997) 

have documented the crucial role that erosion plays in soil functional degradation 

throughout sub-Saharan Africa at these varied scales. 

Resource allocations to soil conservation strategies by international agencies and 

national governments have been substantial (Kiome and Stocking 1995, Thompson and 
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Pretty 1996). However, it must be recognized that allocating resources to attenuate soil 

losses requires diversion of resources from other sectors of the economy. To what extent 

is resource diversion justified, and can the magnitude of the problem be quantified to 

quantify the appropriate degree of diversion? There are cases where local success in 

controlling and reversing the pattern of soil degradation has been documented (Tiffen and 

Mortimer 1993), but throughout most of sub-Saharan Africa, the soil resource continues 

to decline (Sanchez et al. 1997), alarmingly quickly in some areas (Oostwoud and Bryan 

2001). Soil clearly provides valuable services (structure, chemostasis, water holding, 

carbon storage etc.), but without quantifying these values within the context of the larger 

natural resource basis of the economy, the decision to allocate resources to protect soils 

or reverse degradation trends is based on frequently exaggerated claims of problem 

severity (Stocking 1995). 

Before resources are targeted to attenuate soil erosion, a clear understanding of 

mechanisms that elevate erosion risk is necessary (Pimentel 1993). While several 

universal models exist to quantify risk based on empirical factors, their use can introduce 

substantial error when applied in regions for which they were not calibrated (Morgan 

1 995). An alternative approach is to develop local risk models based on rapid 

reconnaissance and statistical inference. This approach has particular appeal for the rural 

tropics where mechanisms of degradation are poorly understood, and empirical data sets 

are less widely available. Furthermore, spatial targeting of intervention resources to areas 

of critical need and enumerating the association between land management decisions and 

elevated risk are critically important in tropical areas without significant resources. 
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Ultimately, a decision support model for land management to control erosion 

should combine predictions of erosion risk, inference of erosion extent and magnitude, 

and a costlbenefit comparative framework within which to compare scenarios for future 

development. This combination of process and context facilitates management solutions 

to maximize intervention efficiency and system sustainability. 

This dissertation explores the costs of soil erosion within the context of the 

prevailing resource basis, develops statistical models and a rapid assessment framework 

that enumerates soil degradation risk, and interpolates risk models to a meso-scale study 

area to compare future land allocation alternatives for controlling natural capital 

depletion and supporting rural livelihoods. 

Review of the Literature 

Soil Loss Globally and Regionally 

Significant literature exists documenting the magnitude of the soil erosion 

problem. Pimentel (1993) coalesces evidence from many regions of the world to state 

that between 30 and 50% of the world's arable land is substantially impacted by soil loss. 

Soil loss is widely identified as a threat to rural livelihoods (LaI 1985, Kerr 1997, 

Sanchez et al. 2003) and aquatic resources (Ochumba 1990, Crosson, 1986). Severe 

problems of soil degradation have been documented world wide, including in the United 

States (Uri 2001), Spain (Meyer and Martinez-Casasnovas 1999), southeast Asia 

(Pimentel 1993), Central and South America (Alfsen et al. 1996), Australia (Dregne 

1 995) and Africa (Morgan 1995, LaI 1985). 

The problem is particularly severe in East Africa because of high population 

densities, fragile soils, intense rainfall and limited soil subsidy. Severe erosion has been 



documented throughout the area (Oostwoud and Bryan 1997, Mati et al. 2000, Lufafa et 

al. 2002, Thomas and Senga 1983), resulting in serious depletion of soil functional 

capacity (Zobisch et al. 1995, Gachene et al. 1997, Swallow et al. 2002, Smaling 1993). 
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Clearly, the effects of soil degradation are felt most acutely by the subsistence 

farmers who populate the region. The marked decrease in soil functional capacity that 

arises because of erosion and extraction has been illustrated (Sanchez et al 1997), and the 

cycle of poverty makes long-term solutions difficult to institutionalize (ICRAF 2000). 

The link between soil erosion and subsistence agricultural yields has been widely cited 

(LaI 1985, Williams et al. 1983, Mulengera and Payton 1999). While the magnitude of 

this problem is still disputed (Crosson 1986, Stocking 1995), it is clear that agricultural 

yields in Africa have failed to keep pace with improvements observed in the rest of the 

world (World Bank 1996). 

Off-farm costs are still poorly documented, but the general concerns of 

eutrophication and excess turbidity are widely cited (Lindenschmidt et al. 1998, Crnl 

1995). Lake Victoria, the world's largest tropical freshwater lake, situated in East Africa, 

has experienced frequent fish kills and algal blooms (Ochumba 1990) and serious 

destabilization of trophic dynamics (Lehman et al. 1998, Goldschmidt et al. 1993) 

resulting in unreliable fishery production. One presumed cause, a nutrient-rich sediment 

plume discharging into Nyanza Gulf, can be seen readily in satellite imagery. 

Soil Erosion Models 

Measurement of soil loss is an expensive and time-consuming undertaking. 

While the reliability of recent methods for assessing past erosion has been illustrated 

(e.g., Cesium137) (Ritchie and McCarty 2003, Bujan et al. 2003), most erosion studies 
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rely on physical sampling structures to enumerate soil movement. The extremely limited 

variability in site and management characteristics that can be assessed with these methods 

given limited research budgets necessitates the use of models that can be extrapolated to a 

wider range of conditions. Models of the soil loss process can be divided into physically

based and empirical approaches. An alternative to model application is local model 

development based on direct observation. Each approach is outlined briefly below. 

Physically-based models, typified by the Water Erosion Prediction Project 

(WEPP) (Foster and Lane 1987, Ascough et al. 1996), simulate the processes of sediment 

detachment, transport and deposition using process equations based on continuity 

constraints and physical forces (e.g., hydraulic shear stress calculations for modeling soil 

detachment by flowing water). The WEPP model is a distributed parameter model, 

which allows spatial patterns of erosion and deposition to be identified. This approach is 

suited for high temporal resolution studies in small « 260 ha) (Morgan 1995) basins 

where sufficient data exist to estimate suitable values for all model parameters. It is also 

crucial if estimates of sediment yield are to be made. The array of physically-based 

models is substantial (Dietrich et al. 1993, Moore and Burch 1986, D'Ambrosio et al. 

2001, Botterweg et al. 1998), but most suffer from two drawbacks that limit their 

applicability for this study. First, as discussed, model complexity and need for fine 

spatial resolution imposes limits for application to small basins. Moreover, the need for 

high-resolution input data (e.g. rainfall, atmospheric conditions) limits application of 

WEPP to regions with substantial monitoring infrastructure. Second, they are generally 

severely over-parameterized for watersheds where significant baseline data collection has 



not been undertaken. Model accuracy is compromised when default settings (generally 

empirically defined) are used as universal settings. 
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Empirical models range in complexity, but share the characteristic that they are 

developed for specific regions and can be applied to new regions only with considerable 

caution (Morgan 1995). The most widely used example of an empirical model is the 

Universal Soil Loss Equation (USLE) (Wischmeier and Smith 1978) and various 

revisions of that basic framework (Renard et al. 1991), which statistically relates 5 

readily observable factors to soil loss rates. The same factors (rainfall erosivity, soil 

erodibility, slope, slope length and vegetation cover) are used in the Soil Loss Estimator 

for Southern Africa (SLEMSA) (Elwell 1981), an empirical counterpart to USLE 

designed for the specific conditions in Southern Africa. Each factor is computed from 

standard equations, determined from enormous data sets describing soil loss rates from 

standardized plots. The advantage of empirical models is that they are conceptually 

simple and require data that, if unavailable, are relatively easy to collect or estimate. 

There are several widely cited constraints (Morgan 1995, Jetten et al. 1999). First, as 

empirical models, their universal application is inadvisable without formal validation. In 

particular, USLE was developed for the Midwestern USA and application to sub-Saharan 

Africa (where climate, soil and cropping systems are different) is of questionable utility 

(Cohen et aI., submitted). Despite this constraint, USLE is widely applied around the 

globe (Millward and Mersey 1999, Chen 1998, Lufafa et al. 2002), usually without any 

formal ground validation protocol. Second, empirical models are capable of identifying 

where erosion occurs, but not where eroded material is deposited because there are no 

physical constraints in the USLE model (i.e. continuity equations). 
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While estimation of actual erosion rates is frequently desirable, models developed 

to provide categorical information (e.g., degraded/intact) can offer substantial benefits 

over a model-based approach (Adinarayana et al. 1999). Limited equipment is necessary 

to provide categorical erosion models based on visual designation, and each model can be 

developed for the specific region in which it is applied. This allows specific insight into 

the effects of local land management on erosion risk, and aids in understanding the kinds 

of intervention approaches that might provide protective effects. This direct observation 

approach is the strategy used in this work. 

Soil Erosion Costs 

Soil erosion represents an externality (Loehman and Randhir 1999); that is, some 

of the costs of soil erosion are borne by society, now or in the future, rather than entirely 

by the landowner. Market prices of goods for which there are external costs do not 

reflect the true cost when all inputs are tallied. The literature is rich with efforts to 

internalize erosion costs by placing value on eroded soil (Crosson 1986, Bojo 1996). 

Soil value can be designated using a variety of methods. The most common puts 

soil values into economic units so that market and true prices can be compared directly. 

Specifically, attention focuses on production losses as a result of depleted fertility, off

farm losses (sediment in reservoirs, eutrophication of water bodies, downstream flood 

problems), and aesthetic losses (Bandara et al. 2001). Where discrepancies occur, tax 

subsidies or policy instruments are necessary to force market prices higher or encourage 

better conservation. 

Another option is to quantify the value of a resource according to its emergy 

content. This approach offers several advantages over methods assigning dollar values to 



services for which no formal market exists. First, methods are based on biophysical 

observations of production rather than, as is often the case (Alfsen et al. 1996), basing 

costs on perception of value (willingness-to-pay survey strategies). Second, emergy 

allocation of soil value is donor based. As a result, value is embodied in the storage 

rather than the service that soil provides. The assumption is that, within any self

organizing system, there is a strong link between invested energy and service. 
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An important issue raised repeatedly in the economic literature on soil 

degradation (Alfsen et al. 1996) is that erosion represents a cost that may be acceptable 

given specific tradeoffs to lower soil-loss rates. This study explores emergy-based 

optimality criteria for mitigation strategy assessment that account for both benefits 

accrued to society because of soil degradation (i.e., production capacity), and costs of that 

process. 

Watershed Scale Erosion Assessment 

Watersheds are widely recognized as the most appropriate biophysical or 

socioeconomic unit for management and study of water and soil resources (Lal 1999, 

Brooks et al.1997). Virtually all development organizations (ranging from the World 

Bank to small local NGOs, along with government agencies) are engaging in watershed 

management as their primary intervention strategy (ICRAF 2000). The most important 

aspect of watersheds that make them ideal study units is that all the effects of land 

management in a watershed accumulate to the same point at the basin outlet, a condition 

that forces explicit consideration of the linkage between upstream actions and 

downstream effects (Luitjen 1999). Furthermore, the scale of a watershed is often most 



appropriate to bring together the specific concerns of individual farmers and the larger 

scale issues with which policy makers contend. 
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However, problems arising from the spatial extent of watersheds in comparison 

with the scale at which erosion processes are well described. First, many models (i.e., 

strongly physically based models) are eliminated as potential tools if the basin of interest 

is substantially larger than 10 km2 (Morgan 1995). Second, standard empirical models 

require validation, which can be extremely expensive in a large basin with varied 

climatic, edaphic and management conditions. 

F or example, variability in infiltration is a critically important consideration when 

assessing risk (Jetten et al. 1993), but methods for inferring infiltration rates that are 

specific to land cover, soil, slope and climate across large areas have only recently been 

developed (Sullivan et al. 1996). Soil-survey data provide nominal information for soils 

under generalized conditions. Land use, degradation status, and natural within-class 

variability are all important components of hydrologic response that are overlooked by 

using soil survey data (De Roo et al. 1992, Stolte et al. 1997, Ziegler et al. 2001). 

Examples abound of studies focusing on soil degradation at the scale of 

watersheds and larger (Stolte et al. 1997, Kassam et al. 1991, Sutherland and Bryan 1991, 

Mati et al. 2000). The central theme of these studies is that the physical processes of 

erosion are abstracted, either statistically or conceptually, to allow analysis at scales that 

are more meaningful for policy development. The approach taken in this work follows 

this general protocol by exploring statistical association patterns between risk factors and 

categories of degradation. Thus, the methods developed in this study are highly scalable 

but lack physical process constraints. 
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Watershed Rapid Assessment 

Rapid assessment protocols are crucial for assessing land and water dynamics 

over large areas. Examples of tools used for rapid land assessment are satellite imagery 

(Hill and Schutt 2000, Dwivedi et al. 1997, Price 1993), cesium-137 radioisotope studies 

for erosion rate inference (Ritchie and McCarty 2003, Bujan et al. 2003) and diffuse 

reflectance spectroscopy (DRS) (Ben-Dor and Banin 1995, Shepherd and Walsh 2002, 

Ludwig et al. 2002, Kooistra et al. 2001). This study made extensive use of satellite 

image interpretation for interpolating field observations to entire watersheds, and spectral 

signature analysis for rapid assessment of soil quality. 

Diffuse reflectance spectroscopy for soil quality assessment 

Conventional methods of soil analysis are well established but limit processing 

large numbers of samples because of resource-intensive and time-consuming tests. 

However, for accurate assessment of soil throughout watersheds, large numbers of 

samples are necessary to capture the significant variability that is widely documented 

(Burrough 1989). This is particularly true in regions where soil-disturbance regimes are 

of interest under a variety of land-management options. 

DRS is a relatively simple process. A high quality tungsten-filament bulb emits 

full-spectrum light (between 350 and 2500 nm), and sensors record reflectance 

characteristics of each material in I -nm bandwidths (Shepherd and Walsh 2002). 

Reflectance characteristics have been used widely to differentiate between minerals 

(Hunt 1977, Clark 1999), plant and animal tissues (Foley et al. 1998, McLellan et al. 

1991, Gillon et al. 1999). Newer applications include quantitative inference about soil 

organic matter (Henderson et al. 1992, Sudduth and Hummel 1993, Ludwig et al. 2002) 
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and soil properties in general (Ben-Dor and Banin 1995, Shepherd and Walsh 2002, 

Reeves et al. 1999). A typical soil spectral reflectance curve is given in Figure 1-1. 

Specific soil properties that have been successfully inferred from these curves include 

texture, cation exchange capacity, base saturation, pH, organic carbon content, 

exchangeable P, exchangeable K, nitrogen species and various contaminants (Ben-Dor 

and Banin 1995, Shepherd and Walsh 2002, Ludwig et al. 2002, Kooistra et al. 2001). 

Soil physical properties (macroaggregate stability, bulk density) are intuitively less likely 

to be inferred spectrally than chemical properties, but have not been fully explored. 

Additional soil chemical properties that are candidates for spectral inference include 

sodicity, micronutrient concentrations, functional organic matter pools and radioisotope 

measurements (e.g., Cs-137, Pb-21O). An area largely unexplored for application of DRS 

is integrative metrics. For example, fertility, degradation, infiltration capacity, carbon 

evolution potential, and structure are composite variables that are impossible to measure 

using a single standard laboratory technique. In general, these features of soil are dealt 

with using transfer functions that interpret the relative levels of basic soil properties in 

comparison with some empirical reference. Since all of basic soil properties are 

integrated in a single spectral response curve, there is strong potential that composite 

variables can be inferred directly from spectra, obviating the need for transfer functions. 

This study addressed two composite variables (degradation and infiltration capacity). 

Interpretation methods of spectral response curves vary, but most involve 

multivariate data mining tools such as Partial Least Squares Regression (PLS - Ludwig et 

al. 2002), Multivariate Adaptive Regression Splines (MARS - Shepherd and Walsh 

2002) or Classification and Regression Trees (CART - Shepherd and Walsh 2002). 
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Figure 1-1. Typical DRS raw reflectance pattern for a tropical soil. Shown is relative 
reflectance versus wavelength. Specific important absorption features are 
identified. 

These newer approaches supplant linear multivariate methods (e.g., multiple regression, 

discriminant analysis) that were only marginally successful for dealing with the 

complexities of the soil mixture and the severe co-linearity issues that arise in the 

analysis of spectral response curves. This work made extensive use of CART (Breiman 

et al. 1986, Steinberg and Colla 1997) in developing spectral response models, both for 

DRS data and for satellite image interpretation. 

Satellite image processing for spatial erosion risk assessment 

Use of satellite imagery to assess ground condition began during the 1970s, 

displacing conventional survey methods and aerial photographs as the primary tool for 

land assessment over large areas. While application for inference of land cover patterns 

is extensive in the literature (Jensen 1996, etc.), less attention has focused on inventories 

of degraded land (though see Fenton 1982, Pickup and Chewings 1988, Price 1993, 
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Dwivedi et al. 1997). Even less attention has been given to the potential to infer patterns 

of infiltration rates from satellite imagery. This is primarily due to issues of spectral 

confounding: satellites only measure reflectance from the upper-most layer of the 

landscape; and vegetation may mask soil properties that cause variability in infiltration, 

necessitating instead a sampling protocol that uses geostatistical inference (Sullivan et al. 

1996). Satellite imagery is particularly effective when synoptic data are insufficient. 

Time series currently available (Landsat imagery is available from 1973) provide a 

sufficient record to be useful for large-area change detection. 

Landuse Change Models 

The study of patterns of landuse change and the development of models to 

forecast it has become central to research in landscape ecology and regional planning 

(Turner and Gardner 1990, Verburg et al. 1999). Models have been developed to predict 

changes in water flows (Grove and Harbor 1997, Miller et al. 2002, Calder et al. 1995, 

Niehoff et al. 2002); biota (Eva and Lambin 2000, Ehrlich et al. 1997, Swenson and 

Franklin 2000); urban and agricultural growth (Batty and Longley 1989, Clarke and 

Gaydos 1998, Gilruth et al. 1995); and soil degradation (Feoli et al. 2002, West and Wali 

2002, Li and Reynolds 1997) among many other applications. 

One particularly flexible model form makes use of Markov transitional 

probability matrices (Flamm and Turner 1994, Howard et al. 1995, Li and Reynolds 

1997). These matrices, calibrated by comparing historical and current landuse maps, 

allow stochastic prediction of land use patterns in future landscapes. Conditional 

transition probabilities can be manipulated to reflect effects of alternative land 

management strategies, allowing future landscapes to be compared. This approach forms 
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the basis for scenario assessment. While there are substantially more realistic alternatives 

to this method (e.g., Markov cellular automata - Itami 1994), the Markov method offers 

the most statistically robust and readily applicable method. 

Systems Evaluation 

Ecological and human systems self-organize to transform sources of available 

energy into energy forms with emergent characteristics (Odum 1994). As energy 

transformations occur, a portion of energy that was previously available loses its ability 

to do work, increasing entropy at the larger scale, as predicted by the Second Law of 

Thermodynamics. However, energy retained after adaptive transformations has qualities 

(e.g., the ability to reinforce and amplify input flows) that distinguish it in form and 

function from the original energy. A sequence of such transformations results in 

decreasing quantities of energy, but increasing quality. This organizational property, 

energy hierarchy, is a readily observable characteristic of many adaptive systems (e.g. 

food webs, governments, watershed hydrologic convergence), and provides the 

theoretical basis for emergy analysis (Odum 1996). The maximum power principle 

(Lotka 1922, Odum 1994), which postulates that, in order to remain competitive, systems 

select for energy use pathways that maximize the useful dissipation of available energy, 

suggests that self-organization into energy hierarchies is a means to reinforce exogenous 

energy flows. Energy invested in higher hierarchical levels, which feeds back control for 

enhanced overall energy capture, embodies value vastly greater than simply the 

remaining energy content; emergy analysis is a means to account explicitly for that 

whole-system value. 



15 

Emergy and transformity 

Emergy is defined as the energy required, both directly and indirectly throughout 

a process, to create a product or service (Odum 1996). Since each input to a process is 

itself the product of energy transformations, emergy is often conceived of as energy 

memory; that is, the energy, usually expressed using solar energy as the common 

baseline, that was required throughout the global energy transformation hierarchy. The 

standard emergy unit is the solar emjoule (sej), which is distinctly different from the joule 

(1) with which available energy is quantified. The quality of energy in any given product 

is expressed as transformity and measured as the ratio of emergy (sej) to available energy 

(1). Systemic analyses (Christensen 1994, Patten 1995) that ignore energy quality 

inevitably undervalue the contributions of low energy concentrated sources (e.g. human 

work, information) relative to abundant diffuse ones (e.g., sunlight, wind kinetic energy). 

Numerous studies have used emergy accounting to quantify development 

tradeoffs that must simultaneously consider economic and ecological costs and benefits 

(Portela 1999, Buenfil 2001, Brown and MacLanahan 1996, Odum et al. 2000). 

Watershed scale evaluations have focused on water (Romitelli 1997, Brandt-Williams 

1999, Howington 1999) and on multi-use functions (Tilley 1999), with significant 

attention to soil development and loss. Considerable work has been directed at 

evaluations of agriculture (Brandt-Williams 2001, Doherty et al. 2000, Lagerberg 1999, 

Odum 1996) with substantial convergence of transformity values for agricultural products 

(Brandt-Williams 2001, Buranakam 1997). 

Transformity assessments for topsoil are generally based on work presented in 

Odum (1996). These are based on soil development models for temperate regions where 
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organic matter accumulation is much more rapid that in the seasonal tropics (Brady and 

WeiI 2001). A model-based approach to soil valuation (Cohen 2001) was used as the 

basis of this work; a transforrnity for organic carbon in tropical soils is reported that is 2 

times higher (2.2E5 sej/J vs. l . IE5 sej/J) than previously computed (Odum 1996). 

Previous valuation ignored soil carbon dynamics (Parton et al. 1994, Bolker et al. 1997), 

particularly for tropical areas where soil carbon depreciates at substantially faster rates. 

o 
Systems Boundary - defines the analysis bounds and distin
guished sources from storages 

Energy or Material Flow - Arrow indicates direction of influence 

Source - Outside delivery of available energy; a forcing function 

Storage - A compartment of energy storage within the system; 
a state variable. 

----,r--�> Heat sink - Dispersion of available energy that accompanies all 
I real processes; 2nd Law of Thermodynamics 

I nteraction - Different forms of energy produce something, with 
outflow proportional to both; limiting factor interaction 

Consumer U nit - Unit that transforms and stores energy and 
feeds back control autocatalytically. 

---->-l r Producer Unit - Collects, concentrates and stores low-quality � energy (photosynthesis, chemosynthesis) 

Price -=-

«- - - - - - - - - - - - Market Transaction - Depicts sale of goods, services (solid) in 
exchange for currency (dashed) according to market price. 

�� _ M iscellaneous Box - Depicts production/consumption units that � do not have specific symbols. 

+ 
Switching Action - Indicates flows contingent of specific criteria; 
threshold function. 

Figure 1-2. Energy systems symbols with descriptions. 
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Because of the complexity and detail of emergy evaluation, index development is 

critically important to facilitate interpretation and comparison across production 

processes or between management alternatives. These indices (presented fully in Odum 

1 996, Ulgiati and Brown 1 998, Ulgiati et al. 1 995) summarize system resource use 

intensity, process efficiency, economic-environment interactions and sustainability. They 

are described in detail in the methods section of this study. 

Energy systems diagrams 

Energy systems diagrams were used throughout this work to characterize complex 

systems, and aid in parametrization of simulation models. While many alternative 

symbolic languages exist, the energy systems language (Odum 1 994) offers a 

comprehensive modeling language with explicit recognition of the thermodynamic 

constraints that direct real systems. 

Description of the Study Site 

The Awach River, which drains a small watershed (330 km2; centroid 35. 1 °E 

O.3°S  - Figure 1 -3) in the Kenyan portion of the Lake Victoria drainage basin, was 

chosen as the study site because it exhibits advanced soil degradation (gully formation, 

prevalent soil hardsetting - ICRAF 2000). The river system drains into a littoral papyrus 

(Cyperus papyrus) wetland before discharging to Nyanza Gulf in eastern Lake Victoria. 

Elevations range between 1 134 m at the lake edge and 2200 m (mean slope = 

6%). The landscape can be divided into lowlands « 1 400 m) and highlands (> 1 400 m), 

separated by a steep escarpment. The lowlands consist primarily of Pleistocene lake 

plain deposits (Eutric Leptosols, Planisols and Vertisols) with deep profiles and moderate 

to low fertility. Shrink/swell potential of these soils is high, as is the prevalence of sodic 
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soil phases. Highland soils, which overlay Kericho and Kenya-type phonolite sub-strata, 

are deeply weathered (Humic Nitisols, Humic Cambisols, and Luvic Phaeozems) and 

structurally stable but with generally low fertility. 

Lowland climate is sub-humid tropical (�1 1  00 mm precipitation/yr) with bi

modal rainfall delivery characteristic of equatorial latitudes. Highland climate is humid 

tropical (�1700 mm precipitation/yr) exhibiting moderated bi-modal rainfall due to 

continuous subsidized convection from Lake Victoria. Annual solar insolation and 

temperature are effectively constant. 

This area has been settled at low densities for many years. In fact, there are 

records of settlement on nearby Rusinga Island dating more than 50,000 years b.p. and 

evidence of proto-hominid habitation as far as 17 million years b.p. (Reader 1997). 

Recent settlement changed dramatically during the 1950's and 60's during which 

migration and sedenterization changed land use patterns and regional livelihood 

strategies. Growing evidence suggests that severe degradation began in the early 1 960's 

in response to the converging circumstances of poor land use planning and a period of 

intense pluvial activity due to El Nino (M. Walsh, personal communication). 

Regional population growth (3.9% per year - Kenya CBS 2000) has forced 

cultivation of marginal lands on steep slopes; high livestock densities are common 

throughout the region. Dominant lowland agricultural land-uses are maize, sugarcane 

and communal rangeland, while tea, maize, sugarcane, woodlots and constrained grazing 

(using improved breeds) dominate the highlands. Native ecological communities, now 

extremely rare, include perennial grasslands with interspersed evergreen/semi-deciduous 

bushland in lowland areas, and evergreen broadleaf forest in the highlands. 
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Figure 1-3 . Geographic location of the Awach River basin in western Kenya. The 
centroid of the study area is 35.08°E and 0.31 oS. 

Plan of Study 

The problem of soil erosion is addressed in the literature in two general ways. 

The first is technical: define the factors that lead to elevated erosion risk and describe 

how can they be managed. The second is decision-oriented: quantify the consequences of 

soil loss and costs of mitigation so appropriate policy can be developed. This study links 

these approaches within a systems-based decision support framework. There are three 

broad objectives for this work: 
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• Quantify soil erosion costs in the context of the natural resource basis at three 
scales (national, regional and landuse-specific). 

• Delineate factors that elevate erosion risk in the region and develop statistical 
models to predict degradation probabilities quantitatively. 

• Interpolate risk from plot observations to the entire watershed study area to 
develop a spatial framework to assess alternative land management scenarios. 

Within each objective, there are specific essential tasks. For the first component, 

transformities were computed for a wide range of agricultural products characteristic of 

Kenya and the study area in particular. Furthermore, two new metrics were defined to 

quantify the magnitude of local natural capital depletion within the context of the larger 

resource basis more effectively. Of particular importance was defining reliable 

transformity values for soil components in tropical ecosystems. Work done tangentially 

to this study (Cohen 2001)  presents transformity calculations for soil organic carbon, soil 

structure and nutrient exchange capacity for tropical forest and savanna ecosystems. 

Tasks specific to the second objective are extensive. In order to define the 

necessary factors, several layers of analysis were necessary. Calibrations of soil 

properties to spectral response characteristics were essential. Coupled with a case-control 

sampling protocol, spectral response was used to delineate degraded from intact soils, 

distinguish regions of slow infiltration from other areas and develop an empirical 

composite soil erodibility factor that can be used to assess site risk. Terrain-based indices 

and field observations of cover and landuse were used to develop two other composite 

variables that describe erosion risk specific to the study area. 

The third objective relied on inferential interpolation of landuse, degradation 

condition and infiltration capacity from satellite imagery. The spatial extent of soil 

degradation, coupled with basin-wide sediment yields, provided a benchmark against 
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which alternative land management schemes can be compared. Land cover change 

models based on 1 986 and 2001 imagery were developed to explore anticipated changes 

in basin condition, and to quantify risk attenuation for proposed schemes. Specifically, is 

spatial targeting of specific land uses to regions of low inherent risk effective for 

maximizing yields while simultaneously minimizing severe natural capital depletion? 

Which landuse change scenarios are more desirable for degradation rehabilitation, and is 

there a difference between optimal land allocation for controlling erosion and optimal 

land allocation when yields are explicitly included in assessment? 



METHODS 

Two complimentary approaches were used to enumerate the prevalence and 

magnitude of soil erosion, and while the two methods are quite different, they converged 

to arrive at recommendations for how to manage the problem in western Kenya. First, 

methods of emergy analysis were used to compare the magnitude of soil loss with 

economic benefits on a common basis. Second, watershed-scale field sampling and soil 

analysis were used to assess erosion risk factors, determine land-use degradation 

association, and develop a probabilistic spatial model of erosion risk. Finally, the two 

approaches were coupled to produce comparative assessments of competing regional 

land-use scenarios. The methods section is organized into three main parts: methods for 

emergy evaluations of national, regional and landuse subsystems are given first. Then, 

methods for modeling soil erosion risk are given, which include field data collection 

protocols, statistical analysis and development of integrated models of degradation risk. 

Finally, methods for spatial decision support modeling are given. 

Emergy Analysis at National, District and Subsystem Scales 

Evaluation was performed at three scales, proceeding top-down starting with 

large-scale considerations that provide local problem context and progressing to 

assessments of individual land-uses. Emergy evaluations were developed for: 

• Kenyan national economy 

• Kisumu, Kericho and Nyando district economies (third level of Kenyan 
governmental hierarchy) 
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• Specific land-uses that comprise livelihood strategies for people living in the 
Awach River basin. 

Land-uses explored in detail were commercial agricultural (i.e. sugar and tea), 
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subsistence agriculture (i.e. maize and sorghum), timber and fuel woodlots, grazing lands, 

native forests and shrub lands. 

Emergy Evaluation Protocols 

The standard emergy methods for regional and national analysis (Odum 1 996, 

Brown and McClanahan 1 996, Doherty et al. 2002) were followed in this study. This 

multi-step process includes systems diagram development, compilation of critical cross-

boundary flows and internal stock depletion, data collection, and flow 

aggregation/summary index development. 

Emergy Evaluation Summary Indices 

Summary indices allow comparison between systems. The suite of standard 

indices, compiled from aggregated flow data, includes total emergy use, emergy use per 

capita and per unit area, emergy balance of trade, emergy-money ratio and yield, 

investment and loading ratios, described below. Two additional metrics were developed 

for this work specifically to quantify relative costs of soil erosion. 

Flow aggregation 

Flows are first aggregated into broad categories. Figure 2-1 is a standardized 

economic systems diagram used to summarize and visualize these aggregate emergy 

flows and describes the derivation of the standard indices. Aggregated flows include 

renewable energy flows (R), local non-renewable flows (N), imported goods (G), 

imported fuels and minerals (F), imported services (S) and exported goods and services 

(E - also called yield or Y). 
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Figure 2-1. Standardized economic systems diagram. Shown are aggregated flows and 
indices that result from these flows. 

Emergy:money ratio 

The emergy-money ratio (Em$) describes nominal purchasing power, in emergy 

units, of one unit of currency spent within the local economy. It is computed by dividing 

total emergy use (R + N + F) by GNP. In order to compare between nations, money is 

standardized to US dollars via mean currency exchange rates for the year of interest. 

This index not only describes purchasing power within a region, it also informs 

the emergy balance of trade between regions. A detailed discussion of the competitive 

disadvantage faced by regions with high Em$ ratios with respect to regions with low Em$ 

ratios is presented in Cohen, Sweeney and Brown (in preparation). 

Environmental loading, investment and yield ratios 

The environmental loading ratio (ELR), emergy yield ratio (EYR) and emergy 

investment ratio (EIR) form three critical metrics of system condition. These three 



unitless ratios describe development intensity in different ways. The ELR reports the 

ratio of non-renewable to renewable flows (Figure 2-1) :  

ELR = (N+F) + R [2- 1 ]  

As  this metric increases, stress on environmental services is anticipated due to 

concentrations of non-renewable sources that alter natural energy flow patterns. 
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The emergy investment ratio (EIR) describes the ratio of purchased inputs to total 

flows from within the system (Figure 2-1) :  

EIR = F + (N + R) [2-2] 

This index describes investment because it quantifies nominal levels of 

investment from outside the system boundary to match flows of locally available emergy. 

A high value indicates that each unit flow of locally available energy has a strong 

attracting force for outside sources. The investment ratio exhibits non-homogenous 

spatial patterns in landscapes; cities, deltas, mountain ranges and lakes have higher than 

average investment ratios because flows converge to these regions. The EIR quantifies 

development status of nations and regions, with larger values indicating advanced 

development. The EIR for the United States is roughly 7: 1 (Odum et al. 1987), while 

Thailand has a ratio of 0.46 (Brown and McClanahan 1996). 

The emergy yield ratio quantifies net benefit of feedback investment to a nation, 

region or process; it is the ratio of emergy output to investment to secure that output: 

EYR = Y  + F  [2-3] 

where Y = exported goods and services and F indicates all invested inputs (i.e. fuels, 

goods and services from outside the system). When this metric exceeds 1, investment is 



yields net benefit. On a national scale, values less than 1 indicate a nation is a net 

importer, generally indicative of advanced development status. 
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All metrics presented above are most useful in comparison with other regions of 

similar scale. Emergy calculations in this study reflect recent amendments to estimates of 

tidal momentum absorption (Campbell 1 999). To allow common benchmark comparison 

with older analyses, all flows were divided by 1 .68, as proposed by Odum et al. (2000). 

New summary indices 

Two new metrics were developed specifically to quantify losses of indigenous 

stocks of natural capital within the context of a regional energy basis. Typically, soil loss 

is considered non-renewable energy stock depletion (N in Figure 2- 1) .  However, 

lumping these flows with mined minerals and locally extracted fossil fuels ignores direct 

ecosystem services that these stocks facilitate. Furthermore, while direct economic 

benefits of fuel are clear, the benefit of degraded topsoil is not as obvious. It is 

reasonable to assume that at least a portion of these flows could be prevented given more 

effective land management policies. 

Fraction capital depletion. The Fraction Capital Stock Depletion (FCSD) is 

computed as the proportion of total emergy use (U) contributed from soil loss: 

FCSD = Na + U [2-4] 

Where Na is soil loss, a capital stock that economic systems exploit more rapidly 

than it recovers, making it effectively a non-renewable use. Large values indicate 

substantial external costs to the economy. 



Agricultural benefit ratio. The agricultural benefit ratio (ABR) compares 

agricultural yields (livestock, subsistence and commercial crops) to emergy flows from 

natural capital stock depletion: 

ABR = Y  + Na [2-5] 
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where Y is emergy yield and Na is soil loss costs. Clearly, soil erosion results 

from urban development, but the predominant tradeoff in
. 
Kenya is between rural 

production decisions and consequent external costs. This ratio is a simple benefit-cost 

analysis for regional agricultural activity. Because soil erosion is embodied in 

agricultural yields, a value approaching one indicates increasingly deleterious agricultural 

effects. The ratio will be generally be substantially greater than 1 ,  indicating agricultural 

net yields. However, the ABR magnitude will vary considerably within and between 

regions and cropping systems, identifying which agricultural and/or livestock activities 

are locally inappropriate. Note that, at the landuse subsystem scale, ABR is inverse of 

FCSD. This is not the case at larger scales where yields are not entirely agricultural. 

The ABR can provide a quantitative objective function, embodying costs and 

benefits of competing interventions, for evaluating alternative land management 

scenarios in the agricultural basins such as the Awach River watershed. Methods 

optimizing land-use decision-making are described in detail in a later section. 

National Scale Analysis 

Data sources 

Data were retrieved primarily from a national statistical abstract published by the 

Kenyan Central Bureau of Statistics (CBS 2000), which compiled national accounts from 

1 999. Numerous ancillary data sources were used, both to quantify flows not available 
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from the statistical abstract and to cross-reference flows to ensure accurate accounting. 

These sources included United Nations commodity flow data (UN, 2000), Europa World 

Yearbook (Europa Publications, 2001), World Bank national overview (World Bank, 

2002), national tidal amplitude statistics (US Dept. of Commerce 1 994), a study of wind 

power feasibility in Kenya (Chipeta, 1 976), global deep-heat flow database (Pollack et ai. 

1 993), and a comprehensive thematic spatial database with precipitation, elevation, 

runoff and forest coverages (Corbett et aI., 1 997). 

Internal agricultural/fisheries/livestock production, geothermal and hydroelectric 

power production forest clearing rates and mining data were all compiled from relevant 

Government of Kenya (GoK) sources, including the Ministry of Agriculture and Rural 

Development, Ministry of Fisheries, Kenya Power and Lighting Corporation, Ministry of 

Forestry and the Bureau of Mines. 

Product transformity values 

The Kenyan national system is highly dependent on rural agricultural production; 

consequently, reliable local transformity values are essential for accurate assessment. A 

standard protocol for computing product transformity values (Odum, 2000; Brown et ai. 

2000; Brandt-Williams 2002) was used for 1 7  raw agricultural products (e.g. maize, 

sorghum, sugar cane, tobacco, green tea leaves), 3 protein sources (fish, and highland and 

lowland cattle) and 2 important processed goods (tea and refined sugar). The results are 

used throughout this work, particularly for analysis of specific sub-systems within the 

study watershed; analysis summary data are presented in Appendix A (Table A-I ). 

Accurate transformity values for soil are of particular importance for this work. 

Previously, soil organic carbon was considered the sole value-bearer for topsoil, and 
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relevant calculations were presented for temperate soils that generally accumulate organic 

matter more rapidly than tropical soils due to reduced annual oxidation (Brady and Weil, 

2001 ). Work associated with this study (Cohen, 2002) employed dynamic systems 

simulation of topsoil genesis to compute transformity estimates for a suite of potential 

value-bearers in soil. These include soil organic carbon, soil structure, cation exchange 

capacity and exchangeable soil nutrients. Since development of these soil functional 

storages is profoundly coupled, the value of eroded topsoil is reported using only the 

largest flow to avoid double counting emergy. 

A dynamic systems model was calibrated for soils in tropical highland forest and 

tropical savanna ecosystems that predominate in Kenya. Table A-8 (Appendix A) 

summarizes select model results. The estimated transformity of soil organic matter in the 

tropics indicates that it is over twice as valuable as organic material in temperate soils. 

Estimates of soil erosion and forest clearing rates 

Soil loss is widely considered a major environmental consequence of increased 

population pressure. In order to quantify erosion costs to the national economy, reliable 

quantitative estimates of annual soil loss were necessary, but were generally unavailable 

at the national scale. Two methods were explored: 1 )  use of soil loss rates on a landuse 

basis (Table 2-1 based on Barber 1 983), adjusted by a sediment delivery ratio (Brooks et 

al. 1 997), and 2) measurements of sediment concentration in rivers (Ministry of Water 

Development 1 992). Typically, the latter would be considered more reliable, but 

available data are primarily from the 1 970's  and cover a very limited number of rivers. 

Therefore, the former was used as the primary method, using river sediment loads to 

cross-check. 
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Figure 2-2. Land-use map for Kenya ca. 2000 (Corbett 1 997). 
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National soil loss was computed using average annual erosion rates by landuse 
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(Table 2- 1 )  (Barber 1 982). The spatial extent of each land-use was inferred from existing 

land cover coverages (Corbett et al. 1 997 - Figure 2-2, summarized in Table 2-1 ). To 

ensure that soil loss estimates did not include eroded material that is subsequently 

deposited downstream (in wetlands, concave slopes, flow control hedges, etc.), estimated 

annual soil loss was multiplied by a sediment yield ratio of 5% (Brooks et al. 1 997). This 

approach is exceedingly conservative because costs due to soil loss from a site are not 

entirely mitigated when eroded material is deposited downstream. Sedimentation in 

waterways is generally considered detrimental to ecosystem processes, and therefore may 

constitute a substantial additional cost, not included here, rather than a benefit. 
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Table 2-1 .  Soil erosion rates and spatial extent for major land cover classes in Kenya 
( 1 999). 

Annual Soil Loss 
Zone Area(m2) Area % Soil Loss (gIm2) (E6 tons) 

Barren or Sparsely Vegetated 3.5 1 E+10 6.1% 250 8.77E+OO 

BroadleafDeciduous Forest 9.83E+09 1 .7% 100 9.83E-0 1 

Cropland/Grassland Mosaic 7.22E+l 0  12.4% 3000 2. 17E+02 

Cropland/Woodland Mosaic 2.30E+09 0.4% 2500 5.74E+00 

Dry Cropland and Pasture 2.26E+1O 3 .9% 4500 1 .02E+02 

Evergreen Broadleaf Forest 1 .49E+1O 2.6% 100 1 .49E+00 

Grassland 1 .06E+ l l 1 8.3% 500 5.30E+O l 

Savanna 1 .64E+l l 28.4% 500 8.22E+01 

Shrubland l .39E+l l 23.9% 750 1 .04E+02 

Urban 1 .55E+08 0.0% 5000 7.74E-O l 

Water Bodies 1 .40E+l O  2.4% 0 O.OOE+OO 

Total 5.80E+ l 1 5.75E+02 

Forest clearing is more readily quantifiable. Several sources confirm that clearing 

rates have average between 1 and 1 .7% per year for the last several decades (Kaufman et 

al. 1 996). An existing land-use map (Figure 2-2) allowed all forestlands to be identified, 

and clearing rates were estimated using an annual forest loss rate of 1 .25%. 

District Analysis 

The next scale of evaluation included districts that define the study area regional 

context. Figure 2-3 shows Kisumu, Nyando and Kericho districts in relation to Lake 

Victoria and the Awach River basin. While Kisumu district does not contact the study 

basin, its importance as a regional trade and manufacturing center warrants its inclusion 

to understand the regional role in the national economy better. Systems diagrams were 

first developed for each district to guide concomitant tabular evaluation. 

Data sources 

Reliable data at the district level were difficult to acquire. Quintennial district 

development plans report on climate and agricultural production statistics, demographics 
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and development indicators. However, resource consumption and trade between regions 

within Kenya are not carefully monitored. 

Kenya is serviced by several pari statal agencies, including nationalized electrical 

power (Kenya Power and Lighting Corporation - KPLC), fuel distribution/refining 

(Kenya Pipeline Authority - KP A) and tea/sugar production (Kenya Tea Development 

Authority - KTDA and Kenya Sugar Authority - KSA). These agencies provide a 

centralized record of regional consumption patterns, and data acquired from them were 

considered reliable. Records of manufacturing, mining, services and transportation are 

not comprehensively collected, and the limited data were judged highly suspect. 

In order to estimate resource use and trade not documented by paristatal agencies 

or MoARD (e.g. metals, services, textiles), it was assumed that consumption is directly 

proportional to utilization of fuels and electricity, using the national analysis as the 

proportional reference point. This assumption is validated by Hall et al. (2001 ), who 

found aggregate economic flows to be highly correlated with fuel use. 

Soil loss and forest clearing estimation 

Regional soil loss was estimated using data from field observations of erosion 

rates for each landuse in conjunction with existing landuse maps. A watershed sediment 

yield ratio of 1 0% was assumed. This value is larger than the 5% assumed for the 

national evaluation because the region is dominated by small basins (Brooks et al. 1 997). 

In particular, considerable local drainage occurs via small escarpment streams 

discharging directly to Lake Victoria and exhibiting signs of extreme sediment load. 

Sediment delivery values were cross-referenced using mean sediment concentrations for 

rivers in the area (Kenya National Water Master Plan, 1 996). These data were not used 



as the primary source because only synoptic measurements, frequently only for the dry 

season, are available; strongly seasonal local climate and land management patterns 

necessitate data sets that are more temporally comprehensive. 

Awach Basin Landuse Subsystem Analysis 

Finally, emergy evaluation was used to compare common land-use subsystems 

within the A wach River basin. This region of western Kenya has limited livelihood 

diversity, with most local inhabitants engaged primarily in subsistence farming and 

animal husbandry. As a result, major land-uses of interest relate to food and fuel 

production. Land-uses analyzed were: 

• Subsistence farming systems (maize, sorghum) 

• Commercial farming systems (smallholder production of sugarcane and tea) 

• Subsistence woodlots 

• Communal and constrained grazing lands for cattle, sheep and goat production 

• Existing forests and shrubland, exploited for charcoal production. 
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Systems diagrams were developed for each land-use as the first step in the 

standard emergy protocol, followed by tabular evaluation. 

Data sources 

Data for local cropping system inputs and yields come primarily from a 

comprehensive study of farm productivity and technique in western Kenya (Jaetzold and 

Schmidt 1 982). These data were used to develop transformities for local agricultural 

products (Table A-7). Average yields and input regimes were used for these evaluations. 

For livestock, woodlot and forest sub-systems, literature data were acquired from 

Simpson and Evangelou (1984, Raikes (1983), Chavangi and Zimmerman (1 987), and 
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ICRAF (2000) describing activities throughout Kenya. Generalized data, however, may 

fail to capture specific system details. For example, livestock systems in the basin vary 

dramatically with altitude, with communal grazing of indigenous (Zebu) cattle and other 

small ruminants dominating the lowlands and paddock grazing of improved breeds (e.g., 

Fresian hybrids) characteristic of highland animal husbandry. As such, two separate 

emergy evaluations were compiled for livestock land-uses. 

No effort to modify yields based on soil functional performance measures or 

degradation status was undertaken. Observational studies like those outlined below for 

soil erosion assessment would be necessary to establish formal empirical linkage between 

soil degradation and crop yields. 

Soil loss estimation 

Soil loss rates were compiled directly from field observations described below 

(soil deflation estimation) for sites at which soils were judged intact. No sediment yield 

ratio was necessary because empirical rates were observed at the same scale as individual 

land-uses. Forest clearing rates were assumed equal to district rates. Total forest area 

was inferred from land cover classifications developed below. 

Erosion Risk Assessment 

Emergy analysis quantifies costs and benefits of competing land management 

scenarios, but relies heavily on estimates of soil erosion. For optimal land-use decision

making, it is critical that effects of alternative interventions to control erosion are 

correctly anticipated and that models identify regions of high risk accurately. Previous 

work (Cohen et al. 2003) illustrated critical accuracy limitations when universal models 

(e.g. USLE - Wischmeier and Smith 1 978), which relate generalized site, soil and 
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management variables to soil degradation, are applied in the Awach River basin. To 

inform emergy-based decision support tools, models that effectively describe the 

association between specific land management decisions and soil degradation were 

necessary. These models are, of necessity, empirical and specific to the region. As a 

result, emphasis was placed on rapid assessment tools that would facilitate application in 

other large areas without requiring assumptions of similar degradation associations. 

After compiling a list of potential contributing factors, a field sampling protocol 

was implemented to quantify site factors from direct observations and collect soil 

samples for subsequent analysis. Potential explanatory factors were grouped into three 

classes: 1 )  site characteristics (vegetation, land-use, soil surface descriptions), 2) soil 

characteristics (physico-chemical properties) and 3) hydrologic/terrain characteristics 

(infiltration capacity, rainfall, slope and slope length, site profile). For each class, a 

standardized statistical modeling framework was developed to reveal conditional 

association patterns between risk factors and soil degradation. The results produced 

multivariate risk equations describing degradation probabilities for each class. 

To assess competing intervention scenarios, risk indices were extrapolated to the 

entire area and used within a cell-based (raster) stochastic spatial simulation. Calibrated 

interpretation of satellite imagery allowed interpolation of risk indices. Alternative land 

management options, presented as thematic spatial data layers, were used in conjunction 

with risk layers to produce degradation probability surfaces for each scenario. 

This provides an estimate of costs; benefits are enumerated from emergy 

evaluations of each land-use. The Agricultural Benefit Ratio, computed on a cell-by-cell 

basis, provides one objective function for quantitative comparison of alternatives. 
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Three sections describe the methods in detail. The first describes data acquisition, 

sampling and pre-processing. For many variables, direct site-level observation was not 

possible (e.g. soil properties, hydrologic properties); methods for inference of these 

factors are presented in this section. Secondary data sources (e.g. terrain indices 

extracted from digital elevation data) are also described. The second, degradation risk 

modeling, describes statistical methods used to relate primary data to soil degradation and 

to enumerate overall degradation probabilities from the suite of predictors. The final 

section, decision support modeling, describes methods to compare land management 

scenarios spatially, ultimately linking predicted risk with emergy analysis results. This 

section includes methods of spatial data layer development from satellite imagery. 

Quantification of Soil Degradation Factors 

This section describes methods for rapid large area assessment, including 

observational sampling scheme and spectrometric tools for soil analysis. Results provide 

factor data necessary to develop statistical risk models and, coupled with digital image 

processing, provide the empirical framework for spatial decision support tools. 

Field Sampling Protocol 

Field data collection was undertaken primarily to gather ground observations of 

degradation and potential explanatory risk factors, controlling for confounding effects 

from sample points throughout a watershed. Where risk factors where not directly 

observable during on-site assessment (e.g. soil properties), the field protocol was 

designed to facilitate sample collection for later analysis. Finally, field data were 

carefully georeferenced to enable satellite image-based interpolation of each risk factor. 
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Sampling period and sample size 

Field observations took place from February to June of 200 1 .  Sampling coincided 

with maximum seasonal rainfall, and, consequently, maximum agricultural activity. 

To cover the entire study basin adequately and control for variability outside of an 

experimental setting, a large sample size was required. Overall, 420 sites were sampled 

using the protocols described below to control for confounding factors. 

Case-control sampling design and additional stratification 

The field sampling protocol was designed to compare sites with obvious 

degradation (cases) to those that appear intact (controls). Case-control protocols have 

been widely used in medical studies where experimental control of risk factors is 

impossible (Agresti, 1 990). The method, also called a retrospective study, approximately 

fixes marginal response distributions to maximize comparative statistical power. Visual 

classification of degradation was deemed sufficiently reliable for site selection purposes. 

It should be noted that, frequently, degraded and intact sites were not explicitly paired. 

Rather, within clusters and basin-wide, approximately equal proportions of intact and 

degraded sites were selected, controlling for major confounders. 

Field sampling was stratified according to anticipated major confounders. Soil 

degradation status was the primary stratum, but sampling was further stratified by 

landuse, elevation and geologic substrate. Additional confounders exist (e.g. specific 

land management activities, slope, land-use history, distance from roads, hydrologic 

position), but these were controlled by random sampling within strata. 

Land-use stratification was achieved by sorting sites into four main categories 

representing the fundamental divisions defined in the Land Cover Classification System 
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(LCCS - United NationslFAO 1 997). These were: 1 )  agricultural land, 2) rangeland, 3) 

forestlwoodlots/shrublands, and 4) other (e.g. wetlands and severely degraded lands). 

Detailed site descriptions and plot measurements further segmented these broad 

categories. Landuse subsystems of particular interest were subsistence and commercial 

crops, communal and constrained pasture, and natural/managed woodlands. Wetlands 

and severely degraded lands (gullies, surface crusting) were also targeted. Sample plots 

were homogeneous to minimize spectral mixing during satellite image analysis. 

Spatial site distribution 

The Awach River basin covers 360 square kilometers with limited road access; as 

a result, dense spatial coverage and evenly spaced sampling were impractical. Instead, a 

cluster-based sampling scheme was used in which 1 0-20 sites along a catena were 

sampled. Maps of geologic substrate and topography were consulted prior to initiating 

each new cluster to ensure that these confounders were controlled. Land-use and soil 

degradation stratification took place in the field. 

Site protocol 

Figure 2-3 gives the site sampling protocol schematic. To conform with the 

spatial grain of Landsat 7 satellite imagery, each plot was square with 30-meter sides. 

Differentially corrected GPS measurements were taken at each plot center. A central 

transect in the direction of steepest slope allowed placement of three within-site sampling 

positions (5, 1 5  and 25-m from the upslope plot margin) for sampling topsoil (0 - 20 cm), 

subsoil (20 - 50 cm), bulk density, infiltration, and for installation of erosion pins for 

surface deflation rate estimation. 
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At each site, potential predictors were noted; Table B-1 in Appendix B shows site 

data collection sheets. Site-level observations were divided into cover characteristics and 

hydrologic/terrain characteristics. Each terrain characteristic - slope, slope length, slope 

shape, hydrologic position - was observed directly and the presence and type of soil 

conservation structures were noted. Detailed cover characteristics included observations 

of structure (dominant life form, number of strata, basal area/density, ground vegetation 

height and canopy height), ecology (annual/perennial dominance, dominant leaf 

morphology, herbaceous/graminoid) and cover (woody vegetation cover, ground 

vegetation cover). Additional site observations included expected flooding frequency 

(i.e. dominance of wetland vegetation), land-use, land-ownership and land-use history. 

Soil characteristics were divided into site parameters (depth to restriction, stone 

cover/grade, classes of soil erosionlhardsetting) and laboratory physical-chemical 



measurements (pH, organic content, cation exchange capacity, texture etc.), obtained 

using high resolution visual/near-infrared reflectance signature analysis. 

Visual degradation classification 
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Field designation of soil degradation was based on visual cues including presence 

of rills or gullies, evidence of root exposure, splash and vegetation pedestals, and 

evidence of sheet wash. Plots were assigned to five erosion classes: intact, mild sheet 

erosion, severe sheet erosion, persistent rills, and gullies. Sites where degradation status 

was not obvious (primarily agricultural sites) were classified as intact. Methods were 

subsequently developed to delineate degradation status based on spectral reflectance 

signatures, providing a more reliable and repeatable criterion. Soil hardsetting/crusting, a 

phenomenon where topsoil becomes impermeable due to particle sorting and organic 

matter depletion (Graef and Starr 2000), was visually delineated into binary classes. 

Soil Sampling 

Soil samples were collected at two depths (topsoil: 0-20 cm, and subsoil: 20-50 

cm) at each of three within-site sampling locations. Samples were returned to the 

laboratory where they were air-dried. These were sieved using a 2-mm mesh to remove 

gravel and analyzed using spectral reflectance procedures outlined below. 

In addition to primary soil samples, bulk density cores were taken at each within

site sampling position. A 1 0-cm core with a diameter of 5-cm with beveled edges was 

driven into the ground until it was level with the soil surface, and then extracted. The 

known volume of soil was placed in a plastic bag, weighed to establish approximate 

water content, then air dried and weighed again to establish dry bulk density. 
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Diffuse Reflectance Spectroscopy (DRS) for Rapid Soil Assessment 

Soils characterization over large areas is expensive because empirical 

characterization requires substantial data sets. An emerging alternative to expensive 

laboratory procedures is the use of visible-near infrared reflectance spectroscopy for non

destructive analytical characterization. Extensive use was made of these methods in this 

work, including spectral regression models of soil properties from existing soil libraries 

and spectral classification of degraded versus intact soils. 

Spectral reflectance signatures 

Each soil sample collected during the field protocol (n = 1260 - 420 sites x 3 

samples per site - topsoil samples only) was analyzed using a FieldSpec™ FR 

spectroradiometer (manufactured by Analytical Spectral Devices Inc, Boulder, 

Colorado). Reflectance spectra were recorded at wavelengths from 0.35 to 2.5 /lm with a 

spectral interval of 1 -nm. Light was provided from a tungsten quartz halogen filament 

lamp (50W bulb; �3200 K color temperature). Each sample was placed in a 12-mm 

deep, 55-mm diameter glass petri dish and placed on a platform directly above the light 

source. Reflected light was collected with a 25° field-of-view foreoptic at a distance of 5 

cm from the sample. Reflectance spectra were recorded twice (rotating the sample 90° 

after the first observation); mean reflectance in each interval was used. Coefficients of 

variation in average relative reflectance were less than 1 % for replicates spectra. 

To calibrate the reflectance sensor to pure white prior to batch processing, ten 

reference spectra were recorded using spectralon (Labsphere®, Sutton, NH). Reflectance 

in each wavelength band was expressed relative to mean white reference readings. 
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Data processing 

Data compression was necessary to allow manipulation within standard 

spreadsheet software. Raw reflectance spectra were resampled to 1 0  nm intervals prior to 

analysis, retaining the spectral end-points of 0.35 and 2.5 /-lm. Resarnpled data were then 

derivative-transformed using first order differentiation with second order Savitzy-Golay 

polynomial smoothing at 20 nm intervals (Fearn 2000). This reduced variance between 

samples arising from optical set-up, ambient light conditions and fluctuating battery 

power conditions. Certain regions ofthe spectra had low signal-to-noise ratios due to 

spectrometer sensor splicing and inherent light source characteristics, and these data were 

omitted. The regions of omission were from 0.35-0.38 /-lm, 0.97-1 .01  /-lm, and 2.46-

2.50 /-lm. The remaining 1 98 1 0-nm spectral reflectance wavebands formed the basis of 

statistical signature analysis. 

Soil spectral library 

Soil spectral libraries were used to develop multivariate statistical models to 

predict laboratory soil characteristics from reflectance spectra. Shepherd and Walsh 

(2002) formulated the basic techniques used in this study. An extensive library of soils 

from western Kenya (n = 5 1 3), collected prior to this study and analyzed using a suite of 

standard laboratory methods, was used to develop calibrations between soil properties 

and spectral reflectance signatures. Standard soil laboratory analysis techniques are 

outlined in Appendix B, along with spectral regression model results. Soil properties 

included soil texture (% sand, silt, clay), soil organic matter, cation exchange capacity, 

pH, and exchangeable ions (P, Ca, Mg, K, Na). Calibrations were developed using 

classification and regression trees (CART) models. 
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Spectral outlier analysis 

Model development using the spectral library approach is valid for assessment of 

new soils only if the new data fall with the calibration bounds of the library. For this 

work, the spectral library was developed for an area much larger than the Awach River 

basin, increasing the likelihood that the range of mineralogical and management variation 

was captured. To validate this critical assumption, a screening test based on principal 

components analysis was developed to identify soils collected from the Awach basin that 

exceed the calibration bounds of the spectral library. 

A standard forward rotation principal components analysis (PCA) was performed 

on untransformed spectral library data to reduce data dimensionality and identify 

orthogonal axes that describe maximum soil spectra variance. The analysis was run using 

a centered variance/covariance cross-products matrix to minimize the effect of outliers on 

axis definition. In general, only those principal components axes that explain more 

variance than expected by chance are selected. Using the broken-stick eigenvalue 

method (PC-ORD - McCune and Mefford, 2000) that compares principal components 

axis explanatory power with the power expected in a random data set, significant axes 

were identified for further interpretation. 

PCA is sensitive to effects of outliers. Using a standard Euclidean distance 

measure, outlier analysis identified those spectra from the library falling greater than 3 

standard deviations from the mean. Seven (7) soils were identified using this distance 

criterion; in a data set of n = 5 1 3 ,  the expected value for s.d.>3 is approximately 5 .  

Principal components ordination was run with and without these prospective outliers to 

observe the strength of their effect. Two soils were identified for omission (CI 052 and 



C838; 6. 12  and 5.73 s.d. above mean distance, respectively). All subsequent analyses 

were performed without these spectra. 
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After identifying significant ordination axes, the eigenvector matrix was pre

multiplied by reflectance spectra data from the Awach field samples (note that the Awach 

soils, collected during field sampling, are distinct from the calibration soil library). This 

process yields principal component scores for each sample, allowing new data to be 

projected into the spectral library data ordination space. Outliers were identified as 

A wach basin soils further than three-standard deviations from the spectral library mean. 

Spectral visualization 

The data compression provided by PCA also facilitates data visualization. To 

extract average and end-member soils, a sub-sampling protocol of spectra from principal 

component axes was used. Individual soil spectra were chosen for only the first two 

principal components. Of interest were spectra that represented component space end

members and average soils. The soil sample with a component score closest to the mean 

was selected along with soils with component scores closest to 2 standard deviations 

above and below the mean. In all, 6 spectra were selected in this manner and plotted to 

observe data set variability, both over the entire bandwidth and for specific spectral 

regions. All ordination was done using first-derivative transformed data, but graphical 

depiction was done with both raw reflectance and derivative transformed data. 

Classification and regression trees (CART) 

Analysis of multivariate soil signatures in this study was done using Classification 

and Regression Trees, grown using CARTTM Version 4.0 (Salford Systems). This 
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statistical modeling approach was chosen for its strength in handling data sets with high 

dimensionality, multi-collinearity, and non-standard data structure (Urban 2002). 

Classification and regression tree analysis is a non-parametric data-mining tool 

that uses recursive partitioning to analyze data with complex multivariate structure 

(Breiman et al. 1 984). The result is a sequence of binary rules that form a decision tree 

by which data are sorted into target classes. The term classification refers to problems 

with categorical targets, while regression trees model continuous response variables. 

One advantage of CART over other statistical classification methods (e.g. linear 

discriminant analysis, canonical ordination) is that no underlying probability distribution 

is assumed for either predictors or target variables, and because splitting rules are 

threshold-based, no normality transformations are required. Furthermore, classification 

trees are able to uncover contingent data structure and identify salient features of 

complex data sets without excessive parameter estimation, avoiding statistical power 

problems often observed with conventional analysis of complex data sets. 

Recursive partitioning and splitting criteria. Tree models are developed according 

to a simple algorithm. Starting with a parent node containing an entire data set, binary 

questions are developed based on predictor variables - either continuous or categorical -

that divide the data into increasingly pure daughter nodes. From the array of potential 

questions, the most effective is selected using one of several criteria (Siciliano and Mola 

2000). Each criterion operates by selecting binary partition criteria that maximize some 

measure of purity (e.g. entropy, residual error) in the daughter nodes (Breiman et al. 

1 984). In developing tree-based models for this study, various splitting criteria were 

compared. In each case, the model with highest cross-validation accuracy was selected. 
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Tree pruning. Recursive partitioning occurs until each tenninal node reaches a 

minimum specified node size. Frequently, however, the optimal tree is not the most 

complex. Excessive partitioning generally results in rule-bases that are unstable, and 

consequently inaccurate, when applied to new data sets. To avoid this overfitting 

problem, V-fold cross-validation was used, resulting in tree pruning based on trade-offs 

between complexity and validation misclassification costs. 

Calibration using tree committees. To avoid problems introduced by the inherent 

assumption that local split optimality results in global model optimality (Breiman et al. 

1 984), committees of trees were grown using data resampling methods. Adaptive 

resampling procedures (ARCing), which adjust resample probabilities based on previous 

misclassification, were used instead of conventional bagging (bootstrap aggregation). A 

committee of exploratory trees (i.e. without pruning) is grown using repeatedly 

resampled data sets, assigning each datum to an outcome node based on the mean (for 

regression) or mode (for classification) ofthe committee. 

Spectral calibrations of soil properties. Using the regional spectral library, a 

committee of trees was grown using spectral reflectance values as predictors, targeting 

each soil property. Library data were divided into calibration (n = 3 1 0) and validation (n 

= 203) data sets. Calibrations were developed using 200 or more committee trees. 

CART 4.0 (Salford Systems, 2000) retains splitting rules for each tree and automates 

rule-base application to new soil spectra, allowing validation accuracy assessment. 

Where regression trees were unstable for a given soil property (validation r2 of 

less than 0.50), binary screening tests were developed. Functionally significant 
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thresholds were defined from the literature (e.g. Sanchez 1 973), providing a binary target 

variable for a classification tree grown using spectral reflectance predictors. 

Case-reference definition 

To discern factors associated with soil degradation reliably, objective measures of 

degradation status were required. While degradation was readily observed at some sites, 

human management may have masked visual cues that imply site degradation at others. 

Most notably, tillage can remove developing rills and vegetation pedestals from the soil 

surface. Furthermore, degradation mechanisms can be active prior to the emergence of 

visual symptoms, resulting in loss of soil quality without diagnosis. Since soil integrates 

physico-chemical indicators of degradation more reliably than site-level diagnostic cues, 

a soil-based case definition is preferable. 

Sites were subjectively categorized according to field classification reliability. 

All sites (e.g., agriculture plots) for which ambiguity was noted during field sampling 

were categorized as uncertain (n = 441 soils from 147 sites). The case definition was 

developed using only samples for which visual classification was deemed reliable (n = 

819  soils from 273 sites). 

A classification tree was grown using the 1 98 spectral reflectance values as 

predictors and binary degradation status as the target variable. Each classification tree 

model was grown using 1 0-fold cross-validation. Prior class assignment probabilities 

were set to sample proportions. This maximizes model balance with respect to 

commission and omission error rate. For each model, total error in addition to omission 

(sensitivity) and commission (specificity) error are computed. The odds ratio provides a 

measure of model effectiveness, with an odds ratio of 1 implying no discriminant ability. 



The model rule base was applied to delineate degradation condition of sites that 

were visually ambiguous and validate designation for sites that were readily classified. 

Soil degradation effects 
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Using a site-level 5-class visual classification, soil properties predicted as 

described above were compared using standard ANOV A. In addition, hardset and non

hardset sites were compared. Soil properties were transformed, if necessary, to meet 

normality requirements, and Bonferroni contrasts at the 95% significance level were used 

to compare soil properties at each level of observed degradation. Similarly, soil 

properties were compared for the binary hardsetting classification. 

This contrast analysis was repeated for soils designated intact or degraded by the 

spectral case definition. For this comparison, a Students's  t-test was sufficient to 

determine if changes in soil properties were significant at the 95% confidence level. 

Rainfall Erosivity and Infiltration Methods 

Erosion risk resulting from hydrologic factors is frequently ascertained based on 

climatic forcing functions alone. However, rainfall erosivity, measured as an index of 

regional rainfall volume and intensity, is of limited empirical value because it is generally 

constant over scales characteristic of this study. It is theoretically well established that 

rainfall intensity is associated with soil particle detachment (Wischmeier and Smith 

1 978), but subsequent entrainment requires flowing water, which is driven by plot- and 

catchment-scale soil characteristics in addition to prevailing climate. Therefore, erosion 

risk may be more accurately estimated using measures of site infiltration rather than 

indices of prevailing climate. The following section describes methods for erosivity and 

infiltration measurement. Later sections will their compare predictive power. 
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Rainfall erosivity 

Isoerodent maps that describe climatic contributions to erosion risk are not 

available for the Awach River region. Typically, rainfall erosivity (R) is computed as 

total storm energy (E - MJ/m2) multiplied by the maximum 30-minute intensity (130 -

mm/h) (Renard et aI., 1 997). However, detailed data on storm intensity were also 

unavailable due to the regions remoteness and lack of monitoring infrastructure, 

necessitating utilization of proximate methods. One alternative (e.g. Millward and 

Mersey, 1 999) employs a quadratic regression equation based on annual rainfall (see also 

Morgan 1 995). Kassam et ai. ( 1991)  used a linear function of annual rainfall for a 

national erosion risk study for Kenya. Using only annual rainfall ignores strongly 

seasonal precipitation patterns that exacerbate erosion because of effects on cover. 

Rowntree (1 983) concluded seasonality is a critical consideration for erosivity 

measurement in Kenya, suggesting the Fournier index as an approximation for local 

erosivity. This index relates mean annual precipitation to rainfall in the wettest month: 

[2-6] 

where Fi is the Fournier Index, Pi is wettest month rainfall (mm) and Pi is annual rainfall 

(mm). The subscript i indicates that calculations were done on a cellular basis using 

mean annual and mean monthly rainfall (Corbett et ai. 1 997). 

Infiltration field protocol 

To quantify site level hydrologic response and explore how local infiltration rates 

affect erosion risk, a sampling protocol was devised to estimate infiltration rates at 

numerous sites throughout the landscape. These data are used later to interpolate 

infiltration behavior to the entire basin based on satellite image interpretation. Infiltration 
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tests were performed in conjunction with site and soil sampling, ensuring stratified 

observations by landuse type, degradation status and spatial location (i.e. elevation, etc.). 

Infiltration assessment was performed on 61 sites. At each of three within-site 

sampling positions, two infiltration rings were set in the ground after pre-wetting, 

resulting in a total of six replicates per site (Figure 2-3). Single-ring design was used to 

minimize transportation costs between sites. Bouwer (1 986) suggests that double-ring 

infiltrometers are unnecessary for field-testing infiltration rates. 

Each infiltration cylinder was 20 cm long of 1 5  cm in diameter. While Bouwer 

(1 986) recommends that ring diameters exceed 1 meter, these dimensions were deemed 

adequate given the logistics of field sampling in remote areas. One end of each ring was 

beveled to facilitate soil penetration. Each ring was set 3-5 cm into the soil surface to 

avoid leaking; penetration distance was minimized to reduce surface disturbance. Before 

each ring was set, surface litter, small rocks and woody plant material were cleared, and 

the site was investigated for macro-pores and cracking. Where possible, these features 

were avoided, but where cracks or leaks were discovered, they were noted. 

Each cylinder was filled completely using water from Kisumu municipality, 

which was judged free of excessive sediment load, and maintained at ambient air 

temperature. The time at which the cylinders were filled was noted, and water depth was 

measured every five minutes for one hour from the cylinder rim. Falling water levels 

introduce error due to changing gravity head in the infiltration model form, but was 

necessitated by problems with transporting sufficient water to run constant head tests. 

After each infiltration test, cylinders were rinsed and dried to avoid rusting. 
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Data processing 

Due to sampling protocol time constraints, antecedent soil moisture conditions 

were uncontrolled. As a result, high initial infiltration rates were observed, indicating 

that cumulative infiltration could not be represented as a linear function of time where 

slope predicts saturated conductivity. The Horton equation (Horton, 1 940), which has 

been widely used to describe the decay behavior of infiltration over time, takes the form: 

[2-7] 

where fp is the infiltration capacity, fe is the saturated infiltration rate (which tends to be 

slightly smaller than the saturated hydraulic conductivity Ks - Haan et al. 1 982), fo is 

excess infiltration capacity at t = 0 (i.e. rate of infiltration increase above fe), and f3 is a 

soil parameter that controls the rate of decrease in infiltration rate (a negative number). 

Data were collected as cumulative infiltration over time. The integral of the 

Horton equation with respect to time provides the following function of cumulative 

infiltration (with integration endpoints: time = 0 and time = t): 

[2-8] 

where Fp is cumulative infiltration. This model form was applied to data from each 

infiltration replicate to estimate base infiltration rates (fe) and initial infiltration rates (fo). 

Model fitting 

The Horton integral function cannot be transformed to linear form, so a non-linear 

regression fitting-algorithm (bounded quasi-Newton optimizer -Mathsoft Inc. 1 999) was 

applied to data from each infiltration replicate to estimate parameters using a minimized 

least squares fit criterion. To ensure that fitted parameters represent the likelihood 

function global minima, various starting parameter values were used. Model validity was 
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also checked by visually inspecting each fit, and ensuring that estimated parameters were 

reasonable given the existing theoretical framework (i.e. � :::; 0, fc and fo 2: 0). 

Spectral reflectance modeling 

The fitted parameter describing base infiltration rate for a given soil was assigned 

as the target variable for a regression tree model built in CART. Given the limited 

precision with which infiltration can be measured using the protocols described, and the 

inherent uncertainty associated with using soil reflectance to predict a physical property 

that is strongly dependent on soil macro-structure, classification trees were also grown 

after sorting the data in functional infiltration classes. A threshold infiltration rate (60 

mm/hr - Brooks et al. 1 997) was chosen to delineate low infiltration sites expected to 

generate runoff during an average intensity storm. A screening model based on spectral 

reflectance was developed targeting this resulting binary variable. To estimate 

infiltration rates for each site for which infiltration data were not collected (n = 359), the 

cross-validated spectral models developed for the 61  sample sites were extrapolated. 

Infiltration transfer function 

Infiltration is a composite variable frequently estimated based on more readily 

observable soil properties (e.g. texture, soil organic carbon). While spectral calibrations 

allow direct inference, identifying soil factors that lead to slow infiltration is useful 

information. Targeting the binary screening classification, standard logistic regression 

methods were used to identify risk factors that contribute to increased probability of slow 

infiltration. The resulting fitted model quantifies association effect direction and strength 

between infiltration and soil properties, providing an empirical transfer function. 
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Infiltration transfer functions based on soil properties allow regions that might 

exhibit low infiltration rates if human management were absent to be identified. This is 

particularly important for agricultural soils that may retain residual hydrologic 

enhancement from tillage, but in their equilibrium state inhibit infiltration. 

Surface Deflation Estimation 

Erosion pin sampling 

Categorical classification of observed erosion status has limited value for 

quantifying soil loss rates; quantitative estimates of soil loss, measured as surface 

deflation over a known period, were achieved using erosion pins. Each pin (a 12 cm steel 

nail) was hammered into the ground until the nail head was level with the soil surface. At 

each within-site location, 6 pins were installed in a radial pattern (Figure 2-3), for a total 

of 1 8  pins per site. Pins were not installed at sites exhibiting active surface disturbance. 

After three months (long rains - March through June), each site with erosion pins 

was revisited. Pins were relocated using a metal detector, and exposure was measured. 

Bulk density measurements informed conversion of measured surface deflation to soil 

mass. Annual loss rates were assumed double measured rates because rainfall during the 

three-month sampling period is typically half annual rainfall (Corbett et al. 1 997). 

Mixed-effects data processing 

Surface deflation data were used to quantify erosion rates according to landuse 

and observed degradation status. However, substantial within plot variability was 

expected due to the scale at which individual rills and splash pedestals form. To account 

for within-site variance, a linear mixed effects modeling approach was used (MathSoft 

Inc. 1 999). This process is similar to nested analysis of variance with multiple 
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treatments; it is widely used for modeling grouped data (Venables and Ripley 1 999). 

Rather than using mean nail exposure at each site, raw data are used in a model form that 

partitions total variance into between plot fixed effects (the objective) and within plot 

random effects. Fitted fixed effect parameters describe the variance explained by the 

selected sorting variable (e.g. landuse, erosion status). Significant differences between 

effects under different sorting variable classes are inferred in the standard way. 

Odds Ratio Analysis of Landuse Degradation and Infiltration 

While pairwise analysis is generally discouraged when confounder effects can be 

controlled in a multivariate setting, observed associations between different factors 

(landuse, cover etc.) were evaluated with respect to binary soil degradation and 

infiltration classes as a first step in evaluating alternative erosion control scenarios. 

Odds ratios (Agresti 1 990) were used to relate degradation and infiltration to an 

array of site-level and landuse factors. They quantifY the association between binary 

variables in a two-way contingency table. Odds are defined as a binomial proportion 

divided by its complement, and the ratio of odds for a 2x2 table provides information on 

the extent to which the conditioning variable affects the probability of the outcome. 

Odds ratios equal to 1 indicate variable independence; values greater than 1 indicate 

positive association. An asymptotic estimator of standard error allows standard statistical 

inference. It was impossible to condition on all potential sorting variables using this 

pairwise approach; statistically controlled evaluation of conditional effects using mixed

effect logistic regression modeling provides substantially more information. 

Where a two-way contingency table is insufficient to capture variable 

associations, or evidence of Simpson's paradox (Agresti 1 990) exists, multi-way 
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contingency tables can be employed. In this situation, two or more sorting variables are 

used, conditioning the observed effect of one variable on the state of another. In this 

manner, evidence of interaction between variables can be quantified. 

Terrain Analysis 

Every model of soil erosion includes some measure of topography as a risk factor. 

The Universal Soil Loss Equation includes two terrain-based factors: slope and slope 

length. While direct observations were made of both these quantities during field 

sampling, and would be sufficient to delineate risk for sampled sites, interpolation of 

observed associations between terrain and erosion to entire regions required a reliable 

Digital Elevation Model (DEM). This facet of predicted risk is particularly important 

because frequently cited works (Desmet and Govers 1 996, Wilson and Gallant 1 996) 

indicate that simple GIS-based terrain models can provide effective diagnostic tools for 

remote erosion risk assessment. For example, Gallant (1 999) suggests that terrain-based 

indices can illustrate dominant spatial patterns without process modeling because terrain 

directly informs physical hydrologic system behavior. 

Digital elevation model development 

A DEM was developed for the region using 1 :50,000-scale topographic maps 

(Bel gut and Nyakach quadrangles - Survey of Kenya, 1 978) with a vertical resolution of 

20 meters. Contour lines and river courses were manually digitized, rasterized (to 30 

meter cells), and linearly interpolated. Concurrent with field sampling, several thousand 

spot heights were collected using survey-grade GPS readings of altitude and position, and 

included during interpolation. Artifacts, depressions and angularity introduced by linear 

interpolation were removed using a 3x3-kernel smoothing filter. The DEM was projected 



into Universal Transverse Mercator coordinates (zone 36 South, Clarke 1 880 spheroid) 

for integration with satellite imagery and ground sampling points. 

Terrain-based indices 
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Through digital terrain analysis, a suite of topographical attributes can be derived 

to produce maps characterizing landscape morphology. Several simple inferences are 

automated within geographic information systems, including slope, aspect, slope shape, 

and watershed accumulation algorithms (Clark Labs 2001 ). The sediment transport index 

(Moore et al. 1 993) was selected for its simplicity and data parsimony: 

[2-9] 

where Ts is sediment transport capacity, As is the hydrologic contributing area, sin P is 

the slope gradient and m and n are constants. The equation contains two components: 1 )  

hydrologic accumulation and 2)  water velocity. The first i s  analogous to slope length 

factors common to many models. The second, using slope as proximate to overland flow 

velocity, is based on unit stream power theory. Areas with high sediment transport 

capacity are predicted to be at elevated risk of erosion; where the first derivative of the 

index is negative, deposition is predicted. 

Soil Degradation Modeling 

U sing primary data collected above, statistical models were developed to relate 

potential explanatory factors to observed degradation status. Three complimentary 

models were initially developed, followed by development of an overall risk model: 

• Variables characterizing site conditions (SITE) 

• Physico-chemical soil properties (SOIL), predicted using regression tree models 

• Hydrologic and terrain variables (HYDRO/TERRAIN). 
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The basic modeling tool is mixed effects logistic regression. However, as with all 

linear modeling techniques, multi-dimensionality constraints to statistically powerful 

model development exist. To reduce model dimensionality and eliminate predictors that 

are conditionally independent of soil degradation, graphical models were used. 

Standard and Mixed Effects Logistic Regression 

Site condition was not described using a continuous variable. While sites were 

visually designated into 5 classes, spectral methods were used to classify sites only into 

binary categories: degraded and intact. Since the spectral case-reference definition 

provides the most robust assessment of soil condition, all risk factors needed to be 

statistically related to a binary outcome, necessitating use of logistic regression (Agresti 

1 990) where continuous and categorical variables are used to predict the probability of a 

positive outcome. Since probabilities are constrained between 0 - 1 ,  a link function is 

necessary to allow predictors to remain unconstrained. The most widely used, the logit 

link, is defined as In (p / 1 - p), where p is the proportion of positive outcomes; this link 

results in the characteristic logistic curve shape. Logistic models are fit using maximum 

likelihood, and goodness-of-fit assessed using statistical deviance. 

The sampling design used in this study results in three soil samples per site. Each 

was spectrally categorized as intact or degraded, but within-site disagreement was 

evident. One method to deal with this disagreement is to consider only those sites with 

two or more soil samples screened positive as degraded. However, this approach fails to 

recognize the heterogeneity of soil degradation. By assuming within-plot observations 

are dependent because of nested sampling, a more realistic statistical relationship can be 

obtained. Mixed effects models use within-site variability as a model component. For 
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mixed effects logistic regression (both binary and ordinal), specific software was required 

(MIXOR v. 2.0, D. Redeker and R.D. Gibbons - Discerning Systems Inc. 2000). MIXOR 

models are fit using a restricted maximum marginal likelihood solution. 

Graphical Modeling 

In each model, the number of potential predictors is large. Multi-dimensionality 

substantially reduces statistical power for estimating conditional effect strength within a 

logistic regression model. Standard backwards elimination procedures can allow model 

parsimony to be optimized, but frequently stepwise deletion criteria are not flexible. In 

particular, use of the Akaike Information Criterion (AIC) for variable deletion often 

results in more complex model forms than those selected using deviance or Bayesian 

Information Criterion (Edwards 1 995). 

To avoid co-linearity issues and provide graphical output that allows rapid 

interpretation of complex association patterns, graphical modeling, an extension of 

hierarchical log-linear modeling, was used. A detailed description ofthis approach can 

be found in Edwards (1 995). Software designed specifically to execute graphical models 

is called MIM v 3 . 1  (Edwards 1 995). The resulting models list all variables as graph 

nodes with arcs linking nodes that are conditionally associated. No implication of causal 

influence is implied, simply statistical association. The results offer rapid and efficient 

screening of conditionally associated predictors for all subsequent regression analyses. 

All graphical models in this study were initialized to homogeneous saturated 

models (all variables are assumed associated with all others). Stepwise deletion 

algorithms were used to remove arcs sequentially based on deviance comparison of 

models with and without a specific arc. Difference of deviance is chi-squared distributed 
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with degrees of freedom equal to the number of eliminated parameters. The arc with the 

highest deletion probability is removed, defining a new model, from which the sequential 

process again attempts to remove non-significant arcs. This proceeds until no arcs have 

deletion probabilities greater than the critical significance level. Arc deletion at a = 

0.001 level of significance throughout this work ensured that only strong conditional 

associations would be used for predictive modeling. Settings for deletion protocols 

included coherent backwards selection and restricting models to decomposable forms. 

Site Level Risk Factors (SITE) 

Graphical models were used to determine conditional associates of observed 

degradation status among site variables. These include landuse, vegetation and stone 

cover, and structural characteristics (e.g. leaf morphology, life pattern, height). After 

relevant associations were identified, association strength and direction estimates were 

computed using mixed effects logistic regression. Model significance, estimated using 

the Likelihood Ratio Test (LRT), compares current model deviance to null model 

(intercept only) deviance to provide a global goodness-of-fit metric. Model residuals 

were explored to ensure that implicit model assumptions were not violated. 

Model sensitivity (correctly predicted yes outcomes), specificity (correctly 

predicted no outcomes) and predictive odds ratio were computed for each model to 

provide further indicators of model fit to observed data. 

Soil Erodibility Risk Factors 

A soils ability to resist detachment, by either raindrops or flowing surface water, 

is the conceptual quantity that soil erodibility describes. This portion of the study 

compared existing models of soil erodibility with observed degradation, and, where 
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universal models were inadequate, developed empirical alternatives using the analytical 

framework of graphical modeling followed by mixed-effects logistic regression. 

Prospective analysis assumption 

Soil erodibility affects erosion risk, but the compliment also holds: soil erosion 

affects a soil 's  inherent ability to resist erosion. The standard nomograph is based on 

properties (e.g., soil carbon and silt content) that are expected to diminish due to 

preferential entrainment as soil erosion proceeds. Therefore, soils with evidence of 

advanced erosion should exhibit qualities that indicate increasing resistance to erosion. 

As such, defining erodibility according to observed conditions at the time of soil 

sampling may provide incomplete or misleading results. The optimal manner to 

circumvent this problem is to design a prospective study that first measures soil 

properties and subsequent erosion rates. The current study could provide such a baseline 

if observations of post-sampling degradation were made. 

In order to make use of the existing data set, the assumption is made that sampled 

data are prospective: that is, erodibility can be estimated based on observed erosion status 

during soil sampling. This assumption will be corroborated using linear regression 

between erosion-pin estimates of erosion rates observed after soil sampling and predicted 

erodibility. A positive association provided evidence for assumption validity. 

Standard USLE soil erodibility nomograph 

Extensive experimental data sets (Renard et al. 1 991)  have shown substantial 

variation in erodibility between soils; empirical models relating specific soil properties to 

predicted erodibility have been developed. The most widely used of these is a 

nomograph (USLE - Wischmeier and Smith 1 978) that relates readily measurable soil 
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properties to experimentally observed erosion rates. This nomograph, common to many 

soils analysis texts and omitted here, can be summarized in equation form: 

Kfact = (1 .29)[2. 1E-6 X f/ 14 x (12 - POM) + 0.033 x (Sstr- 2) + 0.025 x (fperm - 3)] [2- 1 0] 

fp = P silt ( 100 - P clay) [2-1 1]  

where Kfact is  estimated soil erodibility based on PoM = % soil organic matter, Psi1t = % silt 

content, P clay = % clay content, Sstr = soil structure index and fperm = soil permeability 

index. The latter two are adjustment factors (second estimate factors). 

U sing soil properties inferred from spectral reflectance, the association between 

predicted soil erodibility and observed degradation was determined using mixed effects 

logistic regression with nomograph-predicted erodibility as the only predictor. 

A second check of the standard nomograph for predicting erosion in the study 

basin was based on the following discussion about applicability of concurrent 

measurement of degradation and soil properties to predict degradation. Using a Kenya 

Soil Survey 1 :250,000 regional soils map (Andriesse and van der Pouw 1 985), polygons 

of distinct soil types were identified. Erodibility estimates at all sites spectrally judged 

intact and falling in the same soil polygon were averaged. Using satellite image 

interpolation of degradation (described below), the proportion of each soil polygon 

predicted as degraded was determined. A linear regression relating the proportion of 

degraded land in a polygon to mean predicted erodibility of intact sites in that polygon 

was used to characterize the predictive power of the standard nomograph for this region. 

Local erodibility (SOIL) 

Given edaphic and climatic differences between where the USLE erodibility 

calibration was performed and this study area, the predictive ability of standard methods 



was uncertain. An alternative to global methods is empirical development of a regional 

erodibility index given observed soil properties. 
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The entire suite of soil properties was placed into a graphical model that included 

soil degradation status. Conditionally dependent predictors were defined using standard 

graphical model protocols. These predictors were used within a mixed effects logistic 

regression model to determine association strength and direction. The resulting fitted 

logit model provides a formula similar, though unitless, to Eq.2- 1 0 and 2-1 1 .  

Hydrologic and Terrain Risk Factors (HYDRO/TERRAIN) 

The third class of risk factors used to develop regional soil degradation models 

includes those variables describing local sediment transport capacity. Sediment transport 

capacity conceptually lumps hydrologic behavior and basin geomorphology. Using 

Universal Soil Loss Equation terminology, factors R, L and S are combined. A suite of 

potential variables for estimating each factor was compiled for comparison, and a 

hydrologic/terrain model of erosion risk developed. 

Hydrologic variables 

Site-level infiltration, inferred from spectral reflectance modeling. is the primary 

predictor. Annual rainfall amount and erosivity, estimated using the Fournier Index, 

were included as factors in this analysis. Soil depth restrictions are assumed to indicate 

reduced potential to absorb precipitation, and were included as a risk factor. The 

presence of conservation structures, generally designed to impede or eliminate surface 

runoff, was used as a predictive variable despite the observed rarity of these efforts in the 

region. Finally, evidence of frequent flooding, a binary variable, was included. 
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Terrain variables 

Slope, slope length and slope shape were all quantities observed during field 

sampling. However, there is substantial benefit in models that obviate the need for 

ground sampling, instead relying on digital elevation data. The sediment transport 

capacity index presented above is one indicator that has been proposed as a tool to 

delineate rapidly between high risk and low risk areas over large areas using only a DEM. 

Using standard GIS commands (Clark Labs 2001 )  to define drainage networks 

and accumulation patterns throughout the basin, estimated hydrologic convergence (As in 

Eq. 2-9) was computed for each cell; this quantity is intended to represent slope length. 

The slope of the cell (p in Eq. 2-9) was also inferred from the DEM. Model exponents (n 

and m in Eq. 2-9) were set at 0.6 and 1 .3, respectively. Sediment transport capacity 

estimates at each site were extracted from the coverage resulting from GIS application, 

providing an additional predictor variable for model development. 

Model development 

A standardized risk factor modeling framework combining conditional associated 

variable identification using graphical models, followed by mixed effect logistic 

regression to quantify effect direction and strength, was followed using all hydrologic 

and terrain variables available. 

Overall Risk Model Development 

Each fitted model (site, soil, hydro/terrain) results in an equation that quantifies a 

continuous risk factor. The combination of these three risk factors into an overall risk 

model was performed, again using mixed effects logistic regression. This overall risk 

factor model defines the probability of degradation given all prospective explanatory 
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variables, and allows conditional odds of degradation to be quantified for each landuse. 

Conditional degradation odds provide the basis of spatial decision support modeling. 

Spatial Inventory and Decision Support Modeling 

To define land management strategies that maximize real wealth across an entire 

landscape required 4 major steps: 

• Predict emergy yields for each landuse given climatic data and soil degradation 
status, 

• Define soil degradation risks given a comprehensive list of potential explanatory 
factors, including land use, 

• Interpolate risk models over basin using satellite image processing, 

• Compare alternative land-use scenarios, based on inferred change matrices 
between 1 986 and 200 1 ,  given computed risk and yields. 

Steps 1 and 2 have been presented; steps 3 and 4 are explained below. 

Satellite Image Analysis 

Plot data were used for spatial decision support after interpolation. An array of 

geostatistical tools exists for spatial interpolation given certain geographic sampling 

constraints. The most widely used are simple inverse distance weighting (IDW), kriging 

and spatial simulation. All rely on the core concept of spatial autocorrelation and make 

the simplifying assumption that proximity can be used to predict condition. This 

assumption is hypothesized to be inadequate for the local condition due to fine-grain 

landscape heterogeneity (resulting in large semi-variogram nugget variance) and 

distances between sampling locations (resulting in sites being further apart than the range 

of auto-correlation). Satellite image processing offers the most viable alternative for 

statistical inference of site characteristics from field observations, and extensive use was 

made of remotely sensed data to create maps necessary to evaluate land use scenarios. 
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Satellite image acquisition and pre-processing 

Two Landsat 7 ETM scenes (Path 1 69 Row 60, and Path 1 70 Row 60) were 

required for basin coverage. These were obtained for 3 and 1 0  April, 200 1 ,  respectively. 

The scenes were radiometrically corrected to adjust for sensor drift, solar angle variation 

and variable atmospheric interference (mean r2 for band-by-band regression corrections = 

0.955), then mosaicked using pseudo-invariant ground features in the region of scene 

overlap (Jensen, 1 996). A spatial subset of the mosaicked scenes covering the Awach 

Basin was extracted. For both radiometric and geometric correction, the first scene (Path 

1 69, Row 60) represented the reference image because it contained 80% of the basin. 

Formal geometric registration, done only for the image subset, was based on 1 8  

identifiable landscape features (e.g. road intersections, quarries, river confluences) that 

were georeferenced and differentially corrected during field sampling. A first-order 

affine transformation with nearest neighbor resampling (Clark Labs, 2001)  was used, 

with a root-mean square (RMS) error of 0.34 pixels, or approximately 1 0 m. 

Satellite imagery from February 1 986 was also obtained for the region. 

Radiometric and geometric corrections of the 1 986 scene were performed using the 2001 

scene as the benchmark. Radiometric correction was done using band-by-band 

correlation adjustments of gain and offset (Jensen, 1 996), determined from regressions 

between band reflectance from pseudo-invariant targets for 2001 versus 1 986. The mean 

coefficient of determination value for radiometric regression models was 0.96. 

Geometric registration, using linear interpolation, was achieved using 9 points distributed 

throughout the study area. Spatial root-mean-square error was 0.65 pixels (- 20 m). 
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Data extraction 

GPS coordinates from each field plot allowed reflectance data in six Landsat 

bands (excluding the thermal band) to be extracted to provide classification model 

predictors. In addition to reflectance data, several standard indices were computed as 

additional predictors. These included the Normalized Difference Vegetation Index 

(NDVI - Jensen 1 996), a spectral measure of vegetative biomass, and various band ratios 

(Band3 :Bandl ,  Band5 :Band3, Band5 :Band2, Band 2:Bandl ,  Band4:Band3, and 

Band3 :Band2). These ratios were selected using a t-test to describe the degree to which 

mean values were different between intact and degraded sites. Only those band ratios 

showing significant differences at p = 0.05 were selected for use in further analysis. 

Image classifier algorithms 

Standard methods for image supervised classification include linear discriminant 

analysis (LDA), wherein models are fit to minimize within class variance and maximize 

between class variance, and a maximum likelihood (ML) algorithm based on Bayesian 

inference of posterior class probabilities from category means and variance/covariance 

information. These were explored in this study in comparison with tree-based methods. 

Tree-based methods have a distinct advantage over linear statistical tools in that predictor 

collinearity and normality are irrelevant, and contingent data structure can be elucidated. 

Accuracy assessment is done using standard error matrices for both calibration and 

validation. Standard summary statistics for model accuracy assessment (Kappa, Chi

squared goodness-of-fit) are computed for each model. 

Detailed validation accuracy comparison of the LDA and ML methods with tree

based methods was performed. Trees were grown using CART 4.0 based on the same 



predictor data available to LDA and ML. Results indicated that tree-based models 

outperformed standard supervised classification methods by upto 30%. As a result, 

decision tree models were used for satellite image processing throughout this work. 
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To translate rule-bases provided by CART into digital images, the Knowledge 

Engineer/Expert Classifier module in ERDAS Imagine 8.5 (Leica Geosystems 2001 )  was 

used. All other satellite image processing and GIS analysis were done in Idrisi v32 

Release 2 (Clark Labs 2001 ). 

Each model was evaluated using several summary indices. Most important was 

overall accuracy (% correct). Accuracy values were reported for both classification and 

cross-validation. Also important for binary classifications were sensitivity (correct 

positives), specificity (correct negatives), and odds ratios. Note, however, that for 

models predicting binary variables with low case prevalence, odds ratios can be 

misleading and attention should focus on sensitivity/specificity measures of model fit. 

For multi-category classification models, a matched pair index called Kappa (Agresti 

1 990, Jensen 1 996) was computed. Kappa ranges from -1 to 1 ,  with values closer to 1 

indicating strong convergence of model predicted and observed classes. 

Spatial Inventory 

Extracted satellite image data were used to develop cross-validated classification 

tree models to produce spatial layers that provide inventories of current and recent 

conditions in the A wach basin. Inventory coverages were developed for degradation 

classes (binary and ordinal), infiltration classes and landuse. 

Landuse in particular presented classification challenges. Many land-uses were 

spectrally similar due to the time of year (early growing season) for which the scenes 
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were obtained. Specifically, subsistence agriculture appeared similar to bare soil; 

managed forests could not be distinguished from communal forests; and wetlands, dense 

pastures and sugarcane had similar reflectance spectra. Field classification of land-use 

was made regardless of synoptic cover conditions, degradation status, elevation (a proxy 

for precipitation) or geologic substrate, confounding spectral similarity within land-use 

classes. To compensate for spectral confounders, ancillary data were added as predictors, 

including elevation, slope, geologic substrate and reflectance variance (5x5 kernels). 

Change Detection 1 986-2001 

Rule-bases for interpreting satellite imagery to assess degradation, slow 

infiltration and landuse at each pixel were applied to the 1 986 scene. Several direct 

comparisons between years were performed. First, a comparison ofNDVI values (Jensen 

1 996) provided spatial patterns of vegetation reduction between sample times. Second, 

proportional changes between 1 986 and 2001 were computed to evaluate the direction 

and magnitude of changes in the basin. Finally, conditional change matrices were 

developed for landuse, degradation and infiltration class. These matrices, also called 

Markov matrices (citation), contain pixel counts for each conditional transition (e.g. 

dense pasture to degraded pasture), which are converted to transition probabilities, 

describing the likelihood of a pixel becoming any given class in the future given present 

class membership. A transition probability matrix is essential to formulating future 

landuse maps under a variety of land allocation scenarios. 

Spatial Model Development 

Natural resource management requires decision support tools that provide reliable 

predictions about consequences of competing alternatives. For soil erosion, risk factors 
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can be divided into two groups: a) variables that can be managed and b) variables that 

must be accommodated by management. The first group is contingent on the second; 

certain variables define the context and constraints within which land use decisions are 

made. The decision support model for this region therefore uses the spatial pattern of 

these contextual variables so that land management tradeoffs can be quantified. 

Specifically, the model provides probabilities of soil degradation for various land-uses 

according the location for which they are proposed. These probabilities can be related to 

actual soil loss based on surface deflation data, and linked to emergy yields for each 

proposed alternative landuse to determine the net benefit of that activity. Maximizing 

agricultural benefit provides the model objective function. This model, linking risk and 

sub-system environmental accounting, has four main parts: 

• Rasterized risk inference conditioned on assigned landuse. 

• Maps of proposed landuse scenarios. 

• Expected Agricultural Benefit Ratio for each landuse, contingent on degradation 
status and elevation class. 

• Stochastic simulation that links degradation probabilities, landuse change 
trajectories and anticipated yields. 

Spatial erosion risk inference 

All three risk factors (site, soil, hydro/terrain), arising from fitted logistic 

regression models, were spatially interpolated as the foundation of a landuse decision 

support model. Interpolation procedures were different for each factor. For the 

hydro/terrain factor, interpolation was done by developing maps for each of the 

component variables (e.g. infiltration, soil depth, slope, terrain indices, slope shape). In 

contrast, the soil factor was interpolated directly using satellite image reflectance data. 

The primary reason for this is that there is limited utility in spatial inference of individual 
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soil properties from satellite imagery when the target of interest is a composite soil 

variable. Ideally, geostatistical interpolation would contribute to soil risk surface 

development, but the spatial extent and heterogeneity of the study area limited 

application of these tools. Finally, the site management factor included one variable that 

was interpolated separately (stone cover), with the remainder based directly on landuse, 

or on inference about characteristics (vegetation cover and height) of each landuse. 

Overall risk was computed on a cell-by-cell basis using interpolated risk factor 

values, applying parameters from the fitted overall risk logistic regression model. 

Soil risk interpolation: Soil erodibility is defined as a function of select soil 

properties, identified using graphical modeling. A model was used to relate erodibility 

scores, defined by the fitted model containing these select soil properties, to reflectance 

data. The association between cover and erodibility was assumed sufficiently strong to 

implement a regression model despite vegetation confounding effects. 

Erodibility scores were quantitatively defined by the fitted logistic regression 

model. Because both predictor (satellite reflectance data) and target (erodibility score) 

are continuous and unconstrained, linear regression was considered the appropriate 

method. Stepwise multiple regression with variable deletion based on the Akaike 

Criterion was the selected protocol. 

Site risk interpolation: Site risk is a function of landuse and land cover 

characteristics. Landuse was inferred directly for 2001 and 1 986, and scenarios were 

developed for 201 6, outlined below, for assessing erosion control interventions by 

landuse transitions. In addition to landuse, the site risk model contained information 

about cover and structure that can be inferred from satellite imagery. For assessment of 



future landuse scenarios, nominal levels of cover and structural characteristics for each 

landuse were used. This assumption ignores within landuse management variability, 

which was substantial, particularly as a function of elevation. However, absent of 

detailed component models, this simplification was necessary. 
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Hydro/terrain risk interpolation: The hydrologic and terrain indices identified as 

conditionally associated with degradation were each interpolated separately. Infiltration 

rate classes were already interpolated using satellite imagery, and many ofthe factors are 

derivatives of the DEM that can be produced directly. Slope shape was inferred using a 

terrain analysis tool in Idrisi (Clark Labs 2001 ), which classifies pixels into 12  

topographic classes. These were aggregated into the four classes used to characterize 

sites during field sampling: straight, convex, concave and variable. Soil depth was 

modeled as a function of slope and degradation status. 

Overall risk model: The overall risk model is applied directly from the fitted 

logistic regression model that integrates the three risk factors. The resulting map of logit 

scores was translated into degradation probabilities and evaluated against existing maps 

of degradation inferred directly from satellite imagery after classifying the model 

predicted probability map into binary categories. This was done for 200 1 ,  for which the 

model was developed, and back casted to the 1 986 condition as a test of model validity. 

Inherent risk: For later analysis it was useful to delineate risk into two categories: 

management sensitive, or adjustable risk, and management insensitive, or inherent risk. 

Adjustable risk can be amended by decision makers on the ground, while inherent risk 

arises from site characteristics that are inflexible. Inherent risk was defined as the 

weighted sum of soil and hydro/terrain risk factors. While portions of both factors (e.g. 
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soil organic carbon and infiltration) are sensitive to management decisions, they are 

treated as fixed variables, primarily because rates of change of these factors are unknown. 

Landuse scenario development 

Change scenarios were divided into two types. The first explored changes in 

relative proportions of land use types to improve conditions in the basin. The second 

change scenario allocated landuse weighted according to landuse degradation 

probabilities and inherent site degradation risk. 

Proportional adjustment scenarios: Forecasting landuse changes was achieved 

using a stochastic Markov model. The Markov transition matrix, containing conditional 

probabilities for each landuse transition, was manipulated based on scenarios presented 

below. Stochastic simulation was applied to the current landuse map based on revised 

transition probabilities to produce a future landuse map. 

This process is automated in Idrisi (Stochastic Choice Module) (Clark Labs 

2001 ). The conditional probabilities for a specific pixel are summed beginning with the 

first transition and compared with a map of random numbers between 0 and 1 .  The 

landuse class at which the cumulative sum exceeds the random threshold is the class to 

which each pixel is assigned. The resulting image is distinctly less homogeneous than 

input landuse maps, and different output images result from each module run. 

Changes in transition probabilities were constrained by the requirement that 

transition probabilities from a specific landuse type sum to 1 (transition probabilities to 

any landuse type could be more or less than 1 depending on whether that landuse was 

declining or increasing in time). For the scenarios presented below, transition 

probabilities were changed for a specific landuse, which required adjusting other 
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transition probabilities to meet this constraint. Each transition probability was adjusted 

by the same proportion rather than the same absolute value. 

Eight different landuse scenarios were developed for comparison within the 

spatial model, including the scenario where transition probabilities are left unchanged. 

• Scenario 1 (Do Nothing) - assess predicted future landscape in the absence of any 
changes in the transition matrix. 

• Scenario 2 (Commercial Agriculture) - change transition probabilities such that 
the probability of any landuse converting to commercial agriculture doubles. 

• Scenario 3 (Reforestation) - increase the transition probability to both forest and 
shrubland by 50% each. 

• Scenario 4 (Reduced Livestock Density) - decrease the transition probability to 
sparse pasture, and increase the transition probability to dense pasture by 50%. 

• Scenario 5 (Active Badland Restoration) - keep transition probabilities constant 
for active landuse types (pasture, agriculture) but increase transition probability 
between severely degraded lands and shrub lands by 50%. 

• Scenario 6 (Combined Efforts) - simultaneously increase commercial agriculture 
by 50%, increase forest and shrub land cover by 25%, reduce degraded pasture 
transition probability by 25% and increase transition between severely degraded 
lands and shrublands by 25%. 

• Scenario 7 (Radical Transformation) - deforestation and wetland encroachment 
stops (transition probabilities go to zero), severely degraded land transitions to 
shrubland and pasture with a probability of 0.75, sparse pasture is improved to 
dense pasture and woodland with a probability of 50% and commercial 
agriculture transition probabilities double. 

• Scenario 8 (Historic Condition) - lowlands (>1400 m) entirely shrubland except 
where wetlands were observed in 1 986, highlands (> 1 400 m) entirely forest. This 
condition was not implemented by adjusting transition probabilities, but was 
assessed using the same spatial model framework. 

Spatially targeted landuse change scenarios: Using Markov matrix adjustment to 

explore land cover change ignores spatial constraints by allowing total landuse allocation 

flexibility. For example, erosion risk is variable across the region, and targeting high-risk 
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landuse types to regions with low inherent risk of degradation may improve watershed 

condition without changing the rates and proportions of rural agricultural extensification. 

This hypothesis was explored by manipulating Markov transition probabilities 

according to two factors: site inherent risk, defined above, and degradation proportions 

for each landuse. Conditional probabilities of conversion to land uses with higher than 

average degradation prevalence are lowered at sites with high inherent risk; conversely, 

transition probabilities are raised at sites with lower inherent risk, maintaining landuse 

proportions and satisfying the constraint that transition probabilities sum to one. The 

stochastic simulation process for generating landuse maps was applied using risk 

weighted transition probabilities and evaluated using the same assessment framework. 

Emergy yield functions 

Harvest yields exhibit substantial variability from both inherent soil functional 

capacity and climatic inputs. Transformity values and summary indices (including ABR) 

were computed for nominal yields measured across western Kenya (Jaetzold and Schmidt 

1 982), adjusted in a simplified manner to account for the documented effects of soil 

degradation on reduced agricultural yields (LaI 1 998, Williams et al. 1 983). As 

previously presented, the assumption was made that for all intact sites, regardless of 

agroecological zone, yields were constant. 

Optimality Criteria and Scenario Comparison 

Landuse optimality was defined by maximizing the agricultural benefit ratio 

across the basin. Maximizing this quantity internalizes costs of soil erosion along with 

benefits of using land to support humans. A conceptual flowchart of the spatial model to 

determine expected ABR values under each landuse scenario is presented in Figure 2-4. 
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Figure 2-4. Conceptual flow chart of spatial model of erosion risk and watershed-scale 
net benefit indices. 
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EMERGY ANALYSES 

Emergy evaluations were compiled at three scales. First, a national evaluation 

was developed, followed by district scale assessments. These analyses provide a regional 

context for the soil erosion problem. For analysis at the watershed scale, six landuse 

subsystems were evaluated. 

National Emergy Analysis 

Systems Diagram 

An energy systems diagram synthesizing the Kenyan economy is presented in 

Figure 3 - 1 .  This diagram concentrates on resource flows that cross the system boundary 

and the organization of major internal components to make use of that energy. Primary 

renewable flows are sunlight, rainfall, and deep heat; purchased goods, fuels, and services 

are also shown. The purchased sources are depicted in aggregate to avoid excessive 

diagram complexity; they were examined in considerable detail for the analysis. 

Internal production systems include forests, croplands (commercial and 

subsistence farming), rangelands, and coastal mangroves and coral reefs. Livestock, 

fisheries production, and natural fauna are also depicted. In addition to direct harvest 

from these particular sectors, the associated costs of soil erosion are depicted (storage 

labeled S in each production symbol represent stocks of soil capital), along with 

consequent impacts on national aquatic resources. 

Major manufacturing sectors include agricultural processing, leather and textile 

industries, and metal/fuel/mineral processing. These, with tourism, form the core 
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economic revenue generators. The governments role in protecting wildlife, providing 

services to urban and rural populations and securing international loans is also shown. 

International debt, currently 61% of GDP (GDP = $10.4 billion) (World Bank 2002), is 

repaid as principal (P) and interest (I); the diagram illustrates how that revenue is 

generated, and how it is spent on importing goods and services from the world market. 

Spatial Surfaces of Renewable Energy Flows 
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Each renewable source of energy is delivered with substantial spatial variability. 

Spatial characteristics are of interest from a resource allocation perspective, but are also 

necessary to avoid estimating annual flows based on point estimates biased to certain 

regions of the country. Renewable energy flow surfaces were interpolated from existing 

point measurement databases for deep heat, wind and annual precipitation. 

Deep heat data were obtained from a global database of point measurements of 

heat flow in 1 0-3 Watts per square meter (Pollack et al. 1 99 1 ). The point coverage for 

Kenya was interpolated using a standard second-order inverse distance-weighting 

algorithm (Idrisi Release 2) (Clark Labs 2001 ). The resulting surface is presented in 

Figure 3-2a. The region ofthe Rift Valley that is currently used for geothermal can be 

seen in the western third of the country. A similar map for wind based on surface wind 

speed observations was developed using the same interpolation method (Figure 3-2b). 

An existing spatial database (Corbett et al. 1 997) of annual precipitation is presented in 

Figure 3-2c. Other renewable flows were unable to be defined in a spatially explicit 

manner, which may introduce error into the flow estimates. Additional spatial data of 

considerable importance included an existing digital elevation model (DEM) of the 

nation (Corbett et aI. 1 997), and land-use/land cover maps, previously presented. 
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National Emergy Table 

Table 3-1 presents annual emergy flows for Kenya in 1 999. The table is 

comprised of renewable flows, indigenous renewable uses, indigenous non-renewable 

resource extraction, imports and exports. For each item, energy or material flows (J/yr or 

g/yr) are indicated, followed by the transformity estimate (sej/J or sej/g). The product of 

these two values is the emergy flow (sej/year), and the ratio of the emergy flow to the 

emergy:dollar ratio is the estimate of the macroeconomic value of that flow (in units of 

Em$). Footnotes to the table including raw data and transformity estimates, data sources 

and energy conversion equations are given in Table A. 1 in Appendix A. Following the 

standard evaluation protocol (Odum 1 996), only the largest renewable energy flow is 

used in delineating the national renewable resource basis. 

Within Table 3-1 , items 1 1  and 12  refer to agricultural summary tables that can be 

found in Table A-3 in Appendix A. Rather than assume a nominal transformity value for 

agricultural goods, transformities were developed for each specific product. Overall, 

agriculture and livestock production contribute 5 .4E22 and 3 .99E22 sej per year. 

The major internal sectors listed in the category Indigenous Renewable Energy 

Use are agriculture and livestock production, followed by managed forest production and 

fishery yields. Rapidly growing flows of geothermal and hydroelectric electricity 

generation, the primary national sources of electricity, are minor in comparison, 

indicating the lack of rural electrification. 
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Figure 3-2. Renewable energy surfaces for Kenya: a) deep heat flow (W/m2/yr), b) 
annual average surface wind speed (m.s) and c) annual precipitation (mm/yr). 
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Table 3- 1 .  Emergy evaluation of resource basis for Kenya (c. 1 999). 
Note Item Raw Units Transformity Solar Emergy EmDollars 

(sejlunit) {E20 sej) (E9 1 997 US$} 
Renewable resources 

1 Sunlight 3 .70E+21 J  1 36.96 0.32 
2 Rain, chemical 1 .62E+18J  3 1 000 503 . 1 5  4.30 
3 Runoff, geopotential 2.78E+17J 47000 1 30.57 1 . 1 2  
4 Wind, kinetic energy 3 .39E+18J  2450 83 .08 0.71 
5 Waves 3 .34E+ 1 7  J 5 1 000 1 70.49 1 .46 
6 Tide 5 .49E+17J 73600 404.24 3 .45 
7Earth Cycle 1 . 1 5E+1 8J 58000 665 .47 5 .69 

Indigenous renewable energy use 
8 Hydroelectricity 1 . 1 2E+16J 2.77E+05 3 1 . 14 0.27 
9Geothermal Electicity 2.25E+15J  2.69E+05 6.05 0.05 

10 Agriculture Production 1 .  62E+ 1 7  J see Table A-3 143 .2 1 1 .22 
1 1  Livestock Production 1 .3 1E+16J see Table A-3 145.42 1 .24 
12Fisheries Production 7.47E+14J 9.42E+06 70.38 0.60 
13 Fuelwood Production 1 .72E+1 7J 3 .09E+04 53 . 10  0.45 

Nonrenewable flows from within the systems 
14Const. Mater. (sand, ballast) 3 .69E+12g 1 .  69E+09 62.36 0.53 
1 5 Soda Ash 5.8 1E+1 1 g  1 .69E+09 9.82 0.08 
1 6Fluorspar, Salt, Limestone 1 .72E+1 1 g  1 .  69E+09 2.90 0.02 
17Gold 9.90E+05 g 2.00E+13 0.20 0.00 
1 8Precious/Semi-Precious Gems 4.30E+07g 1 .00E+l3 4.30 0.04 
19Forest Clearing 6. 1 8E+16g 6.72E+04 4 1 .53 0.35 
20Top Soil (OM) 1 .92E+16J 2.35E+05 45. 1 8  0.39 

Imports and Outside Sources 
2 1  Oil derived products 1 .4 1E+1 7J 135 .45 1 . 1 6  

Crude Petroleum 8.20E+16J 8.90E+04 72.98 

Refined Petroleum 5.80E+16J 1 .06E+05 6 1 .4 1  

Petroleum Products 1 .00E+ 1 5 J  1 .06E+05 1 .06 

22 Metals 4.33E+ l l g  29.74 0.25 
Ferrous Metals Raw 3 .94E+ 1 1  2 .99E+09 1 1 .79 

Non-Ferrous Metals 2.50E+1O 2.69E+l O  6.72 

Metal Structures and Tools l .39E+ l O  8.06E+1O  1 1 .23 

23 Minerals 6.87E+I0g 1 . 16 0.0 1 
Cement 3.94E+1 O  1 .73E+09 0.68 

Clay 1 .68E+1 O  2.86E+09 0.48 

Glass 1 .24E+1O  1 .08E+07 0.00 

24Food & ago products 1 .48E+16J see Table B3 2 1 .36 0. 1 8  
25 Livestock, meat, fish 1 .27E+14J see Table B3 5.33 0.05 
26Plastics & rubber 1 . 19E+1 1 g  9.5 1  0.08 

Rubber 1 . 1 9E+l l g  7.22E+09 8.59 

Plastics 1 .45E+ l l g  6.38E+08 0.92 

27 Chemicals 5 .3 1E+ 1 1  g 28.23 0.24 
Chemical Products, Dyes etc. 1 .44E+ l l 6.38E+08 0.92 

Fertlizers 3.87E+ l l 7.06E+09 27.3 1 
28Wood, paper,textiles 1 .69E+15J  28.33 0.24 

Wood 3.25E+14 3.09E+04 0. 10  

Paper 9.79E+1 4  3.6lE+05 3.54 

Textiles 3.87E+14 6.38E+06 24.69 
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Table 3-1 .  (continued) 
Note Item Raw Units Transformity Solar Emergy EmDollars 

(sej/unit) (E20 sej) {E9 1997 US$) 
29 Mech.& trans equip. 4.45E+I0g 1 .  13E+1 1 50.07 0.43 
30Service in imports 2.75E+09$ 2.08E+12  57.28 0.49 

Exports 
3 1  Food & ago products 1 .32E+16J see Table B3 49.72 0.42 
32Livestock, meat, fish 4.66E+14J see Table B3 1 5 .40 0. 1 3  
33  Wood, paper,textiles 4.87E+15J  33 .22 0.28 

Wood 4. 1 5E+1 5  1 .43E+05 5.91 

Paper 4.01E+14 3 .61E+05 1 .45 

Textiles 2.57E+l 4  6.38E+06 1 6.43 

Leather 6.53E+13 1 .  44E+07 9.43 

340il derived products 1 .20E+16J 1 .06E+05 12.69 0. 1 1  
35 Metals 1 .8 IE+ 1 1  g 2 1 .20 0. 1 8  

Ferrous Metals 1 .67E+l l g  2.99E+09 5.01 

Non-Ferrous Metals 2.57E+09g 2.69E+1O  0.69 

Metal Structures and Tools 1 . l4E+lOg l .35E+l l 1 5.50 

36 Minerals 7. 1 6E+1 1 g  16 .44 0. 14  
Cement 6.90E+l l g  1 .  73 E+09 1 1 .94 

Glass 2.59E+lOg 1 .08E+07 0.00 

Gold and Gems 4.40E+07g see above 4.49 

37 Chemicals 7.90E+I0g  6.38E+08 0.50 0.00 
38Mech. & trans equip. 1 .48E+09g 1 .  13E+1 1 1 .67 0.0 1 
39Plastics & rubber 5.30E+lOg 0.68 0.0 1 

Plastics 4.78E+lOg 6.38E+08 0.30 

Rubber 5 .26E+09g 7.22E+09 0.38 

40 Service in exports 1 .98E+09$ 1 .  1 7E+13 23 1 . 14 1 .98 
41 Tourism 4.74E+08$ 1 .  1 7E+13 55 .46 0.47 

Note: Table footnotes, and raw dataitransformity sources provided in Table A-I in Appendix A. 

The major imports are oil-derived products, followed by embodied services and 

mechanical and transportation equipment. Major exports are food and agricultural 

products, wood/paper/textile products and an enormous quantity of embodied services 

(i.e. the services within the national economy that are necessary both directly and 

indirectly to facilitate export of goods, measured using money received multiplied by the 

national emergy:dollar ratio). 

Of particular interest is the magnitude of soil erosion (Items 1 9) in comparison 

with other national flows. The magnitude (4.5E21 sej/yr) is comparable in magnitude to 



83 

total national electricity usage or agricultural exports. Summary metrics, presented 

below, will further quantify this ongoing loss of natural capital. 
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Figure 3-3 . Emergy spectra for Kenyan national economy. Shown are annual emergy 
(seJ/yr), material and energy (J/yr) flows for 1 999. 

Emergy Spectra 

To illustrate the energy basis of the economy further and to reiterate the critical 

importance of adjusting energy flows according to their quality, the energy and annual 

empower spectra for Kenya are shown in Figure 3-3 . The flows of energy and emergy 

are ranked from left to right in order of increasing transformity. Note that sunlight 

represents 99.8% of the energy budget, but only 1 .25% of the total emergy flow. 
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Flow Aggregation 

Table 3-2 summarizes the flows into aggregated categories. These categories 

include renewable, local non-renewable, imported fuels, imported goods, and exported 

goods. Also included in this table are gross economic data for the nation (GNP, import 

payments, export revenue). 

Table 3-2. Aggregated emergy flows in Kenya, (c. 1 999) 

Variable Item 
R Renewable sources (rain chemical and geo-potential) 
N Nonrenewable resources from within Kenya 

F 
G 
I 

NO Dispersed Rural Source (i.e. not mining products) 
NOaSoil Loss 
NOb Deforestation 

N l  Concentrated Use (mined products) 
N2 Exported without Use 

Imported Fuels and Minerals 
Imported Goods 
Dollars Paid for Imports 

P2I 
E 
PIE 
GNP 
P2 
P I  

Emergy of Services in Imported Goods & Fuels 
Dollars Received for Exports 
Emergy Value of Goods and Service Exports 
Gross National Product 
World emergy/$ ratio (used for imports) 
Kenya Emergy/$ ratio (used for exports) 

Summary Diagram 

Solar Emergy Dollars 
(E20 sej/y) 

665.47 
1 66.29 
86.7 1 
45. 18 
41.53 
79.58 
13 .50 

1 66.35 
142.84 

2.75E+09 
57.28 

1 .9SE+09 
437.43 

2.0SE+12 
1 .  1 7E+13 

1 .02E+ I O  

Figure 3-4a is a diagram of the aggregated flows of emergy in the Kenyan 

economy. Imported services are computed using the world emergy:dollar ratio (Brown 

and Ulgiati 1 999) multiplied by exported currency (P2*I). Similarly, the service 

embodied in exports is the money paid (E) multiplied by the emergy:dollar ratio 

computed for Kenya (PI *E). 

Figure 3-4b aggregates the flows further to illustrate the national trade balance 

and indigenous emergy consumption in common energetic units. The Emergy Yield 
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Ratio (EYR), the Emergy Investment Ratio (EIR) and the Environmental Loading Ratio 

(ELR) can all be computed based on the numeric flows presented in these diagrams . 
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Figure 3-4.  Aggregated economic systems diagrams: a) aggregated flows and b) summary 

of indigenous, imported and exported flows for Kenya (1999) 
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Table 3-3. Summary emergy indices for Kenya (c. 1 999) 
Item Name of Index EXQression Quantity 
I Renewable emergy flow R 6.65E+22 
2 Flow from indigenous nonrenewable reserves N 1 .66E+22 
3 Flow of imported emergy F+G+P2I 3 .66E+22 
4 Total emergy inflows R+F+G+P2I 1 .03E+23 
5 Total emergy used, V NO+NI +R+F+G+P2I 1 .20E+23 
6 Total exported emergy P IE  4.37E+22 
7 Fraction emergy use, home sources (NO+NI +R)IU 0.69 
8 Imports minus exports (F+G+P2I)-(N2+B+Pl E) -8.45E+2 1 
9 Export to Imports (N2+Pl E)/(F+G+P2I) 1 .23 
10  Fraction used, locally renewable RIU 0.56 
1 1  Fraction of use purchased (F+G+P2I)1U 0.3 1 
12  Fraction imported service P2IIU 0.05 
1 3  Fraction of use that is free (R+NO)IU 0.69 
14 Ratio of concentrated to rural (F+G+P2I+NI )/(R+NO) 0.59 
1 5  Population Pop. 3 . 1 8E+07 
16  Population Density Pop. I Area (sq. km) 54.8 
1 7  Emergy Density V I area (sq. m) 2.07E+ l l 
1 8  Emergy per capita V I population 3 .77E+15  

Renewable human carrying capacity, present 
19  living standard (RIU)*(population) 1 .77E+07 
20 Ratio of use to GNP, Emergy/dollar ratio P I=VIGNP 1 . 1 7E+13  
2 1  Ratio of electricity to use (Electric Vse)1U 3% 
22 Fuel use per person Fuel I Population 4.26E+14 
23 Emergy Investment Ratio (F+G+P2I)/(R+N) 0.44 
24 Environmental Loading Ratio (N+F+P2I+G)IR 0.80 
25 Emergy Sustainability Index EYRlELR 0.55 
26 Emergy Yield Ratio VI (N+F+G+P2I) 1 .23 
27 Fraction Capital Stock Depletion (NOa) I V  3.77% 
28 Agricultural Benefit Ratio (ABR) Agr. Prod. I (NOa) 7.56 

Overview Indices 

Table 3-3 presents computed emergy indices for Kenya. Included are total 

emergy use, fraction renewable, ELRlEYRIEIRIESI, emergy balance of trade, and a suite 

of other common indices. Of particular interest are the FCSD and ABR ratios that define 

erosion costs in the context of the national economic system. FCSD indicates that nearly 

4% of total flow in the Kenyan economy is soil loss, a figure comparable in magnitude to 

national electricity consumption or agricultural exports. The ABR figure is 7.56. 

Table 3-4 shows several of the most important indices computed for Kenya 

compared with other national analyses. In order to allow direct comparison, each emergy 



87 

flow in Table 3-1  was divided by 1 .68 (Odum and Brown, 2001 )  to account for recent 

changes in computation of global tidal geomomentum absorption that are propagated 

through all subsequent energy quality ratios. 

Table 3-4: Comparison of Kenyan summary indices with other national economies. 
Nation V VIP VIA VIGNP R R+N I V  N + F  ELR I:E 
Netherlandsa 3702 26 1 00 2.2 23 4.3 
West Germanya 1 7500 28 70.4 2.5 193 10  1 730 8 .96 4.2 
Switzerlanda 733 1 2  1 7.7 0.7 87 19  646 7.43 3 .2 
VSAb 66400 29 7 2 8240 77 58 160 7.06 2.2 
Indiaa 6750 1 2.05 6.4 3430 88 3410 0.99 1 .45 
Swedenc 2580 30 6.3 1 .5 456 28 2 1 24 4.66 1 .2 1  
Taiwand 1 340 8 94.6 1 .9 28 1 . 1 9  
BrazW 17820 1 5  2 .08 8.4 10 100 9 1  7600 0.75 0.98 
Dominicaa 7 1 3  8.8 14.9 2 69 5 2.50 0.84 
New Zealanda 791 26 2.94 3 438 60 353 0.8 1 0.76 
Thailande 1 590 3 2. 1 5  3 .7 779 70 8 1 1  1 .04 0.54 
Australiaa 8850 59 1 .42 6.4 4590 92 3960 0.86 0.39 
Soviet Vniona 43 1 50 16  1 .7 1  3 .4 9 1 10  97 9100 1 .00 0.23 
Ecuadora 964 10  3 .4 89 1 94 483 0.54 0.2 
Liberiaa 465 26 4 . 1  34.5 427 92 38 0.09 0. 1 5  
Papua New Guineaa 12 16  35  2.63 48 1050 96 1 66 0. 1 6  0. 13  
Worlda 299000 4.98 1 .99 2.96 94400 200460 2 . 12  
KENYAf 7 13  2.24 1 .23 6.96 396 69 3 1 7 0.80 0.8 1  
V = Total Vse; P = Population; A = Land area; GNP = Gross Nat'l Product; R = Renewables; 
N = Non-renewables, F = Purchased inputs; ELR = Env. Loading Ratio; I = Imports; E = 
Exports 
Sources: a - Odum ( 1996), b - Stachetti (2002), c - Doherty et al. (2002), d - Huang ( 1997), 
Brown and McLanahan ( 1993), f - this study 
Note: Values in this table for Kenya are adjusted to reflect recent transformity changes (Odum 
et al. 2001 ). All Kenyan flows reported here are divided by a factor of 1 .68. 

District Emergy Evaluations 

Three districts comprise the regional context of the Awach River basin. Kericho 

and Nyando districts comprise the entire basin area, but the regional importance of 

Kisumu district as a trading and manufacturing center warranted its inclusion. 
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Figure 3-5 . Map of districts for which emergy evaluations were compiled. Also shown 
is the study basin (Awach River) for which landuse subsystems were 
evaluated. 

Systems Diagrams 

Systems diagrams were developed for each district (Figure 3-6 through 3-8). In 

each diagram, stocks of soil capital (S) are shown. Component symbol sizes correspond 

approximately with relative importance within each system. 

Spatial Surfaces and Data Sources 

As with the national evaluation, geospatial databases were used to estimate the 

resource flows driving each district economy. For rainfall, elevation, wind speeds, deep 

heat, and landuse, spatial coverages were extracted from maps and surfaces presented 

above. Rainfall, elevation, landuse, deep heat flow and mean annual wind speed surfaces 

were extracted from national coverages. Soil erosion estimates for given landuse 

subsystems were based on field observations, presented later. Actual costs were 

restricted only to sediments crossing the system boundary; overall costs of degradation 

should be considered conservative. A sediment yield ratio of 1 0% was assumed. 
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Figure 3-6: Energy systems diagram depicting the Kisumu district economy. 
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Nyando District (2000) 

Figure 3-7: Energy systems diagram depicting the Nyando district economy. 
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Figure 3-8: Energy systems diagram depicting the Kericho district economy. 

Commodity consumption data were unavailable for all goods at this scale of 

evaluation. To estimate these quantities, use was assumed proportional to the ratio of 

district fuel consumption to national use. This ratio was extrapolated to the district 

economies based on reliable fuel and electricity consumption data (KPLC, 200 1 ;  KP A, 
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2001 ). Where fuel and electricity proportions differed, an average was used. Table 3-5 

shows a comparison of national fuel and electricity usage with district level statistics. 

Table 3-5. Comparison of national and district fuel and electricity use, GDP and 
population to infer commodity consumption for districts. 

Fuel (J/yr) 
National % 
Electricity (J/yr) 
National % 
GNP ($/yr) 

Nation Kisumu Nyando 
1 .4 1E+17  2.58E+15  3.73E+14 

1 00% 
1 .35E+16  

100% 
1 .02E+1O  

1 .83% 
3 .07E+14  

2.27% 
2.33E+08 

0.26% 
7. 1 3E+1 3  

0.53% 
3.30E+07 

Kericho 
1 .54E+1 5  

1 .09% 
2.47E+14  

1 .83% 
1 .69E+08 

National % 1 00% 2.28% 0.32% 1 .66% 
Population 3 . 1 8E+07 5.04E+05 2.99E+05 5 .97E+05 
National % 1 00% 1 .58% 0.94% 1 .88% 
a - Kenya Pipeline Authority (2001 ), b - Kenya Power and Lighting Corportation (2001 ), 
c - Kisumu, Nyando and Kerichi district development plans (Kenya CBS, 2000) 
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Evaluation Tables and Summary Indices 

Detailed emergy evaluation tables are given in Appendix A (Tables A-2 through 

A-4) along with notes on data sources and energy conversions. Table 3-6 shows 

aggregated flows for each district. The letters in the first column refer to nomenclature 

presented in Figure 3-3, a generic diagram of economic systems. 

Table 3-6. Summary of annual flows in Kisumu, Kericho and Nyando Districts (c.2000) 
Kisumu Kericho Ni:ando 

Emergy Dollars Emergy Dollars Emergy Dollars 
Item Descri:Qtion (E19 seD (E19 seD (E19 sej} 
R Renewable sources (rain) 20.68 6 1 .46 27.39 
N Local non-renewable use 18 .40 58.17 22.70 
NO Dispersed Rural Source 15 .04 48.67 19.22 
N1  Concentrated Use 3.36 9.50 9.86 
N2 Exported without Use 0.75 1 7.67 3.88 
F Imported Fuels and Minerals 72.38 25.62 1 1 .52 
G Imported Goods 46.81 1 8.9 1 10.62 

Dollars Paid for Imports 6.2E+07 2.8E+07 6. 1E+06 
P2I Emergy of Services in Imports 78.25 34.90 7.85 
E Dollars Received for Exports 6.0E+07 2.2E+07 6.3E+06 
P I E  Emergy in exports 120.45 100.84 34.3 1 
GNP Gross National Product 2.3E+08 1 .7E+08 3 .3E+07 
P2 Kenya Em$ ratio, for imports 1 .3E+13 1 .3E+13 1 .3 E+ 13 
PI District Emergy/$ ratio 1 .0E+13 1 .2E+13 2.6E+13 

Table 3-7 gives summary indices for each district and a comparative assessment 

of districts with index values at the national scale. Total emergy flows are not 

comparable between nation and district, but flows per capita and per area, in addition to 

all relativized indices (ELR, EIR, ABR etc), are directly comparable. 

Emergy Spectra 

Figure 3-9 provides empower spectra for each district. Note that spectra do not 

adjust for differences in spatial extent or population. Nyando district, where soil 

degradation is observed as most severe, has the smallest resource basis, and while soil 

loss is a substantial flow for each of the three districts, it is most significant in Nyando. 
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In all three districts, the primary renewable flow is chemical potential energy in rainfall. 

Forest extraction! production is a significant industry in Kericho District. 

ItemName of Index 
1 Renewable emergy flow 

Flow from indigenous 
2 nonrenewable reserves 
3 Flow of imported emergy 
4 Total emergy inflows 
5 Total emergy used, U 
6 Total exported emergy 

Fraction emergy use, home 
7 sources 

8 Imports minus exports 
9 Export to Imports 

Fraction used, locally 
10 renewable 

Expression 
R 
N 

F+G+P2I 
R+F+G+P2I 
NO+Nl +R+F+G+P2I 
P l E  
(NO+Nl +R)IU 

(F+G+P2I)
(N2+B+Pl E) 
(N2+P1 E)/(F+G+P2I) 
RIU 

3.66E+22 1 .97E+2 1 7.94E+20 3 .00E+20 
1 .03E+23 2.37E+2 1 1 .99E+2 1 8.0 1E+20 
1 .20E+23 2 .37E+2 1 1 .99E+2 1 8.65E+20 
4.37E+22 1 .20E+2 1 1 .0 l E+2 1 3 .43E+20 
0.69 0. 1 7  0.60 0.65 

-8.45E+2 1 7.62E+20 -3 .91E+20-8.20E+19 

1 .23 
0.56 

0.61 
0.09 

1 .49 1 .27 
0.3 1 0.32 

1 1  Fraction of use purchased 
12 Fraction imported service 
13 Fraction of use that is free 

(F+G+P2I)IU 0.3 1 0.83 0.40 0.35 
P2IIU 0.05 0.33 0. 1 8  0.09 
(R+NO)IU 0.69 0. 15  0.55 0.54 

14 Ratio of concentrated to rural 
15  Population 

(F+G+P2I+Nl )/(R+NO 0.59 
) 

5.62 0.81 0.85 

16 Population Density 
1 7  Emergy Density 
18  Emergy per capita 

Renewable human carrying 
capacity, present living 

19 standard 
Ratio of use to GNP, 

20 Emergy/dollar ratio 
2 1  Ratio of electricity to use 

Pop. 
Pop. I Area (sq. km) 
U I area (sq. m) 
U I population 
(RIU) * (population) 

P l=U/GNP 

(Electric Use)IU 

22 Fuel use per person Fuel I Population 

23 Emergy Investment Ratio (F+G+P2I)/(R+N) 

24 Environmental Loading Ratio (N+F+P2I+G)1R 

25 Emergy Sustainability Index EIRlELR 

26 Emergy Yield Ratio See item # 9 above 
Fraction Capital Stock (NOa) I U 

27 Depletion (FCSD) 
Agricultural Benefit Ratio Ag. Prod. I (NOa) 

28 (ABR) 

3 . 1 8E+07 5 .04E+05 5.97E+05 2.99E+05 
54.8 763.64 237.38 209.09 
2.07E+1 1 3.58E+12 7.9l E+1 1 6.03E+1 1 
3 .77E+15 4.69E+15 3 .32E+15 2.89E+15 
I .77E+07 4.4 1E+04 1 .85E+05 9.47E+04 

1 . 1 7E+13  1 .02E+13 1 . 18E+13 2.62E+13 

3% 0.05 0.05 0.02 
4.26E+14 5 .42E+14 4.94E+14 1 .32E+14 
0.44 5 .05 0.66 0.60 
0.8 10.44 2.24 1 .92 
0.55 0.48 0.30 0.3 1 
1 .23 0.6 1 1 .49 1 .27 
3.8% 2.4% 3 .43% 14.2% 

7.56 4.37 1 1 . 1 1  2.25 
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Figure 3-9. Empower spectra for district evaluations. Emergy flows are in E19  sej/yr, 
and are organized in rank order by increasing transformity. 

Awach Subsystems Analysis 

Emergy evaluations were developed for six landuse subsystems common in the 

A wach River watershed: subsistence agriculture, commercial agriculture, lowland 

pastures, highland pastures, farm forestry and extractive use of native forestlshrubland. 
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Systems diagrams are given first followed by emergy evaluation tables. Several 

components are common to all subsystem evaluations. The storage labeled soil function 

in each sub-system diagram aggregates soil organic carbon, nutrient stocks and soil 

physical structure into one functional variable. Erosion depletes this stock, and additions 

of fertilizer, geologic weathering and vegetation processes all increase it. Human labor is 

shown only partially within the system, indicating that farmers live near their fields, but 

their labor must be allocated to multiple simultaneous activities. For each transformity 

and specific emergy (emergy per mass), results are presented computed with and without 

service inputs (labor, purchased services). 
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Subsistence Agriculture 

Subsistence agriculture is the primary activity within the Awach basin, 

particularly in the lowlands. Major crops include maize, sorghum, beans, cassava, millet 

and cooking bananas; maize is by far the most abundant crop. Emergy evaluations to 

compute transformity values were done for several subsistence cropping systems 

(maizelbean intercropping, sorghum etc.); results are presented in Appendix A. Given 

here are the systems diagram and emergy evaluation table for maize only. 

Systems diagrams 

Figure 3- 10  is an energy systems representation of maize production in western 

Kenya. Inputs and internal dynamics are from Jaetzold and Schmidt ( 1 982). Human 

labor is allocated to weeding, planting, tillage (seen on the diagram as influencing water 

infiltration), incorporating soil amendments and harvesting. Total annual labor, after 

ET 

Figure 3- 10. Systems diagram of subsistence maize production in the Awach basin. 
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Rommelse ( 1 999), is estimated at 130  person-days per hectare per year for maize 

production. Soil erosion is shown as a function of surface runoff and reduced cover. 

Also shown is the direct competition for nutrient and light resources between weeds and 

crops. A common problem, particularly in lowland areas not shown on the diagram, is 

infestation by striga (Striga hermonthica), which parasitizes maize and sorghum roots. 

Though purchased inputs are not included on all farms in the Awach River basin, the 

evaluation was done assuming average input values for farms throughout western Kenya. 

This may overestimate the local prevalence of fertilizer and pesticide use. 

Table 3-8. Emergy evaluation of subsistence maize production in western Kenya. 
Unit Solar Solar Em$ 

Data EMERGY EMERGY Value 
Note Item Unit (units/yr) (sejlunit) {E 13  sejlyr) ( 1995 $/yr) 
Renewable Inputs 
1 Sun J 2.64E+13 3 
2 Rain J 4.47E+1O 3 . 10E+04 139 78 
3 Manure J 4.07E+09 9.25E+04 38 21  
4 Native Seeds J 2.24E+08 7.86E+04 2 

Nonrenewable Inputs 
5 Net Topsoil Loss J 4. 16E+09 2.24E+05 93 52 

Sum of free inputs (sun omitted to avoid double counting) 271 1 52 

Purchased Inputs 
6 Improved Seeds J 7.8 1 E+08 l .57E+05 12 7 

7 Potash g K  3.95E+Ol 1 .  85E+09 0 0 

8 Herbicide/Insecticide g 1 .48E+03 2.52E+1O 4 2 

9 Phosphate g P  8. 14E+03 3.70E+lO 30 17 

10  Nitrogen g N  4.95E+03 4.05E+1O 20 1 1  

1 1  Labor J l .36E+09 1 .03E+06 140 79 

12 Services $ 2.05E+Ol 1 .  78E+ 13  36  20 

Sum of purchased inputs 243 136 

Computed Transformities 
13  Total Yield, dry weight g 2.56E+06 2.00E+09 5 1 4  289 

w/out services g 2.56E+06 l .3 1E+09 
1 4  Energy yield J 4.85E+lO 1 .06E+05 

w/out services J 4.85E+1O 6.96E+04 

Notes can be found in Appendix A. 
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Emergy table 

Table 3-8 provides a tabular assessment and summary indices for maize 

production in western Kenya. Of particular interest are emergy indices that explore the 

magnitude of soil erosion in the context of agricultural productivity. Specifically, the 

Agricultural Benefit Ratio (ABR) and fraction avoidable are indices of problem severity. 

The soil loss figure used for each subsystems evaluation is for intact sites only. Later, 

costs will be estimated for degraded sites. 

Commercial Agriculture 

Commercial agriculture in the Awach Basin is exclusively on small farms that 

provide out-grower inputs to commercial processing factories in the region. Smallholder 

commercial farming consists primarily of tea (only in the highlands) and sugarcane 

(throughout the basin). Some cotton is grown in the alluvial lowland soils, but the 

collapse of the national cotton marketing board hampers market access. A small portion 

of subsistence crops (maize, vegetables) is sold outside the basin, but this was considered 

a negligible flow for this analysis. Because sugarcane and tea dominate commercial 

agriculture, energy systems diagrams and emergy evaluations were developed for both. 

Systems diagrams 

Energy systems diagrams depicting the production process for sugarcane and tea 

are presented in Figure 3-1 1 .  As with maize, soil loss occurs because of excessive runoff 

and reduced cover. While this simplifies the erosion process, it should be noted that 

internal organization of the system is not directly relevant to emergy evaluation, where 

only sources and stock depletion are considered. Soil loss rates are derived from 

empirical data in the region. 



Commercial Agriculture - Sugar 

Commercial Agriculture - Tea 

Figure 3-1 1 .  Systems diagram depicting smallholder sugarcane and tea production 
systems within the A wach basin. 
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Table 3-9. Emergy evaluation table of smallolder sugarcane production for 
western Kenya. 

Unit Solar Solar Em$ 
Data EMERGY EMERGY Value 

Note Item Unit (units/yr) (sej/unit) (E 13  sej/yr) (1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13 6 3 
2 Rain J 6. 13E+lO  3 . lOE+04 190 107 

Nonrenewable Inputs 
3 Net Topsoil Loss J 4.99E+09 2.24E+05 _---=..:1 1:..::2 ___ ---..::.6.::....3 __ 

Sum of free inputs (sun omitted to avoid double counting) 302 1 70 

Purchased Inputs 
4 Cuttings J 
5 Nitrogen g N 
6 Labor J 
7 Services $ 

Sum of purchased inputs 

Computed Transformities 
8 Total Yield, dry weight g 

w/out services g 
9 Energy yield J 

w/out services J 
Notes can be found in Appendix A. 

2.79E+09 5.72E+04 
3 . l4E+03 4.05E+1O 
l .33E+09 1 .03E+06 
3.02E+00 1 .78E+13 

5.33E+07 8.87E+07 
5.33E+07 6.20E+07 
8.68E+ l l 5 .45E+03 
8.68E+1 1 3 .8 1E+03 

16 
13  

137  
5 

17 1  

473 

9 
7 

77 
3 

96 

266 

An important source for both sugar and tea production is the purchase of improved 
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varieties, usually in the form of cuttings or seedlings. For emergy evaluation, seedlings 

and cuttings were assumed to have the same transformity as the final product. Chemical 

inputs, almost exclusively fertilizers, are more widely used for these commercial crops, 

primarily because of increased access to cash resources from their sale. 

Emergy tables 

Tables 3-9 and 3- 10  summarize detailed emergy evaluations of sugarcane and tea 

production. In each case, assigned soil loss values are typical of non-degraded sites. 



Table 3- 10. Emergy evaluation table of smallholder tea production for 
western Kenya. 

Unit Solar Solar Em$ 
Data EMERGY EMERGY Value 

Note Item Unit (units/yr) (sejlunit) (E13  sej/yr) ( 1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13 6 3 
2 Rain J 6.04E+10 3 . lOE+04 1 87 105 

Nonrenewable Inputs 
3 Net Topsoil Loss J 4.99E+09 2.24E+05 1 12 63 

Sum of free inputs (sun omitted to avoid double counting) 299 168 

Purchased Inputs 
4 Improved Seedlings J 2.01E+08 1 .50E+05 3 2 
5 Potash g K  4.98E+03 1 .  85E+09 1 
6 Phosphate g P 7.75E+03 3 .70E+1O 29 16 
7 Nitrogen g N  4.30E+04 4.05E+1O 1 74 98 
8 Labor J 1 .33E+09 1 .03E+06 137 77 
9 Services $ 6.06E+01 l .78E+13 108 61  

Sum of purchased inputs 452 254 

Computed Transformities 
10 Total Yield, dry weight g 5. 14E+06 1 .46E+09 75 1 422 

w/out services g 5. 14E+06 9.84E+08 
1 1  Energy yield J 7.53E+I0 9.97E+04 

w/out services J 7.53E+1O  6.71E+04 
Notes can be found in Appendix A. 

Livestock Production - Communal and Constrained Systems 

Livestock production is a critical component of livelihood strategies throughout 
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rural Kenya. This is particularly true in sparsely populated semi-arid regions in the north 

and east of the country. Tribes in the Awach Basin (primarily Luo and Kipsigis) are 

historically herdsmen in the tradition of the Samburu and Maasai, and cultural vestiges of 

this tradition are widely evident, particularly in the equation of wealth and herd-size. 

In many regions, as population growth has forced agricultural intensification, 

animal husbandry has shifted from rangeland to pasture. However, in sub-humid 

lowlands regions of the Awach Basin, despite relatively high population densities, 
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communal grazing continues to be the dominant herding strategy. Stock animals are 

primarily Zebu breed cattle, and herds are tended primarily by young boys. Observation 

suggests that lands under communal grazing are at greatly elevated risk of erosion. 

In contrast, the humid highlands are dominated by improved hybrid animals that 

are paddock-fed. Consequently, highland milk and meat yields are substantially higher 

than in the lowlands. Emergy evaluations were done for both conditions. 

Systems diagram 

Figure 3-12 illustrates livestock production systems for the sub-humid lowlands 

and humid highlands. The primary contrast is food source, which for lowland cattle is 

grazed from largely unmanaged communal rangeland and for highland cattle is primarily 

pasture grasses and cultivated napier grass (Pennisetum pupureum). Zebu cattle tend to 

be resistant to the array of diseases that affect ruminants in tropical Africa, and hence 

preferred where access to medicines and veterinary services are limited. Improved 

breeds, in contrast, have been selected for their yield potential rather than their disease 

resistance. This situation has necessitated much greater investment (and incurred risk) 

among farmers in the humid highlands that keep improved stock. Furthermore, the cost 

of acquiring an improved breed cow is significantly higher than for native stock. 

Emergy table 

Emergy tables for both lowland communal (Table 3-1 1 )  and highland constrained 

(Table 3- 12) livestock grazing are presented. Transformity estimates for milk and meat 

are computed for each analysis. It was assumed that these are co-products of the entire 

livestock management system. As such, emergy required to produce milk and allow a 

1 0- 1 5% (depending on land potential) herd off-take rate for slaughter are the same. 
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Figure 3-12. Systems diagram depicting communal and constrained animal husbandry 
systems within the Awach basin. 
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Table 3-1 1 .  Emergy evaluation table for communal (lowland) livestock 
Qroduction in western Ken�a 

Unit Solar Solar Em$ 
Data EMERGY EMERGY Value 

Note Item Unit (units/yr) (sejlunit) (E13  sejlyr) (1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13 6 3 
2 Rain J 2.96E+1O 3 . 10E+04 92 52 

Nonrenewable Inputs 
3 Net Topsoil Loss J 6.52E+09 2.24E+05 1 46 82 

Sum of free inputs (sun omitted to avoid double counting) 238 134 

Purchased Inputs 
4 Medical Inputs g 6.50E+02 2.52E+I0 2 
5 Labor J 7.03E+08 5.00E+05 35 20 
6 Services $ 2.60E+00 1 .78E+13 5 3 

Sum of purchased inputs 41  23 

Computed Transformities 
7 Total Yield, wet weight, milk g 4.44E+04 6.29E+1O  279 1 57 

w/out services g 4.44E+04 5.39E+1O 
7a Total Yield, wet weight, meat g 2.89E+03 9.67E+1 1 

w/out services g 2.89E+03 8.30E+1 1 
8 Energy yield, milk J 1 .36E+08 2.06E+07 

w/out services J 1 .36E+08 1 .  77E+07 

8a Energy yield, meat J 2.67E+07 1 .05E+08 

w/out services J 2.67E+07 8.98E+07 

Notes can be found in Appendix A. 

Table 3-12, the emergy table describing highland cattle production also illustrates 

the yield differences between these two systems. The raw yield data are in Appendix A, 

but the dramatic differences in transformity (�300%) for comparable emergy flows 

illustrates the improved potential of highland agro-ecosystems for supporting particularly 

milk production. 

Managed Forest Production 

Managed forests are critical in regions like the A wach Basin where supplies of 

wood for fuel and building has been dwindling. Managed forests are found in both the 

lowlands and highlands, but the species composition differs dramatically. Lowland farm 
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Table 3-12 .  Emergy evaluation table for constrained (highland) livestock 
,Qroduction in western Ken�a 

Unit Solar Solar Em$ 
Data EMERGY EMERGY Value 

Note Item Unit (units/yr) {sejlunit} (E 13  sejlyr) {1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13 6 3 
2 Rain J 6.30E+1O 3 . 1 OE+04 195 1 1 0 

Nonrenewable Inputs 
3 Net Topsoil Loss J 8.29E+09 2.24E+05 186 1 04 

Sum of free inputs (sun omitted to avoid double counting) 381  2 14 

Purchased Inputs 
4 Medical Inputs g 2.50E+03 2.52E+I0 6 4 
5 Labor J 6.72E+08 1 .03E+06 69 39 
6 Services $ l .50E+Ol 1 .78E+13  27 15  

Sum of purchased inputs 102 57 

Computed Transformities 
7 Total Yield, wet weight, milk g 2.33E+05 2.07E+1O  483 271 

w/out services g 2.33E+05 1 .66E+1O  
7a Total Yield, wet weight, meat g 7.50E+03 6.44E+l l  

w/out services g 7.50E+03 5 . 16E+ l l 
8 Energy yield, milk J 7. 12E+08 6.79E+06 

w/out services J 7. 12E+08 5.44E+06 

8a Energy yield, meat J 6.93E+07 6.97E+07 

w/out services J 6.93E+07 5.59E+07 

Notes can be found in Appendix A. 

forests, or woodlots, are comprised primarily of species adapted to � 1 000 mm of annual 

rainfall (e.g., Acacia spp., Terminalia brownii, Grevillea robusta). Highland farm forests 

are dominated by Eucalyptus spp. and Acacia mearnsii, in addition to Grevillea robusta 

and other species that coppice readily. A common practice evident throughout the 

highlands is use of tree leaves (including banana) as subsidized fodder for paddock-

grazed animals. Ground cover in these systems is highly variable, and, though largely 

unmanaged, plays a significant role in controlling erosion. Nurseries exist for acquiring 

seedlings for exotic plantation trees (Eucalyptus spp. , A. mearnsii etc.), but availability of 

native seeds, particularly those species adapted to semi-arid conditions, is poor. 
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Smallholder Farm Forests (woodlots) 

Figure 3- 13 .  Systems diagram depicting farm forestry systems within the Awach basin. 

Systems diagram 

Figure 3- 13  presents a typical farm forestry plot in the Awach Basin. Labor 

requirements are relatively high during initial planting, but reduce substantially until 

harvest. Most tree species typical of smallhold woodlots coppice readily so that, after 

initial establishment, labor and seedling requirements are minimal. Turnover times for 

maximal woodlot yield are between 8 and 1 2  years, and each hectare of land produces 

approximately 1 00 cubic meters of fuel wood over that period. 

Emergy table 

Table 3- 13  is a tabular summary of the emergy evaluation of a woodlot system in 

the Awach Basin. For this analysis, no distinction was made between lowland and 

highland systems. While it is evident that there are moderate differences in yields, 
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Table 3- 13 .  Emergy evaluation for farm forest (woodlot) production in western Kenya. 
Unit Solar Solar Em$ 

Data EMERGY EMERGY Value 
Note Item Unit (units/yr) (sej/unit) (E13  sej/yr) ( 1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13  
2 Rain J 6.04E+1O  3 . lOE+04 
3 Seedlings J 2.5 1E+09 7,49E+04 

Nonrenewable Inputs 
4 Net Topsoil Loss J 1 .59E+09 2.24E+05 

Sum of free inputs (sun omitted to avoid double counting) 

Purchased Inputs 
5 Labor 
6 Services 

Sum of purchased inputs 

Computed Transformities 
7 Total Yield, dry weight 

w/out services 
8 Energy yield 

w/out services 

Notes can be found in Appendix A. 

J 5.23E+08 1 .03E+06 
$ O.OOE+OO 1 .78E+13  

g 8.00E+06 3.69E+08 
g 8.00E+06 3.02E+08 
J 1 . 17E+ 1 1  2.52E+04 
J 1 . 17E+1 1 2.06E+04 

6 
1 87 
19 

36 

24 1 

54 
o 
54 

295 

3 
105 
1 1  

20 

136 

30 
o 

30 

166 

maturation times and coppice potential (Chavangi and Zimmerman, 1 987), these were 

considered minor in comparison with differences between highland and lowland 

agriculture, for example. In almost all cases, use of herbicides or fertilizers in these 

systems is extremely limited. Regional data were available for fuel wood yields only 

Other useful yields would be considered co-products. 

ForestiShrubland Systems 

The extent of forest cover has been reduced to remnant patches in the region. 

These persist primarily on steep escarpment slopes in the northwestern part of the Awach 

Basin where population densities are low. Charcoal production is the major economic 

yield from these communal lands. Charcoal is the fuel of choice among rural and urban 

populations because of reduced smoke content and storage space requirements. Because 

these forest patches are typically remote from settlement centers, substantial additional 
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energy is invested in transporting the charcoal product to consumers. This investment is 

not included in the systems diagram or the emergy table. 

Systems diagram 

Figure 3 - 14  shows an energy systems diagram of extractive use of remnant forest 

patches and dense communal shrublands. Frequently the soils underneath these wooded 

systems are shallow and stony because of their location on steep escarpments, so limited 

use is made of post-cleared forestlands. Some multiple-use strategies were observed, 

with shrublands serving as communal rangeland, but this was not widespread. Human 

labor is directed at harvesting and then charcoal-firing the wood. Profits reaped are not 

invested in purchased inputs for the forest system. 

ET 

Groundcover 
and Litter 

Communal Native Forests and Shrublands 

/ 

/ 

Figure 3-14. Systems diagram depicting communal native forest and shrubland systems 
within the Awach basin. 
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Emergy table 

Table 3-14 provides a detailed emergy evaluation of forest extraction activities for 

charcoal production. Typical growth rates for forests in the region suggest that recovery 

to full canopy cover can take between 1 5  and 30 years. The latter was used to compute 

annualized yields from a site left under forest cover, assuming a nominal dry wood yield 

of 40 tonslha (Anonymous 1 994). This figure represents an average for forest and 

shrub lands that are used for charcoal production. The net dry weight yield of charcoal is 

approximately 14% of wood inputs (7: 1  ratio of input wood to output charcoal). 

Transforrnity values are computed for both products, but wood is rarely exported directly. 

Table 3 - 14. Emergy evaluation table for forestlshrubland production in 
western Kenya. 

Unit Solar Solar Em$ 
Data EMERGY EMERGY Value 

Note Item Unit (units/yr) (sejlunit) (E 13  sejlyr) (1995 $/yr) 
Renewable Inputs 
1 Sun J 6.23E+13 6 3 
2 Rain J 6.04E+1O  3 . 10E+04 1 87 105 

Nonrenewable Inputs 
3 Net Topsoil Loss J 3.73E+09 2.24E+05 84 47 

Sum of free inputs (sun omitted to avoid double counting) 271 152 

Purchased Inputs 
4 Labor J 4. 19E+08 l .03E+06 43 24 

Sum of purchased inputs 43 24 

Computed Transformities 
5 Total Yield, Wood g 8.00E+06 3 .92E+08 3 1 4  1 76 

w/out services g 8.00E+06 3.38E+08 
5a Total Yield, Charcoal g 1 . 14E+06 2.75E+09 

w/out services g 1 . 14E+06 2.37E+09 
6 Energy yield, wood J 1 . 1 7E+1 1 2.68E+04 

w/out services J 1 . 1 7E+1 1  2.3 I E+04 

7a Energy yield, charcoal J 1 .  67E+ 10  1 .  87E+05 

w/out services J 1 .67E+1O  1 .62E+05 

Notes can be found in Appendix A. 
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Because most of the inputs are renewable, this land use strategy has the highest % 

Renewable index (78%) of all the subsystems examined. This also results in extremely 

high yield ratio and low loading ratio. However, it is critical to illustrate that the 

Agricultural Benefit Ratio is larger than for other land-use options because yields are 

small compared with environmental costs. This observation becomes more pronounced 

when soil loss rates observed under degraded conditions are used (Table 3-1 5). 

Comparative Summary Indices 

Table 3- 15  gives summary indices for each target subsystem. In addition to 

providing a comparison of subsystems when soil loss is not evident (i.e. intact 

conditions), it compiles indices for the degraded condition. Measurement and inference 

of soil loss rates are presented in a later section. Note that the transformity under 

livestock systems is for meat production and for charcoal under native forest systems. 

Of particular interest is comparison of the ABR between systems. When intact 

conditions prevail, the largest net benefit comes from farm forestry activities, charcoal 

Table 3-15 .  Comparison of Agricultural Benefit Ratio and computed transformity for 
landuse subs�stems for intact and degraded conditions. 

Landuse Subsystems 
Summary Subsistence Commercial Ag. Livestock Prod. 

Erosion? Index Ag (Maize} Sugarcane Tea Communal Constrained Woodlots Shrub land 
Investment 0.90 0.57 1 .5 1  0. 1 7  0.27 0.22 0. 16 
Loading 1 .89 1 .49 3.01 2.04 1 .47 0.46 0.68 

Intact Yield 2 . 12 2.76 1 .66 6.75 4.73 5.57 7.28 
ABR 5.52 6.23 6.72 1 .91  2.60 7.4 1 3.76 
Transformity 1 .06E+05 5.45E+03 9.97E+04 2.06E+07 6.79E+06 2.56E+04 2 .68E+04 
FCSD 0. 1 8  0.16 0. 15  0.52 0.38 0. 14 0.27 
Investment 0.47 0.35 0.93 0.08 0.20 0.08 0.08 

Loading 3.25 2.48 4.02 4.99 2 . 16 2.43 2.2 1 

Yield 3 . 12 3 .86 2.08 13 .29 6.03 13 . 1 1  13 .94 
Degraded 

2.25 2.9 1 3 . 13  1 .32 1 .93 1 .58 1 .62 ABR 

Transformity 1 .  56E+05 7.61E+03 1 .25E+05 4.06E+07 8.66E+06 6.03E+04 5 . 1 3E+04 

FCSD 0.44 0.35 0.32 0.76 0.52 0.63 0.62 
Note: Transformity values for livestock production are for meat (not milk). 
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production on shrublands and tea production. Subsistence agriculture and sugarcane 

production also provide high net benefits. In each case, livestock production has lower 

ABR values and higher FCSD values. In contrast, when sites are degraded, cropping 

systems (both subsistence and commercial) provide more net benefit. Table 3 - 16  

summarizes the ABR and FCSD values for Kenya and three local districts to provide a 

reference point with which to compare sub-systems evaluations. 

For each landuse, the transformity of the product increases dramatically under 

degraded conditions, reflecting the large percentage of the emergy delivered from 

depleted soil stocks. When degradation occurs in forest systems, it is generally severe. 

Consequently, net agricultural benefit is reduced dramatically. A more complete 

discussion of soil loss rates from different landuse subsystems is presented later. 

Table 3 - 16. Summary indices for Kenya and three local districts for comparison 
with results from sub-systems evaluations. 
Index Kenya Kisumu Kericho Nyando 
Emergy Investment Ratio 0.44 5 .05 0.66 0.6 
Environmental Loading Ratio 0.8 10.44 2.24 1 .92 
Emergy Yield Ratio 1 .23 0.61 1 .49 1 .27 
FCSD 3 .8% 2.4% 3 .43% 14.2% 
ABR 7.56 4.37 1 1 . 1 1  2.25 

From Tables 3- 1 1 it is clear that lowland (sub-humid) livestock production in this 

region is an environmentally costly endeavor. The ABR is l .9 1  even for intact sites, 

suggesting that yields are small relative to erosion costs. The converse of the ABR is the 

FCSD index, which in this case suggests that over 60% of emergy use in this system 

occurs via topsoil depletion. It should be noted that the soil loss figure presented in Table 

3-1 1 is the predicted erosion rate under sites that were judged intact. Degraded sites 

exhibited substantially elevated erosion rates. 



SOIL EROSION RISK FACTORS 

Field Sample Sites 

Field sampling in the Awach River basin took place between February and May 

200 1 .  In total, 420 sites were sampled according the basic site protocol described. Of 

these 420 sites, 6 1  were selected for measurement of infiltration characteristics, and 1 80 

were selected for surface deflation estimation using erosion pins. Figure 4- 1 presents the 

spatial location of the 420 sample sites overlain on a geological thematic coverage. 

DAliuvium 

o Poryphitic Felsites 

o Granidiorites 

_ Tuffs(wl biotite agglomerates) 

_ Kericho-type Phonolites 

_ Kenya-type Phonolites 

Figure 4- 1 .  Geologic map of the Awach River basin with overlay of field sampling sites 
(from Corbett et al. 1 997). 
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Dominant geological substrates are recent (Pleistocene) alluvial deposits and 

Kenya- and Kericho-type phonolites (volcanic alkaline igneous material similar to 

andesite or rhyolite). Other evidence of regional volcanic origins include granidiorite and 

tuff deposits. Where possible, clustered sampling was done across geologic boundaries. 

In addition to geologic stratification, the most important controlled variables were 

landuse, elevation and soil degradation. Table 4-1 presents sampling effort for each 

stratum organized by major category and primary within-category delimiting factors. 

Table 4-1 .  Field sample sites sorted by primary stratification factors (e.g. landuse, 
elevation/slope, degradation status). Total sampling effort was 420 sites. 

Count 
Total 

Count 
Total 

Count 
Total 

1 - Agriculture 
Subsist. Comm. 

1 16 33 
149 

Lowlands « 1350 m) 
Steep Shallow 

1 1  195 
206 

Intact 
Dense Sparse 

174 68 
242 

Landuse 
2 - Rangelands 

Sparse Dense 
95 52 

147 

Elevation 
Escarpments 

Steep Shallow 
58 29 

87 

Soil Degradation 
Moderate 

Dense Sparse 
3 1  74 

105 

3 - Forest 4 - Other 
Managed Unmanaged Wetland Sev. Degr. 

67 1 1  10  36  
78 

Highlands (> 1650 m) 
Steep Shallow 

34 93 
127 

Severe 
Dense Sparse 

6 67 
73 

46 
TOTAL 420 

(Steep is > 8 degrees) 

TOTAL 420 

(Dense Cover is > 50%) 

TOTAL 420 

The relative paucity of unmanaged forest sites was a result of their absence from 

the landscape, not incomplete sampling. The small number of wetland sites, primarily 

sampled within a large wetland complex at the watershed terminus, does not reflect the 

total abundance of flooded sites in the basin. Several wetland sites (n = 12) were 

classified as agricultural lands or pasture despite the presence ofhydrophytic vegetation 

and hydrologic evidence suggesting wetland conditions. The presentation of cover data 
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as a classifier within degradation status is correlational; no explicit effort was made to 

stratify within site degradation for vegetative characteristics. 

Digital Elevation Model and Terrain Analysis 

DEM Development 

A digital elevation model was developed for the region as described previously. A 

complement of spot heights, digitized and rasterized stream networks and 1 :50,000 scale 

topographic contour maps were used to develop the DEM. Figure 4-2 presents the 

elevation surface with sample site locations and the Awach River basin boundary. 

Shown in Figure 4-2 are two end-points (A and A') of an elevation profile, given 

in Figure 4-3 . Spot heights from sample site GPS readings were used to verify DEM 

� 
o 2500 5000 

meters 

1 230 

1 330 

1 430 

1 530 

1 630 

1 730 

1 830 

1 930 

2030 

21 30 

2230 

o Sample Sites 

Figure 4-2. Digital elevation model of the Awach Riv.er basin showing elevation (in 
meters) and spatial locations of 420 field sampling sites. Also shown are the 
end points (A and A') ofthe profile given in Figure 4-3. 
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accuracy, yielding a vertical root-mean square error (RMSE) of 8.9 meters. The DEM-

based slope map, not shown here, was verified using slope observations; linear regression 

indicated acceptable accuracy (r2 = 0.70, P «  0.001)  with no evidence of bias (� = 0.99). 

1900 
1850 
1800 
1750 
1700 

E 1650 � 1600 
� 1 550 � 1 500 
m 1 450 

1400 
1350 
1300 
1250 
1200 
1 1 50 L __________________ -=�::!:I.e=_ 

o 0 o co 
..... 

0 0 0 0 0 0 0  0 0 0  0 0 0 0 0 0 0  0 0 0  
� � � � � re � � g � 

r- � '{'"'"" ..._ T""" .._ 

Distance (m) 

o 0 0 0 0  o 0 0 0 0  � � � l2 � 
,� N N N N 

Figure 4-3 . Elevation profile between the highlands (Point A in Figure 4-2) and the 
wetland terminus at Lake Victoria (Point A' in Figure 4-XX). Basin mean 
slope = 5.3%. 

Terrain Analysis 

Application of the sediment transport capacity proposed by Wilson and Gallant 

( 1996) was done using a standard watershed accumulation command in Idrisi (Clark 

Labs, 2001 )  in concert with the slope surface inferred from the digital elevation model. 

Figure 4-4 shows the computed index values, truncated for visual interpretability so that 

all values greater than 6 were assigned the same shade. Maximum values of 

approximately 80 were found along escarpment walls, but represent an extremely small 

spatial extent. Large values indicate high potential for sediment movement given no 

detachment limitation. As such, the map in Figure 4-4 should be interpreted as merely 

one component of local erosion risk. In addition to displaying the computed index 
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values, sample sites are presented according to visual designation of erosion status 

(intact, sheet, severe sheer, rill, gully). Note that degradation was observed throughout 

the Awach basin, but the majority of severe degradation was observed where transport 

capacity index values were relatively small. 

Computed sediment transport values were extracted for each site, and compiled 

according to observed degradation status (Table 4-2). Standard analysis of variance 

(ANOVA) applied to these data result in an F-statistic for significant differences between 

means of 0.74 (df = 4, P = 0.57). Clearly there is insufficient evidence to infer that 

transport capacity and observed erosion are associated. Moreover, the data in Table 4-2 

suggest that as erosion severity increases, predicted site transport capacity is reduced, 

contrary to expectation. 

\ . .... 
� . . .. 

0 

Unitless Transport 
Capacity Index 

0.00 

5000 1 0000 

0.40 
0.80 
1 .20 
1 .60 
2.00 
2.40 
2.80 
3.20 
3.60 
4.00 
4.40 
4.80 
5.20 
5.60 
>6.00 

a Intact 
(> Sheet Erosion 
• Severe Sheet Erosion 
• Rill Erosion 
• Gully Erosion 

Figure 4-4. Sediment transport capacity surface inferred from the DEM based on the 
algorithm proposed by Wilson and Gallant (1 996). Also shown are field 
sample sites delineated by field classification of degradation status. 



Table 4-2. Extracted sediment transport capacity (Figure 4-4) for 
field sampling sites by observe-d erosion severity class. 

Erosion Class Average Std. Dev. 
1 1 .20 2.28 
2 1 .30 2.44 
3 1 . 1 6  2.4 1  
4 0.84 1 .07 
5 0.49 0.62 

Basin Mean 1 . 16 2.23 

SQectral Analysis 

1 1 5 

Characterization of soils over large areas at the spatial resolution requires rapid 

processing of large numbers of soil samples. This work explored using radiometric 

reflectance signatures to define an array of soils performance measures, ranging from 

conventional laboratory parameters to binary classifications of degradation status and 

infiltration capacity. Spectral calibrations were developed using an existing soil library, 

and subsequently applied to spectra measured from soils collected in the study area. 

Data Visualization and ComQression 

The hyperspectral reflectance library that was used to develop multivariate 

calibrations of laboratory measured soil properties contained 5 1 3  samples collected from 

throughout western Kenya. Each sample consists of 1 98 reflectance measurements, 

derivative transformed to allow direct comparability between samples. In order to 

visualize variability in this data space, standard linear data compression tools were used. 

More important than facilitating better data-space visualization, this spectral library 

allows calibration bounds of the multivariate soil property models to be defined, from 

which spectra from the A wach basin could be screened for outlier samples. 

PrinciQal comQonents analysis 

Standard forward-rotation principal components analysis was performed for the 

5 1 3  soils in the spectral library . Data compression was effective, as shown in the eigen-
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value screeplot in Figure 4-5. The 1 98 bands of reflectance information were reduced to 

four significant axes, collectively explaining 92.9% of the variance in the original data. 

The broken-stick comparison method indicates that axes 5 and above explain no more 

variance than expected by chance, and are therefore disregarded. Furthermore, the 

explanatory power of the first two axes is substantially larger than axes 3 and 4, allowing 

axis interpretation and end-member analysis to focus only on these primary axes. 

Plotting the 5 1 3  soils from the spectral library in principal components space 

using only the first two axes produces the cross marks in Figure 4-6. Axis 1 is projected 

on to the abscissa and axis 2 on to the ordinate axis. The variance explained values are 

for this spectral library PCA. Raw data were left untransformed because none of the 

standard normalization transformations improved skewness of reflectance across soil 

samples (mean skewness = -2.25). Furthermore, the observed skewness is a result of 

deep spectral absorbance features around 1370, 1 890 and 2 1 80 nm, which are important 

100 
90 
80 _ Variance Explained 

" CD c: 70 _____ Cumulative Variance Explained 
]! Co 60 x w 

8�itii Eig!![]�ill!.I!! 0& �ildil[]!<!! 6[Q�!![]-tii1i"� E;ig!![]�ill!.I!! 
1 0.255 60.5 0 .0 1 3  

f5 50 c: ." 
2 0.091 2 1 .7 0.0 1 1  
3 0.023 5.5 0.0 1 0  

.1: 
� 40 
'0 

4 0.022 5.2 0.009 
5 0 .006 1 .3 0.008 

'#. 30 
20 
10 
0 

2 3 4 

Principal Components Axis 

Figure 4-5. Screeplot summarizing principal components analysis of spectral library. 
Variance explained by each of the first four axes is shown in addition to 
cumulative variance reduction. 
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physical attributes. Since the PCA approach is robust to moderately skewed normality 

(McCune and Grace 2001), and the coefficient of variation across samples was relatively 

small (CV = 35%), no data transformation was performed. Normality assumptions for 

the data across wavelength band were acceptable (mean skewness = 0.01 5). 

The PCA transformation produced a matrix of eigenvectors that relates each 

individual wave band reflectance value to the principal-components axes. These 

eigenvectors can be used to project new data into the same multivariate data space. This 

was done to screen the Awach Basin data to look for soils that fall outside the range of 

calibration. The gray circles in Figure 4-6 represent the Awach Basin soil samples (n = 

1 260 - 3 soil samples per plot). The black squares in Figure 4-6 are sediment samples 

retrieved from the A wach Basin terminal wetland. 

Visual analysis qualitatively indicates the extent to which the spectral library 

bounds the variability in the Awach samples, shown in comparison in Figure 4-6. For 

example, along principal component 1 ,  the spectral library bounds the entire A wach 

Basin data set. Along principal component 2, the spectral library fails to encompass the 

variability displayed by approximately 1 8  Awach Basin soil samples. Further, there is a 

region in the lower right quadrant of the bi-plot where additional evidence exists that the 

spectral library fails to capture the entire scope of variability in the A wach Basin. In the 

absence of additional laboratory analysis, identification of spectral coverage in this 

manner is not particularly useful. Within the scope of developing a more comprehensive 

spectral library, these soils would be analyzed in a laboratory and included in soil 

property model development, outlined below. 
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Figure 4-6. Biplot of principal components axes 1 and 2. Shown in the same ordination 
space are spectral library soils, soils from the Awach River basin, and 
wetland soils from the Awach river terminal wetland at Lake Victoria. 

Outlier analysis 

A further application of PCA output data is to identify spectral outliers 

statistically. Outliers were formally defined as those soils from the Awach Basin that fell 

more than 2 standard deviations (both criteria were explored) away from the mean for 

each principal component defined for the spectral library. Table 4-3 presents soils that 

are defined as spectral outliers. Sample nomenclature is: S - indicates an Awach basin 

sample, 1 4  -sample plot number and, B -within-plot sample position. 

It is also important to note convergence of outliers to specific locations. For 

example, all samples from site 14  are outliers (along PC Axis 1 and 4) and all three 

samples (A, B and C) from site 370 and 345 are outliers along axes 2 and 3 .  Moreover, 

outlier sites were clustered spatially. Sites 266, 268 and 272 were proximate and were all 

classified as significant outliers along axis 1 .  This convergence suggests that sites 

designated as outliers may not be so classified because of measurement error. 
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Given the sample size, a number of sites (n � 60) would be expected to fall 

outside the 2 sd range with a normal probability distribution. As such, only those sites 

that were more than 3 sd from component means were excluded from further analysis. 

Note that outliers defined in this manner are for soil spectra as a whole. However, 

specific portions of the spectra are information rich for predicting soil functional 

performance measures. Consequently, outliers for specific soil properties may be quite 

different from outliers for soil spectra generally. 

Table 4-3 . Spectral outliers from Awach Basin soil samples (n = 

1 260) with reference to principal components ordination of soil 
spectral library (n = 5 1 3). Bolded soils were 3 s.d.-level outliers. 

Sample Soils 
Outliers (>2 sd) 
Outliers (>3 sd) 
Outlier Sites 
(bold sites were 
3 s.d. outliers) 

1 
1 8  
5 

S 14B 
S32B 
S49C 

S102A 
S104B 
S147B 
S232B 
S241C 
S249C 
S260A 
S266C 
S268C 
S272C 
S297A 
S323A 
S323B 
S352B 
S372B 

Principal Components Axis 
2 3 4 
1 8  29 26 
0 0 2 

S8A S133C S14A 
S8C S173B S14B 

S44A S241 C  S50C 
S44B S249C S55C 
S44C S266C S70B 

S173B S268C S70C 
S2 10C S272C S86C 
S284A S276A S97C 
S345A S277A S104B 
S345B S277C S128C 
S345C S278A S130A 
S358B S285A S130B 
S358C S285B S140A 
S394A S293B S140B 
S394B S298A S1 52C 
S394C S300A S 1 87B 
S397C S30 1A S205A 
S401 C  S3 14B S23 lB 

S3 14C S301A 
S323A S3 1 8A 
S345A S3 1 8C 
S345B S322C 
S345C S324C 
S370A S332C 
S370B S368C 
S370C S383B 
S394A 
S394B 
S394C 
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Spectral end-member visualization 

By projecting new data into principal component space, spectral outliers were 

identified, allowing visualization of spectral response variability within the data set. 

Soils with component axis scores closest to the mean and ± 2 standard deviations were 

selected for only the first two principal components. 

Figure 4-7 shows raw reflectance spectra for the entire electromagnetic sampling 

region for 6 sample soils. These soils represent mean and end-member spectra for the 

first two principal components. Note that, while Figure 4-7 presents raw reflectance data, 

peA and all subsequent analyses were done using derivative-transformed data. This was 

to allow direct reference to Figure 1 -2 that summarizes relevant spectral absorption 

features. Samples selected for each representative end-member signature are labeled. 

It is clear from Figure 4-6 that the general geometry of spectral reflectance curves 

are remarkably similar. Much ofthe variability appears to be due to brightness (relative 

reflectance) and relative intensity of absorption features around 1 370, 1 850 and 2 1 50 nm. 

The visible portion ofthe spectra (350 - 750 nm) exhibits limited discrimination between 
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'i '0 0.2 � 
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\.;1'" 
..•..•... 
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Reflectance Wavelength <run) 
Figure 4-7. Mean and end-member (± 2 s.d.) example raw reflectance spectra for first 

two principal components. 
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soils with respect to shape, but shows strong differences in brightness. The mean spectra 

are similar, as expected given the density of points around the origin in Figure 4-6. 

To further visualize reflectance signatures, segments of the spectra containing 

discriminating features were selected (Figure 4-8). Note that these data are first

derivative transformed data, in contrast to raw reflectance data in Figure 4-7. Also, note 

that the vertical scale varies between plots. This is particularly important for the segment 

between 1 830  - 1 920 nm, which is a consistently deep absorption feature. 

Trend consistency offers some insight into spectral regions useful for soil 

assessment. Specifically, substantial noise is apparent within the visible to near-infrared 

region (380 - 1 360 nm). In contrast, longer wavelength near infrared (1 370 - 1470 nm 

and 1 830 - 1 920 nm) is more promising for spectral soil inference. Information content 

in the mid-infrared (1 970 - 2450 nm) is evident but the signal is more complex. 

Multivariate Soil Property Models from Reflectance Spectra 

The technique described previously to allow prediction of standard soil properties 

from the spectral reflectance data was applied to the spectral library (n = 5 1 3  soils). Soil 

properties that were modeled include soil texture (% sand, silt, clay), soil organic matter, 

cation exchange capacity, pH, and exchangeable ions (P, Ca, Mg, K). A committee of 

regression trees was developed for each soil parameter, and the predicted responses for 

both the calibration data set (n = 3 1 0) and the holdout-validation data (n = 203). 

Because the regression tree models were developed using tree committees with 

data resampling, each soil property model cannot be visualized. However, the non

committee approach to model development is to produce a tree which is pruned using V -

fold cross validation. The decision tree rule base developed in this manner for predicting 
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Figure 4-8. Mean and end-member (± 2 s.d.) example derivative transformed spectra for 
first two principal components for four spectral regions with large evident 
spectral separability. 
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Figure 4-9. Cross-validated regression tree developed for predicting soil organic carbon 
content of soil from reflectance spectra information. Also shown are the 
most important splitting variables. 
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soil organic carbon (SOC) from spectral reflectance is shown in Figure 4-9. This is 

presented only as a means to visualize model form. Note that the list of important 

spectral bands for SOC regression tree development (Figure 4-9) is dominated by bands 

in the mid- and near-infrared portions (2000 - 2250 nm, 1 380- 1430 nm and 71 0-840 nm) 

of the spectra, with only one important variable falling in the visible portion of the 

spectrum (W61 O, or 6 10  nm). The inclusion of surrogates may result in important 

spectral bands being absent as primary split criteria. 

The tree committee grown for SOC (250 trees grown using adaptive resampling) 

was evaluated by comparing model predictions with laboratory measurements. This was 

repeated for each soil property model. Figure 4- 1 0  illustrates the model fit for SOC for 

calibration soils and those held out to validate the model. Additional model fits are 

presented along with ancillary model information in Appendix B. 

A summary of model fit for each soil property in calibration and validation is 

presented in Table 4-4a. As shown, models were extremely effective for predicting 

calibration soil properties (mean r2 = 0.97). More importantly, the validation accuracies 

are high (mean r2 = 0.8 1 ). Of additional interest is the functional relationship (slope and 

intercept estimates) between observed and predicted values (shown in Table 4-4a for the 

calibration data). The expected values for the slope and intercept are 1 and 0, 

respectively. Some deviation from these expected quantities was tolerable because the 

data range rarely includes the origin, but some evidence of data range compression is 

observed because almost all slope values are less than 1 (i.e. the range of predicted values 

is narrower than the range of observed data). Model estimates of soil properties, used in 
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all subsequent analyses, were adjusted by the model functional form to compensate for 

this potential problem; correlation between predicted and observed remains unchanged. 

Models for two additional soil properties, exchangeable phosphorus and 

potassium, were unsuccessful, resulting in validation efficiencies of less than 50%. 

However, by assigning observed data into classes based on functional thresholds for each 

constituent (e.g., from Brady and WeiI 2001 ), robust screening models were possible 
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Figure 4- 1 0. Chart depicting fit between predicted and observed soil organic matter 
content (in %) for a) calibration data set and b) holdout validation data. 



126 

using classification trees. The selected threshold for P was 5 ppm (Olsen exchangeable), 

which is characteristic of soils with severe P limitation. Similarly, the K threshold (0.4 

cmol/kg) represents a lower bound for supporting crop production without subsidy. 

Table 4-4. Model efficiency for predicting measured soil 
properties from spectral reflectance signatures. 

Predicted to Actual 
Soil Property Intercept Slope Cal r'''2 Val r"2 
CEC 2.56 0.845 0.98 0.9 1 
Exch Bases 3 .07 0.834 0.98 0.90 
CEC-Clay 13 .70 0.656 0.98 0.73 
Clay 1 1 .70 0.693 0.97 0.82 
Silt -3.42 1 . 1 59 0.95 0.72 
Sand 1 5 .75 0.62 1 0.96 0.80 
Exch. Mg 1 .08 0.749 0.96 0.85 
Exch. Ca 3 .83 0.789 0.98 0.83 
SOC 0 . 14  0.894 0.98 0.88 
pH 3 .22 0.5 16  0.94 0.62 

Table 4-5. Binary classification efficiency for cross-validated tree 
models based on reflectance spectra. Screening thresholds are 
defined based on published soil functional levels (Brady and Weil, 
2001 ). 

Calibration Validation 
Binary Soil Parameters Sens. Spec. Total OR Sens. Spec. Total OR 
P < 5 ppm 0.86 0.88 0.87 43 .97 0.73 0.77 0.75 9.3 1 
K < 0.4 cmol/kg 0.86 0.78 0.82 23 . 14 0.74 0.71 0.72 6.96 

Model results are presented in Table 4-5. For each binary model, sensitivity 

(correct positives), specificity (correct negatives), accuracy and odds ratio are presented 

for both calibration and cross-validation. For each soil parameter, models are balanced 

(sensitivity ;:;;; specificity), and model validation efficiencies are highly significant. 

Definition of Case and Reference Soils 

A spectral definition of soil degradation based on visual delineation of erosion 

status was developed using reflectance signatures. This definition was developed using 

only soils for which degradation status was considered reliably defined during fieldwork. 

Those soils (e.g. agricultural soils) for which degradation condition is obscured by human 
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management were omitted from the calibration. This spectral model obviates the need to 

infer degradation from proximate variables (e.g., texture, SOC). It also facilitates an 

objective definition of degradation that is repeatable across observers and times, 

regardless of visual masking ( e.g., tillage) or season. After spectral model development, 

the rule base for discriminating intact from degraded soils was applied to the subset of 

soils for which site delineation of degradation status was impossible. 

Case definitions (i.e. models devised to discriminate between intact and degraded 

soils) were developed for binary and three-category degradation conditions observed in 

the Awach Basin, in addition to soil hardsetting and gully soils, using classification tree 

models. Optimal trees were selected to maximize cross-validation accuracy. Table 4-6 

summarizes the model accuracy, both in calibration and cross-validation. 

Clearly, discriminating intact from degraded soils using spectral reflectance 

signatures is effective. For binary classification, calibration accuracy was 95%, with 

balanced error rates for omission and commission. Three-category models were only 

slightly less efficient, with classification error primarily in discriminating the middle 

category (moderate degradation). In each case, cross-validation accuracy was lower than 

calibration accuracy. 

It should be noted that visual designation of hard setting was confounded by 

severe erosion. Of the 99 soils that were incorrectly classified as hardset, 88% were 

severely degraded. This suggests that many sites may have actually been hardset, but that 

the visual cues for delineating this condition were masked by rill or gully features. The 

rule-bases developed for discriminating between intact and degraded soils were applied 

to the remaining soils (n = 445). Table 4-7 summarizes the results. 



Table 4-6. Case-reference definition summary. Given are model fit statistics 
between soil s2ectral reflectance and observed degradation. 
Hardset Calibration Validation (V=10) 
(n = 8 1 9) Pred N Pred Y (n = 8 1 9) Pred N Pred Y 

Obs N 574 99 Obs N 543 130  
Obs Y 6 1 36 Obs Y 37 105 

Accuracy Sensitivity Specificity Odds-Ratio 
Calibration 87. 12% 95.8% 85.3% 1 3 1 .4 
Validation 79.5 1% 73.9% 80.7% 1 1 .6 

Gully Soils Calibration Validation {V=101 
Cn = 8 1 9) Pred N Pred Y (n = 8 19) Pred N Pred Y 

Obs N 614  64 Obs N 592 86 
Obs Y 24 1 13 Obs Y 32 105 

Accuracy Sensitivity Specificity Odds-Ratio 
Calibration 89.20% 82.5% 90.6% 45.2 
Validation 85.52% 76.6% 87.3% 22.6 
Binary Erosion Calibration Validation (V=1 01 
(n = 8 19) Pred N Pred Y (n = 8 19) Pred N Pred Y 

Obs N 374 28 Obs N 300 1 02 
Obs Y 1 5  402 Obs Y 97 320 

Accuracy Sensitivity Specificity Odds-Ratio 
Calibration 95.0% 93 .3% 96.6% 395.7 
Validation 75.7% 76.7% 74.6% 9.70 
Ordinal Erosion Calibration Validation (V=1 01 
(n = 8 1 9) Pred 1 Pred 2 Pred 3 (n = 819) Pred 1 Pred 2 Pred 3 

Obs I 334 1 1  8 Obs 1 273 79 49 
Obs 2 3 1  1 8 1  6 Obs 2 57 72 38 
Obs 3 26 1 2  206 Obs 3 2 1  38 1 88 

Accuracy Sensitivity* Specificity* Odds-Ratio* 
Calibration 88.5% 93.6% 93.6% 2 1 5.7 
Validation 70.6% 84. 1% 86. 1% 32.6 
* These model summary measures are for discriminating severely degraded soils from other soils. 

Table 4-7. Summary of spectral predictions of degradation for soils at sites 
where visual designation was confounded. 

Hardsetting Cn = 445) 
Intact Hardset 

Number 306 129 

Categorical Degradation (n = 445) 
Intact Moderate Severe 

Number 199 120 126 

Binary Degradation (n = 445) 

Number 
Intact Degraded 
227 2 1 8  

128 
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Further indication of the efficacy of the case-reference definition is in assessing 

the odds of classification as degraded given field observation categorization. Figure 4-1 1 

gives odds ratios of case classification given field assignment of degradation status. 

Results suggest that the odds ratios of correctly classifying a gully or hardset soil as 

degraded are over 60. Given intact field designation, the odds ratio of a soil being 

designated a case are 0.06. 
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Figure 4-1 1 .  Odds ratios for designation as spectral case conditioned on observed 
degradation category. Also shown are 95% confidence bars for the odds 
ratio estimate. 

Awach Basin Soils Assessment 

Soil Property Estimation 

The soil property models developed above were applied to soils sampled in the 

Awach Basin. Table 4-8 summarizes soil properties for the 1 260 sample soils according 

to degradation status (both observed and spectrally-designated). Standard analysis of 

variance was applied to visual erosion status, and Student t-tests to binary classifications 

to determine which soil properties responded significantly to changes in degradation 

status. Where necessary, contrasts were done on transformed data to ensure normality 



assumptions were met. Significance levels for ANOV A contrasts were held at 95% 

(family-wise), while for t-test contrasts, P-value classes are reported. 
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For categorical soil properties (exchangeable P and K) where the comparison is 

between proportions, these techniques are inappropriate. Instead, pairwise Chi-square 

tests of independence were performed. Interpretation is similar to continuous analyses: 

where the result is significant, there is evidence to suggest that the real proportions (Pr) 

are different between classes. Results conform to expected patterns. Soil organic carbon 

content, silt and clay content, cation exchange capacity and exchangeable bases decline 

monotonically with increasing degradation. Similarly, pH and sand increase with 

degradation. Strongly significant differences (P<O.OO l )  between intact and degraded 

soils were observed for SOC and sand, with silt, clay, pH, CEC and exchangeable bases. 

F or binary soil properties, the sample proportion exhibiting low functional levels 

increases with degradation for both P and K. Similarly, the sample proportion of strongly 

P-depleted soils is significantly higher (P<O.Ol )  for degraded than for intact soils. 

Soil property results were further explored by compiling results according to 

landuse and degradation class. Table 4-9 summarizes these results. It is clear that within 

each landuse class, erosion depletes soil of organic carbon, silt, clay, cation exchange 

capacity, exchangeable bases, and increases the probability of observing P or K 

depletion. Trends are remarkably similar between landuse classes with regard to effects 

of degradation. Also clear from this and information in Table 4-8 is that moderate 

degradation leaves soil largely unchanged with respect to most soil quality parameters. 

In contrast, severe erosion (severe sheet, rill, gully) radically alters soil composition, 

particularly for variables (silt, SOC, CEC, P) considered critical for agricultural function. 
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Table 4-8. Summary statistics of soil EroEerties b� visual soil degradation class. 
Visual Erosion Classification Hardsetting S2ectral Case 

Soil Pr02erty Intact Sheet Severe Rill Gull� No Yes Sig. Intact Degr. Sig. 
Number of Samples 726 3 1 5  78 75 66 1 10 1  159 597 663 

SOC 3 .02a 2.69b 1 .93c 1 .77cd 1 .47d 2.89 1 .50 ***  3 .26 2.03 ***  
Std. Dev l .34 1 .23 1 .05 0.96 0.74 l .33 0.53 l .3 1  l .34 

Silt (%) 24.57a 23.90a 20.93b 20.84b 20046 24. 1 8  20.72 **  25.38 2 1 .67 ** 
Std. Dev 4. 17  4.26 3 .70 4.00 3.93 4.22 4. l 3  3 .84 4.79 

Sand (%) 34.92a 37.55a 44.00b 43 .51b 45. 14b 37.97 46048 ** 34.2 1 42.22 *** 
Std. Dev 6.20 6.89 7. 19  7.65 6.29 6043 7044 5.50 7.14 

Clay (%) 40.61a 39. 10a 37.35ab 35.50b 34.85b 38.05 33 .67 *** 40.97 37. 1 1 ** 
Std. Dev 804 1 9.16 7.92 6.90 6. 19  8.63 6.33 7.59 9.35 

pH 6.57a 6.67a 6.89b 6.70b 7.07b 6.60 6.98 ** 6049 6.79 **  
Std. Dev 0045 0047 0.57 0.61 0.67 0.50 0042 0045 0.51 

CEC 20.01a 1 8.76a 19.2 1a 17Ab 16.95b 20.27 1 7.37 ** 19. 18  16 .12 **  
Std. Dev 6.26 6.55 6.8 1 6. l 3  7.00 6.52 5.56 6.37 6.22 

Exch. Bases 19A6a 1 8.39a 1 8.80a 1 7.07b 16.53b 19.95 16.94 ** 1 8.81 15 .67 **  
Std. Dev 6.35 6.63 6.77 6.24 6.90 6.59 5047 6041 6.29 

Exch. Mg 4.85a 4A1a 4.06ab 3 .76b 3 .68b 4.26 3 .92 * 4046 3 .96 **  
Std. Dev 1 045 1 . 5 1  1 .56 1 .28 1 .07 1 .47 l .32 l .32 1 .54 

Exch. Ca 1 8.04a 17 . 16a 1 7. 14a 14.82b 16.80ab 15 046 l 3.82 **  17.50 l 3 .89 ** 
Std. Dev 7. 1 8  7. l 3  7. l 3  6045 5.89 7.23 5.82 7.39 604 1 

Pr (Extr. P < 1 0  mglkg) 0.71a 0.78b 0.80b 0.88c 0.89c 0.81 0.85 0.78 0.84 * 
Std. Dev 0.2 1 0. 1 7  0. 16 0. 1 1  0.09 0. 15  0. l 3  0. 17  0. l 3  

Pr (Extr. P < 5 mglkg) OA6a OA8a 0.65b 0.8 1c 0.79c 0.56 0.80 ***  0049 0.64 **  
Std. Dev 0.25 0.25 0.23 0. 15  0. 17  0.25 0.16 0.25 0.23 

Pr (Exch. K < 0.2 cmollkg) 0 . 12a 0.20b 0.23b 0.20b 0.24b 0.22 0.19 0. 1 8  0.23 * 
Std. Dev 0. 1 1  0. 16 0. 1 8  0.16 0. 1 8  0. 17  0. 15  0. 15  0. 1 8  

Pr (Exch. K >  004 cmollkg) 0.80a O.77a 0.54b 0.36c 0.35c 0.76 0.53 ** 0.76 0045 * 
Std. Dev 0. 1 6  0. 1 8 0.25 0.23 0.23 0 . 18  0.25 0 . 18  0.25 

Note: Mean values with different subscripts are significantly different at the 95% confidence level based on 
standard ANOVA (for categorical comparison) and t-tests (for binary comparison). The binomial 
proportions were compared using pairwise Chi-squared tests of independence. The following raw data 
required normalizing transformation before ANOV A was performed: SOC (In), CEC ('.J), Exch. Bases (-./), 
Exch. Mg ('.J), and Exch. Ca (-./). For binary comparisons, significance levels are *** - p < 0.001 ,  **  - P < 
0.0 1 ,  * - p < 0.05. ANOV A was performed with a family-wise error rate of 0.05 using Bonferroni contrasts. 
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Table 4-9. Soil Eroperties b� landuse class and categorical degradation status. 
Landuse 

1 - Agriculture 2 - Rangeland 3 - Woodland 4 - Other 
Spectral Degr. Class Spectral Degr. Class Spectral Degr. Class Spectral Degr. Class 

Soil Pro�erty 1 2 3 1 2 3 1 2 3 1 2 3 
SOC (%) 3.38 3 . 10  1 .66 2.97 2.97 1 .54 3 .74 3.33 1 .75 3 . 18  3 . 1 9  1 .46 
Silt (%) 26.25 24.85 19.58 25. 12  23.70 19.85 27.03 24.50 19.88 25.56 24.81  19.8 1 
Sand (%) 35 .93 37.22 43.03 36.49 37.92 40.36 34. 19 42.72 45.32 34.48 39.02 42.44 
Clay (%) 39.89 37.06 36.32 39.91 39.2 1 39.05 40.89 33 .27 34.60 40.29 36.82 37.40 
CEC (cmol/kg) 20.84 15 .66 15 .38 20.39 1 7.20 1 7.20 20. 14 18 . 13  1 7.54 19.04 1 7.32 15 .46 
Ex. Bases (cmol/kg) 20.33 15 .33 15 .07 19.99 16.96 16.78 19.56 17.83 1 7.06 1 8.57 17.28 14.75 
Exch. Ca (cmol/kg) 13 .40 13 .91  1 8.61 18 .10 15 .65 15 .44 18.02 17.26 15 .97 16.08 16.3 1 13 .71 
Exch. Mg (cmol/kg) 4 .16 4.19 4.05 4.50 4.29 3 .98 4.78 4.75 4 . 10 4 .51  4. 1 7  3 .64 
pH 6.5 1 6.40 6.93 6.56 6.49 6.93 6.63 6.65 6.70 6.38 6.47 6.92 
Pr (P<5 ppm) 0.49 0.56 0.60 0.48 0.60 0.62 0.39 0.36 0.53 0.66 0.50 0.84 
Pr (K>O.4 cmol/kg) 0.84 0.91 0.45 0.89 0.85 0.49 0.87 0.83 0.53 0.93 0.88 0.28 

Table 4- 1 0  summarizes the correlation structure between continuous soil 

parameters. Except for the correlation between base nutrient measures (CEC, base 

saturation, exchangeable Ca and Mg), there is only limited evidence of strong collinearity 

between soil samples. Interestingly, soil organic carbon is inversely proportional to soil 

clay content, but positively associated with silt content. 

Table 4- 1 0. Correlation matrix for continuous soil properties to 
determine potential multi-collinearity effects. 

SOC Silt (%} Sand (%) Cla� (%) �H CEC ExBases ExMg ExCa 
SOC 1 .00 
Silt (%) 0.46 1 .00 
Sand (%) 0.46 0.20 1 .00 
Clay (%) -0.61 -0.61 -0.80 1 .00 
pH -0.24 -0.30 O.oI 0.32 1 .00 
CEC -0.24 -0.27 -0.24 0.55 0.76 1 .00 
ExBases -0.24 -0.26 -0.23 0.54 0.76 1 .00 1 .00 
ExMg 0.23 O.o I 0.04 0. 1 8  0.47 0.76 0.77 1 .00 
ExCa -0.21 -0.22 -0. 19 0.48 0.73 0.95 0.95 0.80 1 .00 

Pairwise Analysis of Degradation Risk 

While risk assessment for predictive purposes will be made within a multivariate 

framework, it is instructive to summarize marginal effects of site-level characteristics on 

observing degradation. Figures 4- 12  and 4-13  show marginal odds ratios of observing 
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degradation given specific site characteristics. Included are 95% confidence intervals for 

estimates of these odds. An odds ratio of one indicates that degradation is independent of 

the given specific site characteristics over the probability of observing degradation at 

sites without those characteristics. Odds larger than 1 indicate increased risk. 

Figure 4-1 2a shows odds ratios for degradation based on general land-use 

categories. Subsistence agriculture has a non-significant detrimental effect, whereas 

commercial agriculture has a significant protective effect. Active landuse (range, crop, 

wood production) does not significantly increase risk, but passive land cover classed 

forests and wetlands appear to substantially reduce risk of degradation. 

Figure 4- 12b illustrates marginal odds of degradation given specific information 

about land cover. Specifically, there is a strong protective effect of perennial vegetation 
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Figure 4- 12 .  Pairwise odds ratios for binary soil physical degradation. Shown are odds 
ratios and 95% confidence intervals of observing degradation given a) 
general and b) specific land-use information. 
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and a moderate protective effect where sites have been maintained under the same land 

use for greater than 5 years. Annual vegetation appears to have a detrimental effect, and 

recent changes appear to increase risk non-significantly. Curiously, deciduous vegetation 

also appears to have a detrimental effect, though the sample size is small (n = 48). 

Odds Ratio for Binary Soil Degradation 
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Figure 4-13 .  Pairwise odds ratios for binary soil physical degradation. Shown are odds 
ratios and 95% confidence intervals of observing degradation given a) 
general and b) specific management, and c) cover characteristics. 
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Figure 4-1 3  provides much more detail about odds of observing degradation given 

site-level characteristics. The effect of vegetative cover is summarized in Figure 4-1 3a. 

The protective effect of dense ground cover is the most significant pairwise effect 

observed, whereas the protective effect of dense woody cover is less persuasive. For 

pasturelands, the protective effect of cover is even more pronounced. Figure 4- 1 3b 

illustrates that sugar has a significant protective effect while tea plantations provide non

significant protection. There was no effect of subsistence crop choice between graminoid 

and non-graminoid species. Finally, livestock management appears to affect risk 

substantially, with communal grazing increasing and paddock grazing decreasing risk. 

Figure 4- 13c shows conditional odds ratios for ground versus woody vegetation 

protection against soil degradation. Results indicate that woody vegetation has negligible 

effect for risk attenuation. For woodlot systems, the effect of dense woody vegetation is 

negligible, whereas the effect of dense groundcover is highly protective. Shrub lands 

exhibit similar behavior. Summarizing this effect over all sites (lowest two odds ratios) 

indicates that dense woody cover has a protective effect only when dense ground cover is 

present. With sparse ground cover, the protective effect is convincingly non-significant. 

Infiltration Data Processing and Assessment 

Erosion is fundamentally a hydrologic process. To measure the hydrologic 

component of increased erosion risk, an infiltration assessment protocol was developed. 

The following section gives results from site-level processing of infiltration tests. 

Data Sampling 

Figure 4- 14  shows a digitized stream network and all infiltration sampling plots(n 

= 61 ). Sampling effort was stratified by landuse type and degradation status. Table 4- 1 1 
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summarizes sampling stratification. Infiltration tests were performed at 3 wetland sites 

and 3 gully sites, labeled "Other". 

Table 4-1 1 .  Summary of field sample sites for infiltration assessment by landuse and 
binary degradation status. 

Binary Erosion 1 - Croplands 
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Figure 4-14. Map showing the Awach basin, digitized stream network and location of 
infiltration assessment sample plots. 

Model Fitting 

Bounded non-linear optimization techniques used to fit the integrated Horton 

equation (Eq. 2-8) required development of simple S (MathSofi, 2000) code. Table 4-1 2  

gives the code along with a description of each code section. Central to the model fit 

routine is use of nlminb, which allows bounded parameter optimization in S. The fit 
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criterion is  the sum of squared residual error (RSS) between predicted and observed 

values. Parameters were bounded to ensure real solutions (i.e. infiltration rates less than 

o are undefined). To avoid complications arising from local minima in the RSS surface, 

multiple reasonable initial "guesses" for q (see Table 4- 1 2) were tried until a solution was 

found that yielded a repeatable global minimum. The specified lower bound (0.00001 -

units of cm/sec, equal to 0.36 cm/h) artificially constrains parameters to be positive. In 

some cases, the best fit was observed when parameters were set to this lower bound. 

While this suggests that the bounded fit is non-optimal, it was considered justifiable to 

assign sites with such low infiltration rates to this minimum rather than permit physically 

meaningless parameter values. Predicted parameter values for each model fit were 

written to a file for later interpretation. Of specific interest was the parameter describing 

steady state infiltration rate (q[l ]  in Table 4- 12). 

This approach to handling infiltration observations introduces considerable 

complexity. However, the alternative of using mean infiltration rate grossly 

Table 4- 1 2. Infiltration model fitting using a bounded quasi-Newton fitting algorithm. 
Code Notes: S-Plus 2000 Code: 
Define integrated Horton 
infiltration function with 3 
parameters and one variable, 
time (xO). Compute RSS of 
current parameter estimate vector 
(q) vs. observed data for sample 
replicate i. 

For each infiltration test, find 
parameters that minimize the 
sscomplex function output (i.e. 
RSS). Parameter values are 
lower bounded to a minimum of 
0.00001 .  Results are written to a 
parameter files and SSE file. 

sscomplex_function(q,xO=inf.data[2*i],y=inf.data[2*i- 1 ]){ 
yO <- q[l] * xO + q[2]/q[3]*(1 - exp( - q[3] * xO)) 
sum« y - yO)"2)} 

for (i in 1 :366){ 
loopsscomp _ nlminb( q,sscomplex,lower = 0.00001 ,  

max. fcal=3 00,max.iter=3 00) 
Param[i, 1 L loopsscomp$parameters[ 1 ] 
Param[i,2Lloopsscomp$parameters[2] 
Param[i,3 ]Joopsscomp$parameters[3] 
Sscomp.est[i L sscomplex(Param[i,]) 
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overestimates the saturated infiltration capacity. Figure 4- 1 5  summarizes model fit for 

one infiltration replicate. Shown are two Horton models. The first (Horton Standard Fit) 

resulted from transforming the observed data on cumulative infiltration into infiltration 

rates and fitting the standard Horton Equation. The second procedure fits the Horton 

Equation directly to cumulative infiltration data. The third method shown uses mean 

infiltration over the sampling period as the infiltration estimate. Note that model fit is 

comparable for the two Horton Equation-based methods (suggesting no advantage of 

selecting one over the other) but that considerable error is introduced by ignoring 

temporal dynamics of infiltration. 

The average RMSE for model fit was 1 . 1 3  cm. Those samples for which the best 

fit resulted in RMSE greater than 1 0  cm were regarded as outliers and discarded. In 

addition, sites at which cracks or leaks were observed during the sample period were 

removed from further analysis. 
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Figure 4- 15 .  Infiltration rate over time with three alternative model forms. Shown are 
raw data, non-linear best fit line and model residual error (RSS), root 
mean square error (RMSE) and the predicted base infiltration rate. 
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Mean Saturated Infiltration Rates 

Base parameter fits were compiled for all non-outlier samples according to 

landuse and degradation status. Table 4- 1 3  summarizes the results, with base infiltration 

rates reported in mm/hr. Note that contrast strengths are substantially weakened by the 

small sample size (n = 61 ). Despite the limited statistical power, there are clear 

differences in infiltration between intact and degraded sites. Using observed degradation 

classes, there appears to be a strong effect of severe degradation on reducing infiltration. 

When data are organized according to landuse, results suggest that agricultural 

lands have the highest mean infiltration rates. However, substantial variability within 

landuse class is evident. Woodlands (woodlots, shrublands and forests) also exhibit high 

infiltration. Rangeland has significantly lower infiltration rates. "Other" includes 

wetland and gully sites, both of which exhibit exceptionally low infiltration rates. 

While rangelands have low nominal infiltration rates, an important distinction 

between intact and degraded sites was observed. Intact sites (n = 8, based on spectral 

Table 4- 1 3. Summary of mean and standard deviation of base infiltration rates (mm/h) 
organized by degradation status (observed/spectrally defined) and landuse. 

Base Infiltration 
Mean 
Std. Dev 

Base Infiltration 
Mean 
Std. Dev. 

Base Infiltration 
Mean 
Std. Dev 

Spectral Case/Reference 
Intact Degraded 

273Aa 1 02 . 1b 
212.9 340.5 

Grand Total 
1 89. 1 
293 .5 

Observed Degradation Condition 
Intact 

233 .3a 
3 1 5.5 

Agriculture 
341 .9a 
404.6 

Sheet Severe Sheet 
1 16.0a 20Ab 
245.2 1 .2 

Range 
57.2b 
82.6 

Landuse 
Woodland 

237. 1 a  
239.0 

Rill/Gully 
l3 . 1b  
5.9 

Other 
12Ab 
8.2 

Note: Mean levels accompanied by the same letter were not significantly different at 95% confidence level 
based on ANOVA using Tukey contrasts. For spectral case/reference contrast, a t-test was used (P = 0.02). 
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classification) had an mean rate of 1 29 mmlh, while degraded sites (n = 1 3) had an mean 

rate of 28 mm/h. This distinction is more pronounced for woodland sites, where intact 

sites (n = 9) averaged 3 1 6  mm/h compared with 60 mm/h at degraded sites (n = 6). 

Table 4-1 4  summarizes model findings from previous work in western Kenya 

(Wielemaker and Boxem 1 982) for nominal infiltration rates under different land-uses 

and across soils typical of the A wach highland areas. Correspondence between these 

published figures and field observations is excellent, illustrating the need for Horton 

model inference as described herein for direct physical comparison. 

Table 4-14.  Nominal infiltration rates for western 
Kenya (after Wielemaker and Boxem 1 982). 

Soil Type 
Mollic nitosol 
Mollic nitosol 
Mollic nitosol 
Lithosol 
Humic acrisol 
Humic acrisol 
Humic nitosol 
Gleyic phaeozem 
Ferralitic cambisol 
Eutric plano sol 

Spectral Screening Model 

Land-Use 
pasture 
maize 
millet 

pasture 
maize 
maIze 
maIze 

sorghum 
maize 

pasture 

Infiltration Rate 
(mm/h) 

36 
662.4 
374.4 

1 8  
1 90.8 
489.6 
5 1 1 .2 
1 40.4 
471 .6 
43 .2 

The ideal spectral transfer function would allow infiltration along a continuous 

gradient to be described by reflectance characteristics. A regression tree model was 

developed for this purpose, but while calibration model fit was tolerable (r2 = 0.78), the 

hold-out validation accuracy was extremely poor (r2 = 0.27). This may result from 

limited data, or from inherent physical confounders resulting from the substantial impacts 

of human management on surface infiltration rates. 



141  

Infiltration is  a risk factor for soil degradation when surface runoff occurs. 

Sanchez ( 1 973) reports a range of minimum infiltration rates for tropical soils between 2 

and 1 0  cmlh. Jetten et al. ( 1 993) report critical infiltration rates in the range of mean 

rainfall intensity, which for the region is between 50 and 80 mm/h. Infiltration rates 

slower than average rainfall intensity would result in surface runoff during most rainfall 

events, which provides a useful functional threshold for delineating hydrologic risk. 

Results of the classification tree model to delineate soils exhibiting slow « 60 

mm/h) infiltration from those with higher infiltration rates are presented in Table 4- 15 .  

Table 4- 15 .  Results of screening model to discriminate 
between rapid and reduced infiltration capacity based 
on spectral reflectance information. 
A: Binary Classification Tree -- 0 = Infiltration > 60 mmIh 

Calibration 1 0-fold Cross Validation 
Predicted Predicted 

Actual No Yes Actual No Yes 
No 88 1 1  No 75 24 
Yes 9 72 Yes 2 1  60 
Accuracy 0.89 Accuracy 0.75 
Sensitivity 0.89 Sensitivity 0.74 
Specificity 0.89 Specificity 0.76 
Odds Ratio 64.00 Odds Ratio 8.93 
B: Categorical Classification Tree -- 1 = Infiltration < 30 mmlhr, 2 
= Infiltration < 60 mmIh, 3 = Infiltration > 60 mmIh 

Calibration 1 0-fold Cross Validation 
Predicted Predicted 

Actual 2 3 Actual 1 2 3 
1 45 0 3 1 30 8 10  
2 7 1 8  8 2 1 1  12  1 0  
3 9 2 88 3 9 10  80 

Accurac):' 0.84 Accuracy 0.68 

Also shown are results of a categorical model, with three classes « 30 mm/h, 30-

60 mmlhr and > 60 mm/h). Model sensitivity is 90% in calibration, declining to 75% in 

cross-validation. Model balance, as indicated by comparable sensitivity and specificity in 
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both calibration and cross-validation, is adequate. Overall accuracy declines for the 

three-category model, with 68% of samples correctly classified in validation. 

Infiltration Transfer Function 

Predicting infiltration from soil properties that are more readily quantified is a 

standard practice in soil survey work. Functional forms have been empirically developed 

to relate texture and soil carbon content information. The potential for using soil 

properties to predict infiltration class is evident in Table 4-1 6, which summarizes soil 

properties for the entire Awach soils data set (n = 1 260) according to predicted 

infiltration class. Simple mean comparisons were done according to infiltration class, 

and every soil property showed significant differences. Particularly strong contrasts were 

observed for soil carbon, clay content, CEC, exchangeable Mg, and exchangeable P class. 

Table 4-1 6. Comparison of soil properties for infiltration classes. 
Category 1 is sites with saturated infiltration rates less than 60 mm/h. 

Infiltration Category 

Soil Property 0 P-value 

SOC 3 . 1 3  2.35 <0.001 

Clay 37.53 39.85 0.003 

Silt 24.24 23.30 0.017 

Sand 38.98 36.73 <0.001 

pH 6.73 6.57 <0.001 

CEC 19. 1 1  16.52 <0.00 1 

ExBases 1 8.73 1 6.07 <0.001 

Ca 17.56 14.23 <0.001 

Mg 4.79 3.71 <0.001 

Pr (P<5) 0047 0.64 <0.001 

Pr (K>Oo4) 0.83 0.67 <0.00 1 
Note: The p-value refers to the probability that mean soil property values are the 
same at two levels of infiltration (i.e. high = 0 and low = 1 )  

To predict infiltration class from soil properties in a multivariate framework, a 

multiple logistic regression model was developed (Table 4- 1 7). The fitted model is 
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similar in principle to empirical transfer functions that are common in the literature. The 

model is highly significant, and produces a model that correctly classifies over 75% of 

the samples into infiltration classes. It suggests that infiltration is conditionally 

associated with soil organic carbon content, percent clay, pH and exchangeable 

magnesium. As SOC, pH and exchangeable magnesium increase, the probability of 

observing slow infiltration decreases; inverse association is estimated for clay. Because 

of strong co-linearity between texture measures, only clay was significantly associated 

despite each component exhibiting significant pairwise effect. Similarly, the effect of 

magnesium is strongly correlated with CEC, exchangeable bases and exchangeable 

calcium. Neither binary variable (P and K) was significant after stepwise deletion. 

Table 4-1 7: Conditional association parameters between soil properties and 
binary soil infiltration from multiple logistic regression model. 

Range 
Soil Parameter +2s -2s 

SOC 5 .39 0.04 
%Sand 50.95 24.62 
%Silt 32.47 1 5.01 
%Clay 55.92 2 1 .60 
pH 7.66 5.64 
CEC 30.68 4.79 
ExBases 30.40 4.25 

ExCa 30.03 1 .55 

Binary Logistic Regression 
Paramo Estimate S.E. P-value Condo Odds Ratio 

-0.5 1 8  0.085 < 0.001 0.65 

0.084 0.0l3  < 0.001 1 .05 
-0.778 0. 1 80 < 0.001 0.50 

ExMg 7.14 l .30 -0.862 0.086 <0.001 0.52 
P<5 mg/kg Binary 
K> 0.6 cmol/kg Binary 
Note: Cells with no parameter estimates indicate those soil properties that were conditionally 
independent of the target variable, and were eliminated during step-wise variable removal 
(using AIC deletion). The intercept estimate was 5.74. Model residual deviance for the 
logistic regression model 1 200.0, with a null deviance of 1 612.2 (df= 4, P «  0.00 1). The 
odds ratio for correct classification by the binary model is 9.90 (7.50, l 3 .06). 

Pairwise Analysis of Slow Infiltration 

As presented for binary soil degradation, marginal odds ratios can be computed 

for observations of slow infiltration « 60 mm/h). This allows bi-variate exploration of 
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land use, cover and management effects on infiltration. Figure 4-1 6  summarizes 

marginal odds for slow infiltration according to general landuse and specific land cover 

parameters. Results are generally non-significant at 95% confidence, primarily because 

of substantial variability within classes due to soil degradation status (Figure 4-1 7). 
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Figure 4- 1 6. Marginal odds ratios and 95% confidence intervals for reduced infiltration 
capacity by landuse types and land cover characteristics. 

The significant protective effect of agriculture, particularly subsistence cropping, 

and wooded land covers (forests in particular) can be inferred from Figure 4- 1 6. Only 

wetlands and rangelands are significantly associated with slow infiltration. 

Figure 4- 1 6  also shows the marginal effect of various specific land cover and 

management features. There is a general detrimental effect of non-graminoid crops and 

communal grazing to contrast protective effects of graminoid cropping systems and 
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constrained grazing operations. Similarly, annual vegetation appears to provide a 

protective effect, whereas perennial vegetation increases the probability of a site 

exhibiting slow infiltration; both effects are non-significant at the 95% level. 

Figure 4- 1 7  shows further marginal odds analysis. Contrasting dense vs. sparse 

vegetative cover reveals that dense cover is strongly protective regardless of strata. 
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Figure 4- 17. Marginal odds ratios and 95% confidence intervals for reduced infiltration 
capacity by vegetation cover characteristics and soil physical degradation. 

Sparse pasture shows a strong detrimental effect, but dense pasture is not 

significantly protective. Figure 4- 1 7  also illustrates an association between observed soil 

degradation status and slow infiltration rates. Effects are strong, with intact sites 

exhibiting low prevalence of slow infiltration. Severe degradation and soil hardsetting 

are equally strongly associated with low infiltration rates. Moderate degradation appears 

to have little effect on infiltration, while the presence of a depth restriction within 50 cm 

of the soil surface is non-significantly associated with reduced infiltration. 
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Soil Surface Deflation Estimation 

Site Sampling 

To establish physical rates of erosion without detailed runoff sampling, nails were 

used to demarcate the soil surface at 1 8 1  sites. Surface deflation was measured at each 

site where they were recovered after approximately 3 months, including the long annual 

rainy season. Table 4- 1 8  summarizes nail recovery information according to landuse. 

Nail recovery varied between 3 and 1 8  per site; mean recovery was 14  nails (75%). As 

presented, recovery at agricultural sites was poor due to tillage and weeding activity. 

Table 4- 1 8. Summary of sites for which nail data were 
recovered, organized by landuse and binary degradation status. 
# Sites 

Spectral Case Agriculture 

Total 

o 6 
8 

14 

Mixed Effects Model Results 

Landuse 

Range Woodland 

24 14 
32 13 

56 27 

Other 

5 
1 8  

23 

Total 

49 
71  

120 

A substantial portion of variance in exposure was observed within plots, 

particularly for severely degraded sites. Using mean nail exposure to characterize plot 

surface deflation incorrectly assumes that rates are spatially constant. To account for 

within-plot variance appropriately, a linear mixed effects model was employed. 

Mixed effects for deflation by degradation status 

The first mixed effects model explores the hypothesis that erosion rates are higher 

at sites judged degraded. Results of this model, summarized in Table 4- 1 9, suggest a 

strongly significant difference (P-value = 1 .07E-6 to reject null hypothesis) in deflation 

rates between intact and degraded sites. However, there is substantial within plot and 

within position variance. Variance observed between plots (effect of interest - labeled 

residual variance in Table 4-1 9) is less than total nested variance, suggesting that some 
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degree of spatial autocorrelation exists, but the range of autocorrelation is confounded by 

the fine spatial scale over which erosion can vary. This demonstrates the danger of 

extrapolating from plot scale data sets to large areas. Parameter estimates provided above 

are in centimeters. Using a standard bulk density of 1 g/cm3, the implied erosion rates are 

430 grams/m2 for intact sites and 2420 grams/m2 for degraded sites. Also, this surface 

deflation occurred over a 3 month period. Actual erosion rates are assumed twice a large. 

Table 4-1 9. Summary of mixed effects model of 
soil deflation rates by spectral case and reference 
Fixed Effects Parameter Estimate Standard Error 

Intercept 0.043 0.033 

SPD 0. 1 99 0.042 

Random Effects Standard Deviation 
Nail w/in Position 0. 191  
Position w/in Plot 0.329 

Residual 0.391 

Mixed effects for deflation by landuse 

A similar model comparing deflation rates across plot-Ievel landuse designations 

produced the results shown in Table 4-20. Two model results are presented. First, a 

mixed effects model of surface deflation as a function of landuse only is presented. 

Second, a model of surface deflation accounting for both landuse and soil degradation 

status is developed. Estimated rates of soil loss can be inferred as follows: for model A 

(landuse only), predicted deflation is simply the intercept plus parameter estimate for 

each landuse. The model intercept describes estimated deflation rates for agricultural 

lands. Conversion to eroded mass per unit area is simply the estimate multiplied by 

1 0,000, yielding 1 750 g/m2 for agricultural activities and 2600 g/m2 for degraded lands. 

These data were originally intended to provide the quantitative basis necessary to 

make empirical judgments about various land practices. However, field logistics made 

this intended use impossible. First, all sites where tillage was recent or imminent were 
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not sampled, reducing substantially representation of agricultural land-uses. Second, 

nails were not recovered for all sites, presumably due use in local building construction. 

The data were used, therefore, primarily to corroborate categorical probability models. 

Substantial within position and within plot variability lowers the power of 

parameter estimation (Table 4-20). The result suggests that there are no significant 

differences in surface deflation among agricultural, pasture and woodlands. Only sites 

classified as "other" were significantly different (P < 0.001 ). In Table 4-20b, results of 

an interaction mixed effects model are reported. These results suggest a significant effect 

of observed soil degradation (SPD) on deflation rates. The effect of landuse is non

significant across all categories at intact sites (there are 5 intact "Other" sites that were 

wetlands), yielding an erosion rate of between 140 and 530 g/m2 for the sample period. 

There are three marginally significant interaction terms. The interaction effect of 

soil degradation and "Other" is highly significant, providing a surface deflation estimate 

of 3890 g/m2 for the sample period. Parameter estimates for rangelands and woodlands 

are significant with 90% confidence; both tend to erode more rapidly than agricultural 

lands under degraded conditions. Variance partitioning presented in Table 4-20 

illustrates substantial variability both within site and within position that confounds 

efforts to generalize fixed effects. In both cases, nearly 60% of total variance is observed 

at smaller than plot scales, leaving only 40% to discriminate between fixed effect classes. 

Table 4-21 summarizes annual soil loss rates. Table 4-2 1a  shows mixed effect 

model estimates of loss rates and 4-21 b  shows maximum observed rates (g/m2) for each 

landuse and degradation status. For each, values reflect loss rates for only the sampling 

period (3 months). Because approximately half of annual precipitation falls from March-
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June, the values reported in Table 4-21 are double the observed surface deflation. These 

annualized values were used in emergy evaluations of Awach basin landuse subsystems. 

Table 4-20. Summary of mixed effects model of soil surface deflation. 
A: LV Fixed Effects Parameter Estimate Standard Error P-value 

Intercept (LV = Agriculture) 0 . 175 0.023 <0.001 
LV = Rangeland 0.0 19  0.034 0.545 
LV = Woodland -0.0 12 0.Q 18  0.493 
LV = Other 0.085 0.013  <0.001 

Random Effects Standard Deviation 

Nail w/in Position 0.235 

Position w/in Plot 0.235 

Residual 0.361 

B:  LV x SPD Fixed Effects Parameter Estimate Standard Error P-value 

Intercept (LV = Ag, SPD = No) 0.03 1 0.041 0.456 
SPD (Yes = 1)  0.085 0.029 <0.00 1 
LVI = Rangeland 0.022 0.062 0.730 
LV2 = Woodland -0.0 17 0.028 0.538 
LV3 = Other -0.005 0.026 0.837 
SPD*LVI 0.069 0.043 0.055 
SPD*LV2 0.049 0.036 0.087 
SPD*LV3 0.27 1 0.029 <0.001 
Random Effects Standard Deviation 

Nail w/in Position 0.223 
Position w/in Plot 0.224 

Residual 0.361 

Table 4-2 1 .  Annualized mean and maximum estimates of 
erosion rates (g/�) fitted from mixed effects model. 

Degradation Status Landuse 

Case/Reference Agriculture Rangeland Woodland Other 

0 6 13  1043 267 508 
1 2307 4122 2934 7624 

Degradation Status Landuse 

CaselReference Agriculture Rangeland Woodland Other 
0 1600 1 820 1200 1444 

12857 9667 10400 35412 

Next, multivariate risk models results are presented for three classes of erosion 

risk factors (site factors, soil factors and hydrologic and terrain factors). Models will be 

developed targeting binary degradation, but will be cross-checked with information on 

actual soil erosion rates gleaned from these surface deflation data. 



EROSION RISK MODELS 

Defining Multivariate Risk Factors 

Defining soil erosion risk in the Awach River basin required consolidating the 

suite of measured and inferred variables presented in the previous chapter into aggregate 

factors using multivariate statistical modeling. The conceptual framework of the 

Universal Soil Loss Equation provides a template for this despite evidence that the 

specific USLE formulation is inappropriate for the region (Cohen et al. submitted 2003). 

In USLE, erosion is formalized as the product of 5 factors (assumed independent) 

describing aspects of physical, chemical and biological erosion controls. The USLE 

model (Renard et al. 1 991)  can be further distilled into three components of the erosion 

process (Morgan 1 995): 

• Soil particle detachment 

• Impact protection 

• Transport potential 

The first is directly comparable with K (soil erodibility) in USLE and is solely a 

function of soil physical-chemical characteristics. Soil texture, sodicity, and organic 

carbon content are among the variables that will be considered in developing this factor 

(Table 5-1). Values of these soil parameters were inferred from spectral models. 

The second component relates risk with site-level characteristics. This category 

integrates site management decisions, though these decisions can have profound 

implications on other aspects of risk. This component is comparable with C and P in 
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USLE. Variables included descriptors of cover (e.g. ground cover, annual vs. perennial), 

structure (canopy height, strata) and management (e.g. landuse, conservation measures). 

The third component describes hydrologic and geomorphologic contributions to 

sediment transport after detachment. This component lumps USLE factors R, L and S. 

Variables selected to define this component included slope, slope length, infiltration 

class, soil depth and rainfall. Table 5-1  presents variables that were candidates for 

quantifying each aggregate factor. For each model, the target variable was binary erosion 

status, inferred spectrally. 

Table 5-1 .  Summary of field, soil and derived variables assigned to each of three erosion 
risk components to define risk in the Awach River basin. 

A: Soil Erodibility B:  SiteNegetation Characteristics 
Soil Organic Carbon Ground Vegetation Cover 
Silt Content Woody Vegetation Cover 
Clay Content Rock/Stone Cover 
Sand Content Tree Basal AreaiDensity 
pH Ground Vegetation Height 
CEC Woody Vegetation Height 
Exch. Bases AnnuallPerennial (binary) 
Exch. Ca Land Use (nominal) 
Exch. Mg 
Exch. Na (binary) 
Exch. P (binary) 
Exch. K(binary) 

Soil Erodibility 

C: TerrainlHydrologic Factors 
Slope 
Slope Length (categorical) 
Slope Shape (nominal) 
Site Infiltration Class (binary) 
Annual Rainfall 
F oumier Index 
LS - Function 
Evidence of Flooding (binary) 
Conservation Structures (binary) 
Soil Restriction (binary) 

Erodibility is the inherent capacity of soil to resist detachment from raindrop 

impacts or flowing water. Physical models generally include aspects of shear stress 

susceptibility and flow pattern persistence, but empirical models delineate erodibility 

based strictly on statistical associations between degradation and soil properties. An 

existing model (USLE) is compared with an empirical model developed based on direct 

observation in the Awach River basin. 
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Standard Erodibility Nomograph 

Soil erodibility was first computed for each soil sample in the Awach basin 

according to Equations 2-6 and 2-7. Adjustment factors (Sstruct and Sperm) were omitted 

because they were not observed during field sampling. Logistic regression was used to 

assess the association between the continuous erodibility prediction and a binary 

condition of soil degradation (i.e. spectral case definition). 

Figure 5-1  gives a logit model describing the probability of observing degradation 

given computed soil erodibility values. Sample proportions observed for groups along 

the erodibility continuum, along with 95% confidence intervals, are also shown. 
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Figure 5- 1 .  Association between computed soil erodibility (from USLE nomograph) and 
observed grouped degradation probabilities with binomial 95% confidence 
intervals. 

Several important results from Figure 5-1 should be noted. First, the model is 

highly significant (p « 0.0001)  as are both parameter estimates. Estimated standard 

error for the parameter describing the effect of soil erodibility is 2.27; this suggests a 95% 

confidence interval for the parameter of {-2 1 . 1 ,  -30.0} .  A parameter estimate of -25.5 
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implies that, for each 0.01 unit change in erodibility, the odds of observing degradation 

decrease 0.77 times. Second, this odds ratio implies that the effect direction is opposite 

to expected; increased erodibility should increase observed degradation probability. 

Prospective Study Assumption 

The above analysis assumes that soils exhibiting degradation during sampling will 

continue to erode. This assumption is partially validated by surface deflation results, 

which indicate that degraded sites exhibit significantly higher erosion rates than intact 

sites. However, without a prospective study to compute erodibility values for intact soils 

and only later observing the degree to which those soils degrade, it is not possible to 

establish causality. As a result, an assumption that erosion and erodibility can be 

observed simultaneously (i.e. assume that sample data can provide prospective 

information about erodibility) was required. 

Soil Type i Eutric Vertisols (K = 0.25) 
Eutric Planosols (K = 0.30) 
Eutric Leptosols (K = 0.30) 
Luvic Phaeozems (K = 0.15) 
Humic Cambisols (K = 0. 10) 
Humic Nitisols (K = 0. 15) 

meters 

Figure 5-2. Soils map for the Awach River basin (after Kenya Soil Survey, 1 977) 

Based on a degradation surface for the entire basin, interpolated from sample 

plots to the entire basin (presented in the next chapter), it was possible to explore 

erodibility from another perspective. Mean erodibility values were computed for each 
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soil type, delineated using the existing soil map shown in Figure 5-2, using only those 

samples judged intact. For each soil-type polygon shown in Figure 5-2, the proportion 

degraded was computed from the degradation map (Figure 6-1) .  

Table 5-2 shows these data with mean erodibility estimates for intact sites in each 

polygon. The plot of mean erodibility versus proportion degraded is given in Figure 5-3 . 

The association direction between computed erodibility and the extent of degradation in 

that soil type is inverse to expected direction (Figure 5-3). While the regression model is 

significant, it provides limited predictive power so was not used in subsequent analyses. 

Table 5-2. Mean erodibility for each soil type, along with the 
proportion of each polygon that showed evidence of degradation 
(inferred from Figure 6- 1 a). 

Soil Type Mean Intact Site Erodibility Proportion Degraded 
Cambisol 
Leptisol 
Nitisol 

Phaeozem 
Planosol 

Vertisol 

0 . 1 1 
0. l2  
0. 1 0  
0.12 
0.08 

0. 1 3  

0.38 
0.45 
0.30 
0.37 
0.66 

0.24 

'U 0.7 .----------------�---------, 

j 5h 0.6 

Q 
.� 0.5 � ..s � 0 .4 
E'-< 
:g 

0.3 CZl 
..c= � 
>Il 

0.2 � 
§ 'E 0 . 1  0 
g. &:: 

0 

0.07 

• 

y = -5 .29x + 0.98 

R2 = 0.50 

0.08 0.09 

• 

0.10  

• Proportion Degraded 

- Linear (Proportion Degraded) 

• 

• 

0. 1 1  0.12 0.13 

Mean Intact Site Erodibility (by soil type) 
0 . 14 

Figure 5-3 . Correlation between mean erodibility for intact sites for a given soil type 
versus the proportion of that type that is degraded (using spatial data from 
Figure 6- 1 ). 
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Empirical Soil Erodibility Factor Development 

Graphical modeling to identify conditional association structure 

Conditional association patterns between degradation and the list of variables in 

Table 5-1  for soil erodibility were elucidated using graphical models. Strong collinearity 

between variables necessitates this approach: association within a multivariate framework 

needs to be conditioned on correlations with all other variables. Starting with a saturated 

Erosion 

Silt Mg 

Calcium 

• Categorical Variables 
o Continuous Variables 

K 

-- Significant (p < 0.0001)  conditional association arcs 

Figure 5-4. Graphical model showing conditional association structure for soil properties 
and erosion status. All categorical variables are binary. Arcs between 
nodes indicate conditional association significant at the a = 0.0001 level. 

model (i.e. arcs connecting each node), variable deletion was performed using the 

deviance criteria at a = 0.0001 significance. This restrictive threshold was chosen 

because the sample size (n = 1260) returned conditional associations judged to spurious. 
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The resulting graphical model (Figure 5-4), has the following characteristics: it is 

collapsible onto the discrete variables, mean linear, homogeneous graphical and 

decomposable. It implies that erosion is strongly associated with P (binary), silt content, 

sodic phase (binary), soil organic carbon, K (binary), sand content, clay content and 

exchangeable base concentration. Effect strength and direction were quantified within 

the context of mixed effects logistic regression below. 

Logistic mixed-effects model development 

Selecting only those variables observed to be conditionally associated with 

degradation as predictors (Figure 5-4), a mixed-effects logistic regression model was 

developed. The marginal maximum likelihood parameter estimates are presented in 

Table 5-3, along with asymptotic standard error estimates and parameter interpretation. 

Model fit is summarized by residual deviance of 1 245.2 with df= 1 249. The null model 

deviance was 1416.6 with df= 1 259, yielding a model P-value of 7.2E-3 1 .  

Table 5-3 . Tabular summary of mixed effects logistic regression for risk predicted by 
soil Qroperties. 

Parameter Std. Error Unit Condo OR 95% 
Variable ± 2 (J Range Estimate Estimate P-value Odds Ratio Conf. Int. 

Intercept 0.45 0.14 0.00 1 8  
SOC 0.04 - 5 .39 -0.83 0 . 13  0.0000 0.44 (0.34, 0.56) 
Silt 15.01 - 32.47 -0.05 0.03 0.0683 0.95 (0.90, 1 .00) 

Sand 24.62 - 50.95 0. 10  0.02 0.0000 1 . 1 1  ( 1 .07, 1 . 1 5) 

Bases 4.25 - 30.4 0 . 12 0.03 0.0000 1 .24 ( 1 . 1 7, l .32) 

Clay 2 1 .6 - 55.92 -0.26 0.02 0.0000 0.85 (0.82, 0.88) 
P - (0: P >  5 ppm) Binary -0.5 1 0.25 0.0458 0.60 (0.37, 0.99) 
K - (0: K >  0.4 cmol/kg) Binary - 1 .01 0.29 0.0005 0.37 (0.2 1 , 0.64) 

Na - (0 : Na < 4 ppm) Binary 0.68 0.25 0.0395 1 .98 (1 .22, 3.21) 
Random Effects 1 .28 0. l 3  0.0000 

Model Accuracy Predicted Overall 73.7% 

Actual No Yes Sensitivity 74.2% 

No 436 160 Specificity 73.2% 
Yes 17 1  493 Odds Ratio 7.86 
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As shown, the predicted probability of degradation decreases with increased SOC, 

silt and clay content. For the binary screening variables (P, K and Na), the model 

predicts increased risk under low P and K conditions and high Na conditions. The 

probability of observing degradation increases with increased sand content and base 

saturation. Random effects are highly significant, indicating substantial variability within 

plots, and validating the need for mixed effect modeling. 

The strongest effects were observed for SOC, sand, clay and exchangeable bases. 

Parameters describing each conditional effect on degradation probability can be 

interpreted using odds ratios and confidence intervals. Fm example, the odds of 

degradation decrease by more than a factor of 2 with each unit increase in SOC content. 

For binary predictors, the odds ratio describes conditional effects of positive 

classification (i.e. low P and K or high Na). 

Table 5-3 presents a summary of model discriminatory power. Of 1 260 samples, 

929 were correctly classified (with a probability threshold of 0.5). Model sensitivity and 

specificity are balanced. Odds of correctly classifying a soil with this model are 7.9: 1 .  

Vegetation Cover, Landuse and Site Characteristics 

Vegetation Cover 

Vegetative cover is an important predictor in all soil erosion models. However, 

specific characteristics of cover are often overlooked. The effect of woody cover appears 

to be weak compared with the effect of ground cover (Figure 4- 1 2). Similarly, there 

appears to be a substantial protective effect of perennial vegetation over annual 

vegetation. Observed vegetative characteristics, including ground and woody cover, 
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cover height, strata, basal area, annual/perennial etc., were assessed for their conditional 

association with degradation using graphical models. 

Landuse 

Specific land management decisions for a parcel of land affects the probability of 

degradation. Eight land-uses were defined based on field sample data: 

1 .  Subsistence Agriculture 
2. Commercial Agriculture 
3 .  Sparse Pasture 
4. Dense Pasture 
5 .  Woodlands (forest, woodlots) 
6. Shrublands 
7. Wetlands 
8. Severely Degraded Lands 

It was expected that landuse would exhibit association patterns with all of the site 

descriptors because of the effects of human management on site characteristics. 

Empirical Site Factor Development 

Graphical modeling to identify conditional association structure 

Figure 5-5 shows the conditional association patterns between site level variables, 

landuse and erosion status; all arcs are significant at the 0.0001 level of significance to 

reduce the chance of spurious association. Several notable inferences are evident. First, 

landuse, as expected, is conditionally associated with all site variables, indicating the 

strong effect of human decision making on these factors. Second, the variables 

determined to be conditionally independent of erosion are woody cover and tree basal 

area. Woody vegetation height is significantly associated, but given observations of 

woody height, ground cover and landuse, erosion is conditionally independent of tree 

canopy cover, a result strongly at odds with conventional wisdom. 
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Further inference from graphical model in Figure 5-5 includes the observation 

that erosion can be linked to stone cover, annual/perennial dominance, ground vegetation 

height and cover, and woody vegetation height. These factors alone were used in a 

mixed effects logistic regression model, presented below. 

Note that categorical landuse is nominal, requiring 7 dummy variables to describe 

effects. All other variables are either binary or ordinal, reducing model dimensionality. 

While observations of cover and height were ordinal, they are given linear scores to allow 

them to be modeled as continuous variables (e.g. 0-5% cover = I ,  5-25% cover = 2, 25-

50% cover = 3,  50-75% cover = 4, 75-95% cover = 5 and 95- 1 00% cover = 6). 

Annual? 

e Categorical Variables 

o Continuous Variables 

Landuse 

-- Significant (p < 0.0001)  conditional association arcs 

Figure 5-5. Graphical model showing conditional association structure for site properties 
and erosion status. All categorical variables are binary. Arcs between 
nodes indicate conditional association significant at a = 0.0001 .  
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Logistic mixed-effects model development 

Using variables previously identified, a mixed-effects logistic regression model 

was developed targeting erosion. Table 5-4 summarizes model fit. Overall goodness-of-

fit is strong, with model residual deviance = 1 233.4 with df= 1 246 compared with null 

deviance of 14 16.6 with df = 1 259. The resulting P-value is effectively zero. 

Table 5-4. Tabular summary of mixed effects logistic regression model for 
erosion risk predicted by soil rrorerties. 

Parameter Std. Error Unit Conditional OR 95% 
Variable Estimate Estimate P -value Odds Ratio Confidence Interval 

Intercept 4.27 0.52 0.0000 
Ground Cover -0.62 0.07 0.0000 0.54 (0.46, 0.6 1 )  
Stone Cover 0. 1 5  0.05 0.00 1 1  1 . 1 7  (1 .05, 1 .28) 
Ground Height -0. 12  0.07 0.0439 0.89 (0.77, 1 .0 1 )  
Woody Height -0. 1 7  0.09 0.0229 0.84 (0.71 , 0.99) 
Annual 0.75 0. 1 8  0.0000 2. 12  ( 1 .49, 2.99) 
LV - SubAg -3. 16  0.50 0.0000 0.04 (0.01 , 0. 1 l ) 
LV - ComAg -2.55 0.53 0.0000 0.08 (0.02, 0.2 1 )  
LV - SpaPast - 1 .64 0.47 0.0003 0. 19  (0.07, 0.49) 
LV - DenPast -2.25 0.50 0.0000 0. 1 1  (0.03, 0.28) 
LV - Shrub land -2.48 0.50 0.0000 0.08 (0.03, 0.22) 
LV - Woodland -2.83 0.5 1 0.0000 0.06 (0.02, 0.16) 
LV - Wetland -8.27 3.80 0.0147 0.01 (0.01 , 0.43) 
Random Effects 1 . 1 8  0. 12  0.0000 

Model Accuracy Predicted Overall 73.2% 

Actual No Yes Sensitivity 73 .4% 

No 413  1 54 Specificity 72.8% 

Yes 1 84 509 OR 7.42 

The probability of observing degradation decreases with increased ground cover, 

ground vegetation height, and woody vegetation height. Degradation probabilities 

increase with increased stone cover and annual vegetation dominance. 

Interpretation of landuse (LU) parameters is made with respect to the condition of 

dummy variables set to 0; that is, for severe soil degradation. Notably, all land-uses are 

protective in comparison with severe degradation; sparse pasture (LU - SpaPast), dense 

pasture (LU - DenPas) and shrublands (LU - Shrubland) exhibit the weakest effects. 
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Being under subsistence agriculture (LV - SubAg) has a strong protective effect. 

The effect for commercial agriculture (LV - ComAg) is weaker. However, since 

infonnation about both landuse and land cover is included in this model, interpretation 

requires consideration of land cover characteristics as well and LV parameters. Nominal 

values by landuse are presented in Table 5-5. Note that annual dominance, while binary, 

is reported as a proportion, with high values indicating dominance of annual vegetation. 

Ground cover, ground height, woody height and annual dominance are all lower risk for 

commercial agriculture than for subsistence agriculture, making inference about landuse 

from LV parameters alone inappropriate. Likewise, small differences in LV parameters 

for dense and sparse pasture are modified by large differences in nominal ground cover. 

Overall, the model perfonns well. Assuming a cutoff probability of 0.5 for 

assigning samples to either intact or degraded classes, the model has an accuracy of 73 %. 

The odds of correctly classifying samples based on this model are over 7.4: 1 .  

Table 5-5. Nominal land cover parameters for each landuse. 
Landuse Ground Cover Ground Height Wood� Height Annual Dominance 

SubAg 2.75 2.09 0.37 0.84 
ComAg 3.85 2.21 0.55 0. 1 8  
DenPas 4.50 1 .46 0.74 0. 15  
SpaPas 3 .60 1 .36 1 .2 1  0.14 
Shrub 3 .74 1 .63 2 . 1 1 0.46 
Wood 4.02 1 .53 2.60 0.53 

Wetland 5.70 2.40 0.30 0. 1 0  
SevDegr 1 .76 1 .00 1 .32 0. 1 9  

Hydrologic and Terrain Characteristics 

Terrain Variables 

Terrain variables that contribute to detachment and transport capacity are slope, 

slope length, terrain factor/transport capacity index (previously presented), slope profile 

(straight, concave, convex, variable) and presence of conservation structures. Very few 
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sites in the region (n = 20) had conservation structures. These included contour stone 

lines, hedge rows,janyajuu (contour ditching) and terracing. 

Hydrologic Variables 

In addition to infiltration (inferred spectrally), hydrologic variables included mean 

annual rainfall (mm), Fournier Index of rainfall erosivity, evidence of site flooding and 

presence of soil depth restrictions. Soil depth could have been included in the site model, 

but was selected here because shallow soils can function as effective impervious surface. 

Flooded ?  

Slope Length Slope Profi le 

Slope 

Terrain Factor (LS) 

Fou rnier I ndex 

Depth Restriction e 
Conservation structures 

e Categorical Variables 

o Continuous Variables 

-- Significant (p < 0.0001 ) conditional association arcs 

Figure 5-6. Graphical model showing conditional association structure for hydrologic 
and terrain-based measures and erosion status. All categorical variables are 
binary. Arcs between nodes indicates conditional association significant at 
the a = 0.0001 level. 
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Empirical Hydro/Terrain Factor Development 

Graphical modeling to identify conditional association structure 

As before, graphical modeling identified conditional association patterns between 

these variables and soil erosion status. Figure 5-6 presents the graphical model output 

after arc-deletion at a = 0.0001 significance. Notably, erosion appears to be 

conditionally independent of slope length, terrain index, Fournier Index and conservation 

structures. Rainfall, infiltration, depth restriction, evidence of flooding, slope, and slope 

profile are conditionally significant predictors of erosion status. Note that slope profile is 

a nominal variable, requiring 3 binary variables for statistical description. 

Logistic mixed-effects model development 

Application of logistic mixed effects modeling produced the model summarized 

in Table 5-6. Fitted residual deviance of 1 099.7 with df= 1250; this is compared with 

null deviance of 14 16.6 with df= 1259 to yield a goodness-of-fit P-value of effectively O. 

Table 5-6. Tabular summary of mixed effects logistic regression model for 
erosion risk predicted by hydrologic and terrain factors. 

Parameter Std. Error Unit Conditional 
Variable Estimate Estimate P -value Odds Ratio 

Intercept 
Infilt. (binary) 
Depth (binary) 
Slope 

0.47 0 . 15  0.002 1 1 .6 1  

ProfStraight (binary) 
Prolt:onvex (binary) 
Prolt:oncave (binary) 
Flood (binary) 
Rainfall* 

3 .68 0.33 
1 .98 0.25 
0.07 
-0.65 
-0.73 
-0.49 
- 1 .85 
-0.28 

0.02 
0.41 
0.5 1 
0.42 
0.72 
0 .03 

Random Effects 1 .38 0.14 

0.0001 39.5 1 
0.0001 7.27 
0.0001 1 .07 
0.1 148 0.52 
0 . l 506 0.48 
0.2445 0.6 1 
0.0099 0. 16  
0.0001 0 .76 
0.0000 

Model Accuracy Predicted Overall 
Actual No Yes Sensitivity 
No 443 1 54 Specificity 
Yes 1 5 1  5 1 2  OR 

OR 95% 
Confidence Interval 

(20.89, 74.71 )  
(4.43, 1 1 .9) 
( 1 .03, 1 . 12) 
(0.23, 1 . 1 7) 
(0. 1 7, l .3) 

(0.26, 1 .39) 
(0.03, 0.64) 
(0.7 1 , 0.8) 

75.8% 
77.2% 

74.2% 

9.75 

* - Rainfall was modeled in units of 1 00 mm (e.g. 1200 mm annual rainfall = 12) 
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Figure 5-7. Model fit for three logistic regression models describing soil erosion factors 
a) soil properties ( erodibility), b) site and vegetation characteristics and c) 
hydrologic and terrain variables. Shown are maximum marginal likelihood 
model fit and observed group proportions (with 95% binomial error bars). 
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The best-fit model predicts an increase in degradation probability with slope, slow 

infiltration (Infilt. = 1 ), and depth restriction (Depth = 1 ). Erosion probability decreases 

with evidence of flooding, and rainfall. The effect of the 4-category nominal variable 

slope profile is summarized in three dummy variables labeled ProfStr, Prof Convex and 

ProfConcave. This indicates elevated risk when the profile is highly variable (condition 

when each dummy variable is set to 0). Convex and straight slopes appear to provide 

greater protective effect than concave slopes, though each effect is non-significant. This 

result conflicts with other studies that suggest that convex slopes are subject to 

substantially increased erosion rates (Morgan 1 995) over other profile shapes. 

This model exhibits greater accuracy than the previous two models, with almost 

76% of samples correctly assigned (assuming a probability threshold of 0.5). 

Logistic Regression Model Fit Charts 

Summarizing model goodness-of-fit using deviance and class-assignment 

accuracy was complimented by plotting predicted degradation probability values versus 

model functional form. Grouped binomial proportions are given to compare predicted 

and observed values. Figure 5-7 presents these plots. For each grouped proportion, 

binomial 95% confidence intervals for actual proportions are shown. 

Integrated Risk Model 

U sing the functional formulas predicted by each of the three models presented 

above, an integrated risk model was developed to assess overall erosion risk, again using 

a mixed effects logistic regression model of the form: 

Logit [Pr(Degr = Yes)] = �l x Site + �2 x Soil + �3 x Hydro 
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The mixed-effects approach, again, avoided pseudo-replication issues. The model 

form is summarized in Table 5-7. Each factor is strongly conditionally associated with 

risk, and the direction of the effect is uniformly positive. It is important to note that, 

while the factors are correlated (mean r = 0.44), they are sufficiently independent for each 

to retain substantial predictive power with respect to site risk delineation. 

Table 5-7. Tabular summary of mixed effects logistic regression model for 
erosion risk predicted by all composite risk factors. 

Parameter Std. Error Unit Conditional OR 95% 
Variable Estimate Estimate P-value Odds Ratio Confidence Interval 

Intercept 0.083 0.077 0.0004 
Site (cr = 1 .86) 
Hydro (cr = 2.42) 
Soil (cr = 1 .85) 
Random Effects 

0.48 1 0.048 
0.487 0.038 
0.342 
1 .042 

0.06 1 
0. 1 09 

Model Accuracy Predicted 
-------

Actual No Yes 
No 

Yes 

458 86 

1 1 9 597 

<0.0001 
<0.0001 
<0.0001 
<0.0001 

1 .62 ( 1 .47, 1 .78) 
1 .63 ( 1 . 5 1 , 1 .75) 
1 .4 1  ( 1 .25, 1 .57) 

Overall 83.7% 

Sensitivity 83 .4% 

Specificity 84.2% 

OR 26.72 

Exploration of interaction effects revealed no significant terms (a = 0.05), so the 

main effects model presented (Table 5-7) was selected. Model deviance is 987.5 with df 

= 1 257 versus null model residual deviance of 14 16.6 with df = 1 259. The likelihood 

ratio test (deviance comparison) yields a goodness-of-fit p-value of effectively zero. 

Parameter interpretation indicates that the strongest effect is due to the hydrologic 

and terrain factor. The other two factors (Site and Soil) are equally strongly associated 

with erosion. The odds ratios describing the effect of unit changes in each factor should 

be interpreted while considering the range and standard deviation of those factors (Table 

5-8). For each unit increase in the Hydro factor, the conditional odds of observing 

degradation increase by a factor of more than 2. Given the range for this factor (-5.53, 
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6.01 ), the inference is that the odds of observing degradation change by a factor of over 

20 between the lowest and highest samples. 

Overall model accuracy is improved over each factor treated separately. Overall 

accuracy was 84% with an odds ratio for correct classification of26.7. 

Table 5-8. Range and standard deviation of risk factors. 
Minimum Value Maximum Value Std. Deviation 

Site Factor -4.44 4.78 1 .79 
Hydro/Terrain Factor -5.53 6.01 2.42 

Soil Factor -4.73 5.55 1 .85 

Surface Deflation and Risk Prediction 

Surface deflation data offer a second mode of assessing the efficacy of the three 

composite risk factors for predicting erosion. A multiple linear regression model was 

developed to relate site mean observed surface deflation rates with the previously 

developed risk factors. Table 5-9 summarizes the model fit. Overall fit is significant (P 

« 0.00 1), but the model efficiency is low (adjusted multiple r2 = 0.382). The Site factor 

was highly significant as a predictor of surface deflation, Hydro was marginally 

significant, while the Soil factor was non-significant. The model fit is presented 

graphically in Figure 5-8 along with the model equation and adjusted r -value. 

Table 5-9. Summary of multiple linear 
regression model relating observed site-level 
mean deflation rates and erosion risk factors. 
Variable Parameter Estimate 
Intercept 0. 1 588 
Soil 0.01 09 
Hydro 0.02 18  
Site 0.0641 

Multiple R-squared 
F -statistic 
df (model, residual) 

P-value 

Standard Error P-value 
0.0 1 85 0.0000 
0.0 1 17 0.3508 
0.0123 0.0803 
0.0 142 0.0000 
0.385 
24.23 
3, 1 16 

3 .03E-12 
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x 

0.7 

Multivariate regression model between mean site surface deflation 
observations and Site, Soil and Hydro risk factors. Model F-statistic = 24.2, 
df= 3, 1 16, P «  0.00 1 .  



SPATIAL INVENTORY AND RISK ASSESSMENT 

Preceding work enumerated erosion risk at the plot-scale based on observations of 

soil, vegetation, hydrology and terrain. However, effective intervention to control 

erosion requires spatial tools for assessment of erosion risk over large areas. The first 

section below presents results of interpolation from field samples to watershed-scale 

predictions of degradation, infiltration and landuse. The second section couples the 

statistical predictive framework presented previously with emergy-based costlbenefit data 

to compare land development scenarios for large-scale erosion control intervention. 

Spatial Inventory 

Geospatial statistical models (e.g. kriging) were explored for variable 

interpolation. Results are omitted because they failed to discern spatial pattern in soil 

degradation or infiltration data. Specifically, semi-variograms were characterized by 

pure-nugget variance, indicating that variables were uncorrelated at the spatial resolution 

characteristic of this sampling protocol. Ascertaining spatial pattern statistically over 

large areas would require sampling at a scale and intensity that is prohibitive. 

Satellite Image Processing 

Satellite imagery from 2001 was processed to extrapolate various factors from 

field sampling locations to the entire basin. Of interest were maps of degradation (binary 

and categorical classifications), infiltration rates, landuse, and site characteristics (e.g. 

vegetative cover, soil erodibility). In addition to inference about 2001 imagery, rule

bases for each classification model were applied to imagery from 1 986. 
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Table 6- 1 .  Summary of classification tree model for calibration and 
validation accuracy for inference of degradation classes from satellite 
reflectance data. 
a) Binary Degradation Model 
Calibration Predicted Degradation Class 
Actual Class Intact Degraded 
Intact 176 26 
Degraded 35 183 

Validation Predicted Degradation Class 
Actual Class Intact Degraded 
Intact 1 59 44 

Degraded 5 1  167 

b) Ordinal Degradation Model 
Calibration Predicted Degradation Class 

Overall Accuracy 85.5% 

Sensitivity 87. 1 % 
Specificity 83.9% 

Odds Ratio 35.4 

Overall Accuracy 77.5% 

Sensitivity 78.2% 

Specificity 76.6% 

Odds Ratio 1 1 . 8  

Overall Accuracy 77. 1 %  

Actual Class Intact Mod. Degr. Sev. Degr. Sens.(severe) 92. 1% 

86.7% 

75.4 

0.64 

Intact 158 20 10 Spec. (severe) 
Mod. Degr. 37 75 1 5  OR (severe) 
_S_ev_e_re_._D_e�gr�. _______ 6 ___________ 8 __________ 9_1 ____ Kappa 

Validation 
Actual Class 
Intact 
Mod. Degr. 
Severe. Degr. 

Predicted Degradation Class Overall Accuracy 65.0% 

Intact Mod. Degr. Sev. Degr. Sens.(severe) 87.0% 

132 36 20 Spec. (severe) 75.2% 

44 62 2 1  OR (severe) 20.3 

1 1  1 5  79 Kappa 0.46 

Erosion prevalence assessment 
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Satellite interpolation was performed for soil degradation using both binary and 

ordinal classes. Table 6- 1 summarizes classification tree model fit for both targets. The 

model rule-bases, containing 1 3  and 1 7  nodes, respectively, are given in Appendix C. 

Thematic surfaces for binary and ordinal degradation are shown in Figure 6- 1 

after application of the model rule-base using the ERDAS Imagine Knowledge Engineer 

(Leica Geosystems 2000). Binary classification indicates that over 46% of the basin 

exhibits evidence of degradation. For ordinal classification, degradation (moderate and 

severe) represents almost 52% of the basin, with 26% severely degraded. 
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There is strong spatial agreement between the models, with over 75% of  pixels 

appropriately allocated (intact or degraded in both). Disagreement between the themes 

appears for the moderate degradation category, with about 33% incorrectly assigned. 

Image cross-tabulation is presented in Table 6-2 for categorical proportions. 

a) Binary Degradation Status 

s 

b) Ordinal Degradation Status 

CROSS-TABUIATIONPROPORTIONS 
Binaty Degradation 

Ordinal Degradation Intact Degr. Total 
Intact 0.39 0.08 0.47 
Moderate 0.09 0.17 0.26 
Severe 0.03 0.24 
Total 0.52 0.48 1.00 

o Intact 
_ Degraded 

Intact 
Moderate Degradation 
Severe Degradation 

Figure 6- 1 .  Thematic coverages of soil degradation inferred for the entire Awach River 
basin from satellite imagery. Classification and cross-validation accuracy 
for each model are presented in Table 6-2. 
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The same decision tree algorithm was applied to satellite spectral data from the 

1 986 scene, yielding maps given in Figure 6-2. Cross-tabulation of 1 986 and 2001 map 

of erosion prevalence indicates a strong degradation trend (Table 6-2). Specifically, 

severely degraded lands more than doubled in extent, while intact lands fell by over 25%. 

a) Binary Degradation Status 

. i '  4 .  0 • 
• t! . ,�'f. .;;.,:/! � 

r--1 Intact �� '. ,: " ,��·'<tf: 
L---J . t.,.o. .1t6iA ' .  � �. 

_ Moderate Degradatio�'>'�( ;:;:�i�\:·: :�;.:';' . 

o Intact 
_ Degraded 

, 
" ... 1-.. -

- Severe DegradatIon �",: ':':�'� '.,'� : ';':;:'��"':;�::::�:1f�¥" ;" 

i.�,,:rfJF;;T'" �;;� 
Figure 6-2. Degradation maps for a) binary erosion status and b) ordinal erosion status 

inferred from 1 986 Landsat imagery using classification tree models. 
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Reduced infiltration capacity prevalence assessment 

Based on application of the binary screening model for slow infiltration « 60 

mmlhr) to the entire soil database, a classification was developed for the entire watershed 

into those binary classes. Table 6-3 summarizes model calibration and validation 

accuracy. The rule-base for this classification model is given in Appendix C. Overall 

accuracy expected for the thematic surface inferred from the model is above 75%. Site 

misclassification was independent of land use. Shrubland and pasture sites had a slightly 

higher proportion (�25%) misclassified than the overall rate (�1 8%). No other inherent 

biases (e.g. elevation, proximity, slope) were evident. 

Table 6-2. Cross-tabulation of categorical 
degradation surfaces between 1 986 and 2001 and 
transition probabilities with change proportions. 

From 1986 

To 200 1 2 3 Total 
1 1 62574 26541 4927 194042 

2 57800 40376 10807 1 08983 

3 47229 35809 30171  1 13209 

Total 267603 102726 45905 4 1 6234 

From 1 986 
Proportional Change: 

To 2001 2 3 1 986 to 200 1 

I 0.61 0.26 0. 1 1  0.73 

2 0.22 0.39 0.24 1 .06 

3 0. 1 8  0.35 0.66 2.47 
Note: Class 1 = Intact, Class 2 = Moderately Degraded and 
Class 3 = Severely Degraded 

An important inference from Figure 6-4 is that lowlands (western basin) are 

particularly susceptible to the impaired infiltration condition. Almost the entire upper 

basin, and particularly steep-sloped, forested regions of the basin, are categorized into 



Table 6-3 . Classification tree model summary for a) calibration 
and b) validation accuracy for inference of binary infiltration 
classes from satellite reflectance data. 

A) Calibration 

Actual Class 

> 60 mm/h 

< 60 mm/h  

B) Validation 

Actual Class 

> 60 mm/h 

< 60 mm/h  

Predicted Infiltration Class 

> 60 mm/h  < 60mm/h 

207 34 

40 139 

Predicted Infiltration Class 

> 60 mm/h  

196 

52 

< 60mm/h 

45 

127 

Overall Accuracy 82.4% 

Sensitivity 85.9% 

Specificity 77.7% 

Odds Ratio 2 1 .2 

Overall Accuracy 76.9% 

Sensitivity 8 1 .3% 

Specificity 70.9% 

Odds Ratio 10.6 
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the high infiltration class. The model appears to capture the two conditions under which 

slow infiltration is manifest adequately: lands with degraded or inherently poor soil 

structure, and wetlands. Linear statistical methods encounter problems with simultaneous 

classification of multiple spectrally-distinct nodes displaying similar attributes. Linear 

Discriminant Analysis (LDA) was performed using the same reflectance data, resulting in 

a calibration classification accuracy of 75.5%, with reduced sensitivity (72.6%). 

Table 6-4. Cross-tabulation proportions for binary 
infiltration and degradation maps. 

Degradation 
Infiltration 0 1 Chi-Sq (df=l)  34055 

0 0.42 0.26 P-value <0.0001 

0.10 0.22 Odds Ratio 3.55 

Cross-tabulation between Figure 6-3 (binary infiltration) and Figure 6- 1a  (binary 

degradation) demonstrates further the importance of surface hydrologic condition on 

degradation. Table 6-4 summarizes the cross-tabulation, giving proportions of the 

classified image falling into each cell of a 2x2 contingency table. The Chi-Squared 

statistic illustrates strong dependence between the variables, and the strength of that 
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effect is summarized by the odds ratio, showing that the odds of observing degradation 

increase 3.55 times when a site is classified as exhibiting slow infiltration. 

As with soil degradation, the decision tree algorithm for interpreting the 2001 

scene was applied to 1 986 data. Figure 6-4 shows the infiltration surface for 1 986. One 

notable conclusion from the cross-tabulation between 1 986 and 2001 imagery is the 

relative consistency of this measure between periods. Specifically, at each time 33% of 

the basin was expected to exhibit slow infiltration, with strong probability that a site 

remains in the same category (odds ratio = 34.3 that class association is retained). 

D Infiltration > 60 mm/hr 
_ Infiltration < 60 mm/hr 

Figure 6-3 . Thematic coverage of binary infiltration classes « 60 mm/h and > 60 mm/h) 
for the Awach River basin in 200 1 .  

Land Cover Classification 

Delineating land cover in the A wach Basin was crucial for risk assessment. Of 

central consideration was deciding the necessary categorical resolution to allow accurate 

classification and sufficient detail. During field sampling, land use/land cover at each 

site was assigned to 4 basic classes (agriCUlture, pasture, woodland, other). Further 
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delineation was made between commercial (CA) and subsistence (SA) agriculture, 

woodland (WL) and shrub land (SL), dense (DP) and sparse (SP) pasture (corresponding 

. .  ' .�-� ". . . ' " . . ' . .  \ 
'. • 11", '. t.�  �"' . .  

200 1 

0 

1 

Pr ( 1 986) 

�
.

� 
# ,, -

1 986 

0 1 

250555 29943 

26635 109 1 0 1  

0.67 0.33 

Pr (200 1 )  

0.67 

0 .33 

Figure 6-4. Binary infiltration surface predicted for the Awach River basin in 1 986 based 
on classification tree model. Also given is the cross-tabulation table for 
binary infiltration classes compared between 1 986 and 200 1 .  

to constrained and communal grazing lands for which emergy evaluations were 

performed), wetlands (WT) and severe degradation (SD). These 8 classes, also used in 

the site risk model, were chosen as target categories for land cover classification. 

Model predictors included reflectance data (Bands 1 -5 and 7, and band ratios) in 

addition to slope and elevation. Additional predictors that were explored but proved 

ineffective were reflectance variance measures (in 3x3 and 5x5 kernels) and pattern 

indices based on 8-class unsupervised classification (using a k-means clustering 

algorithm). The optimal tree, as measured by cost-complexity metrics determined in 



1 77 

cross-validation, had 5 1  terminal nodes. The rule base is given in Appendix C. A tabular 

summary of model fit for both classification and validation is given in Table 6-5. 

There is a significant decrease in accuracy in validation, which suggests spectral 

confounding between classes. This was particularly strong (> 1 0% commission error) 

between CA and SA, CA and SL, SL and DP, and SP and SD. While classification 

accuracy for SA and DP was relatively poor, there were no obvious confounding classes, 

suggesting that the primary problem with remote classification of these categories is 

substantial within-class variability. 

A comparison of conventional classification methods and the CART approach 

was made for classifying landuse at the 420 sample sites. Maximum likelihood 

classification accuracy was moderate (overall accuracy = 55%, Kappa = 0.47). However, 

this result compares poorly with the classification and cross-validation accuracy from 

tree-based models (72.9% and 45.2% respectively, Kappa = 0.68 and 0.36). The 

accuracy within specific classes is particularly informative. Those classes that might be 

expected to be spectrally consistent (e.g. wetlands, woodlands, severely degraded areas) 

were effectively classified by both methods. For classes that are expected to vary 

considerably with elevation, degree of degradation, and moisture regime (subsistence and 

commercial agriculture and pasture lands), classification is observably more effective 

using the contingent non-linear approach of recursive data partitioning. 

Application of the tree model rule-base to the entire scene yields a land cover map 

(Figure 6-5). While raw classification (Figure 6-5a) is used for all analyses, a 5x5 kernel 

model filter (Figure 6-5b) allows better visual interpretation. Prevalence values shown in 

Figure 6-5 are for the raw classification map. 
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Table 6-5. Accuracy assessment for land cover classification tree models in a) 
calibration and b) cross-validation. 
Calibration Accuracy Predicted Landuse CART ML Model 
Actual Landuse SA CA DP SP SL WL WT SD Total % Correct % Correct 
Subsistence Ag (SA) 73 2 1 0  6 4 3 3 7 1 08 67.6% 46.6% 
Commercial Ag. (CA) 4 25 1 3 4 0 2 0 39 64. 1% 60.6% 
Dense Pasture (DP) 4 5 48 4 5 3 1 0 70 68.6% 48.6% 
Sparse Pasture (SP) 2 0 3 56 4 1 0 8 74 75.7% 46.7% 
Shrub land (SL) 2 0 6 3 29 3 0 0 43 67.4% 43.2% 
Woodland (WL) 2 0 2 2 29 0 1 37 78 .4% 80.0% 
Wetland (WT) 0 0 0 0 0 0 1 1  0 1 1  100.0% 90.9% 
Severe Degradation (SD) 0 0 0 3 0 0 0 35 38 92. 1% 80.6% 
Total 87 32 69 77 48 39 1 7  5 1  420 72.9% 54.5% 

KaEEa 0.68 0.47 
Validation Accuracy Predicted Landuse 
Actual Landuse SA CA DP SP SL WL WT SD Total % Correct 
Subsistence Ag (SA) 55 3 8 19  5 10  3 5 108 50.9% 
Commercial Ag. (CA) 5 1 8  4 0 4 3 4 1 39 46.2% 
Dense Pasture (DP) 9 7 26 9 8 9 2 0 70 37. 1 %  
Sparse Pasture (SP) 13  3 12  26 5 3 0 12 74 35.1% 
Shrubland (SL) 6 5 3 5 1 8  6 0 0 43 4 1 .9% 
Woodland (WL) 5 2 4 6 3 16  0 1 37 43.2% 
Wetland (WT) 0 2 1 0 0 0 8 0 1 1  72.7% 
Severe Degradation (SD) 6 0 0 8 1 0 0 23 38 60.5% 
Total 99 40 58 73 44 47 17  42 420 45.2% 

Kappa 0.36 

Land Cover Change 

The classification tree rule-base was applied to 1 986 imagery to determine 

patterns and proportions of landuse change in the area. Figure 6-6 gives the landuse map 

for 1 986. Results of this map indicate substantial changes in landuse in the basin. These 

are summarized in Figure 6-7, which shows current landuse conditions (2001 ), 1 986 

landuse conditions and predictions of future landuse proportions for 201 6, described in 

detail below. Between 1 986 and 2001 ,  nearly 50% of woodlands were lost to 

encroachment, and a substantial increase in sparse pasture (resulting from higher local 

cattle densities), severe degradation and shrubland was observed. There also appears to 

have been a decline in the area of subsistence and commercial agriculture. 
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1\&;;.i&:f�1 Subsistence Agriculture o Commericial Agriculture _ Dense Pasture o Sparse Pasture 
_ Shrubland 
_ Woodland 
_ Wetland 
_ Severe Degradation 
_ Water 

Landuse 
Subsistence Ag 
Commerical Ag 
Dense Pasture 
Sparse Pasture 
Shrub land 
Woodland 
WetlandlWater 6.2% 
Severe Degradation 2.1 % 

Figure 6-5 . Land cover classification of the Awach basin. Shown are a) raw thematic 
surface inferred directly from CART model and b) 5x5 kernel modal 
smoothing filtered theme. 
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Figure 6-6. Land cover pattern inferred from 1 986 Landsat imagery based on 
classification tree model developed for 200 1 .  Shown is land cover 
classification after application of 5x5 kernel modal filter . 
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Figure 6-7. Changes in land cover proportions between 1 986 and 200 1 .  

1 80 

The loss of commercial agricultural use is realistic, given the decline in outgrower 

(independent farms) services for tea, cotton and sugarcane (Biamah et al. 1 999). 

However, there is no evidence that subsistence agricultural activities have decreased in 

the region; indeed, there is substantial documentation (e.g. Kenya Central Bureau of 

Statistics, 2001 )  of increased regional population densities. Extreme within-class 



s 
NDVI Difference Classes 
(2001 minus 1986) 

• -0.5 to -0.25 
• -0.25 to -0. 1 
• -0. 1 to 0 
[J 0 to 0. 1 
D 0. 1 to 0.25 
D 0.25 to 0.5 

1 8 1  

I 0-::==:=1 =======!I!!!I1·0 kin I 

Figure 6-8. Classes ofNDVI difference between 1 986 and 2001 . Classes represent the 
result ofNDVhoOl - NDVI1986. 

variability of subsistence agricultural land cover category was already determined to 

contribute to lowered classification accuracy, and may explain the unexpected change. 

Land cover change can be related to biomass as well as landuse. Figure 6-8 gives 

changes in NDVI between 1 986 and 200 1 .  Negative values indicate decreased vegetative 

cover. Overall, values fell by an average of only 0.02 units, but in certain areas, the 

decrease was as much as 0.54 units. Note that 1 986 imagery was obtained in late 

February, while the 2001 imagery was from early April. This period corresponds with 

"green-up" due to rain onset. As such, the expected condition is increased NDVI. 

Table 6-6 gives a cross-tabulation of degradation and landuse for 2001 . These 

data are used as part of an algorithm that assigns low-risk landuse types to high areas and 

high risk uses to low risk areas. Table 6-6 illustrates that subsistence agriculture is more 

likely to be classified as degraded than commercial agriculture, sparse pasture is over 

75% degraded and woodlands and wetlands are rarely classified as degraded. 
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Table 6-6. Cross-tabulation of landuse and binary degradation maps. 
Shown are cell-counts and �roportions. 
Counts Erosion Status Proportion Erosion Status 
Landuse Intact Degraded Total Landuse Intact Degraded 

SA 39944 426 12 82556 SA 48.4% 5 1 .6% 

CA 1 5478 7283 22761 CA 68.0% 32.0% 

DP 43309 14475 57784 DP 74.9% 25. 1% 

SP 1 3836 49689 63525 SP 2 1 .8% 78.2% 

SL 34530 39593 74123 SL 46.6% 53.4% 

WL 56255 7637 63892 WL 88.0% 12.0% 

WT 12820 790 13610 WT 94.2% 5.8% 

SD 589 37394 37983 SD 1 .6% 98.4% 

Total 2 1 6761 1 99473 4 1 6234 Total 52. 1% 47.9% 
Note: SA - subsistence agriculture, CA - commercial agriculture, DP - dense 
pasture, SP - sparse pasture, SL - shrubland, WL - woodland, WT - wetland, SD -
severe degradation 

Table 6-7. Landuse transition counts and probabilities for 8 classes between 1 986 and 
2001 in the Awach River basin. 

Transition Counts 
From Landuse 

To Landuse SA CA IP DP SL WL WT SD Total 200 1 

SA 37076 6625 8058 3045 6624 1 79 1 1 1 762 1455 82556 
CA 6823 1 1 1 78 2801 201 375 1 177 0 206 22761 
IP 1 5993 2865 1 523 1 9565 3878 9301 1 96 755 57784 
DP 13403 19 15  691 8  19290 9375 9944 191  2489 63525 
SL 12074 3245 3023 4973 1 5741 33400 43 1 624 741 23 

WL 29 19 2520 3586 256 5087 49365 1 37 22 63892 
WT 430 1 00 1 09 1 85 6 75 12619  86 13610  
SD 8573 1 875 2224 8352 267 1 1 785 194 12309 37983 

Total 1986 97291 30323 4 1 950 45867 43757 122958 15 142 1 8946 4 1 6234 

Transition Probabilities 
From Landuse % Change 

To Landuse SA CA IP DP SL WL WT SD 1 986 to 2001 
SA 0.38 0.22 0. 19  0.07 0. 1 5  0. 1 5  0 .12 0.08 0.85 
CA 0.07 0.37 0.07 0.00 om om 0.00 0.0 1 0.75 
IP 0.16 0.09 0.36 0.2 1 0.09 0.08 om 0.04 1 .38 
DP 0.14 0.06 0. 16  0.42 0.2 1 0.08 0.01 0. 13  1 .38  
SL 0.12 0 . 1 1 0.07 0.1 1 0.36 0.27 0.00 0.09 1 .69 

WL 0.03 0.08 0.09 0.01 0. 1 2  0.40 0.0 1 0.00 0.52 
WT 0.00 0.00 0.00 0.00 0.00 0.00 0.83 0.00 0.90 
SD 0.09 0.06 0.05 0. 1 8  0.06 om om 0.65 2.00 

Class definitions are SA = subsistence agriculture, CA = commercial agriculture, IP = intact pasture, DP = 
degraded pasture, SL = shrub land, WL = woodland, WT = wetland and SD = severe degradation 
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Markov Transition Matrix Development 

Cross-tabulation of 1 986 and 2001 landuse maps (Figures 6-5a and 6-6) yields 

counts of pixels that meet each landuse transition (e.g. forest to commercial agriculture). 

From this change matrix, global Markov transition probabilities (i.e. not spatially 

explicit) were computed for the 1 5-year period between scenes. Table 6-7 summarizes 

both the pixel counts of each transition and the resulting transition probabilities. Also 

shown in Table 6-7 are the proportional changes in each landuse in the basin from 1 986 

to 200 1 . Stochastic simulation was applied based on computed conditional probabilities 

to forecast land use patterns 1 5  years into the future (201 6). Figure 6-7 shows 20 1 6  

predicted landuse proportions without any changes in transition probabilities. A map of 

predicted landuse is given in Figure 6-9; note that this presents predicted landuse after a 

5x5 kernel modal filter was applied to improve visual clarity. 

s 
tff;\ll Subsistence Agriculture 
D Commercial Agriculture 
• Dense Pasture 
D Sparse Pasture 
_ Shrubland 
• Woodland 
• Wetland 
• Severe Degradation 

Figure 6-9. Predicted landuse condition for the Awach basin in 201 6. Predicted landuse 
was smoothed using a 5x5 kernel modal filter to improve clarity. 
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Spatial Risk Assessment 

Statistical models previously developed to predict probabilities of degradation 

were applied to the entire basin using a variety of interpolation methods. Each factor 

(site, soil and hydro/terrain) was interpolated separately, and then coupled using the 

overall risk model equation. Interpolation of each factor was different. 

Hydro/Terrain Factor Interpolation 

Several variables were required to delineate hydro-terrain risk across the entire 

basin. These included infiltration class (binary), depth restriction class (binary), slope, 

slope shape, flooding and rainfall. Infiltration data were previously presented (Figure 6-

3), and slope and slope shape were inferred directly from the regional digital elevation 
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Figure 6- 10 .  Slope shape and slope maps for the Awach River basin as used in defining 
the hydro-terrain risk factor. 
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model (Figure 6-1 0  derived from Figure 4-2); the map slope shape was developed using a 

standard topographic algorithm available in Idrisi (Clark Labs 2001 ). Rainfall was 

determined based on an existing climate database (Corbett et al. 1 997, Figure 3-2c), and 

flooded regions were delineated based on the landuse classification (WT - wetlands in 

Figure 6-5). Soil depth was effectively modeled as a function of slope, soil hard setting 

and degradation (Table 6-8). These coverages were incorporated into the model 

presented in Table 5-6 to yield the hydro/terrain risk map given in Figure 6- 1 1 .  

Table 6-8. Model results relating soil depth to slope, soil 
hardsetting and soil degradation. 
Parameter Estimate Std. Error p-value 
Intercept -2.27 0.3 1 <0.0001 

Slope 0. 1 5  0.03 <0.0002 

Hardsetting 1 .27 0.41 <0.0003 

Degradation 0.76 0 .17 <0.0004 

Null Deviance = 580. 1 Residual Deviance = 477.0 

df= 3 P «  0.0001 
Predicted Model Summary 

Observed 0 Accuracy 70.5% 

0 162 63 Sensitivity 68.7% 
61  134 Specificity 72.0% 

Odds Ratio 5.65 

Soil Erodibility Factor Interpolation 

Soil erodibility was inferred directly from satellite imagery based on reflectance 

characteristics using backwards stepwise multiple regression targeting sample site 

erodibility, determined from the soil logistic regression model previously presented. 

While satellite sensors generally do not directly measure soil reflectance characteristics, 

model results (Table 6-9) indicate a strong fit between predicted and observed erodibility 

scores, presumably due to strong association between erodible soils and degraded 

vegetative cover. Overall model fit is summarized with an adjusted multiple-r2 value of 
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Figure 6- 1 1 .  Interpolated Hydro/Terrain risk score for the Awach River Basin. Values 
are logit model scores. 

0.68; the model fit is shown in Figure 6-1 2. This model was applied basinwide to yield 

a map of soil erodibility (Figure 6- 1 3). Overlaying this is a thematic coverage showing 

soil survey unit boundaries. Little association between risk and soil type is evident; the 

resolution and reliability of using soil survey data are questionable given these findings. 

Table 6-9. Stepwise deletion multiple regression model 
relating satellite reflectance data and erodibility values. 

Variable Parameter Estimate Std. Error �-value 
Intercept 24.39 1 1 .33 0.03 
B l  0.06 0.03 0.05 
B2 -0.29 0.14 0.04 
B3 0.2 1  0. 1 1  0.05 
B4 0.07 0.04 0.08 
B7 0.02 0.01 0.03 
Elev -0.02 0.00 0.00 
NDVI -0.20 0.09 0.02 
B3B4 -0.03 0.02 0. 1 5  
83B2 -0. 17  0.09 0.06 
B7B5 -0.08 0.02 0.00 

Residual Std. Error 0.89 df = 409 
Multiple Adj . R-Sq. 0.683 

F-Statistic 76.2 df= 10, 409 
P-value « O.OOI 
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Figure 6- 1 2. Multiple regression model fit between observed and predicted erodibility 
scores based on satellite reflectance data. 
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Figure 6- 13 .  Interpolated soil erodibility scores based on satellite reflectance data for 
200 1 .  Also shown are soil polygons for the region (see Figure 5-2) . 
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Site Management Factor Interpolation 

Site management risk was defined based on landuse and vegetative cover 

characteristics. Thematic landuse coverages have been presented (Figure 6-5). Other 

significant risk factors (see Table 5-4) include stone cover, ground cover and height, 

woody cover and annual/perennial dominance. 

Cover class and dominant vegetation type prediction from satellite imagery was 

poor (accuracy < 45%). Given the need to include cover information in landuse scenario 

forecasts, the assumption was made that site cover characteristics were equal to mean 

levels for each landuse (see Table 5-5). This assumption ignores within landuse 

management variability, which was substantial, particularly with regard to variability as a 

function of elevation. That graphical models of site risk (Figure 5-5) include both 

landuse and cover characteristics as significant degradation associates indicates the extent 

to which this assumption is a simplification. Based on the risk model, a site management 

risk surface was interpolated based on the 2001 landuse condition (Figure 6- 14). 

Stone cover was interpolated as a function of slope and soil depth (Table 6-10), 

resulting in a model that predicts stone cover at 67% of the sites correctly. The resulting 

coverage is not presented here. The site risk factor surface is presented in Figure 6-14. 

Table 6- 1 0. Model relating slope and binary depth 
restriction to site stone cover. 

Variable Par. Estimate Std. Error P-Value 
Intercept -0.082 0 . 129 0.524 
Slope (Degr.) 0.098 0.009 <0.001 
Soil DeQth {< 50 cm) 1 .48 0. 1 1 8 <0.001 

Predicted Class 
Observed Class 0 1 2 
0: 0 - 5% 214 85 1 1  
1 :  5 - 25% 5 61  37 
2: 25-100% 0 0 7 
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Overall Risk Model 

The multivariate model (Table 5-7) that includes all three risk factors was 

extrapolated to the entire basin based on the three risk maps presented (Figs. 6- 1 1 ,  6- 1 3  

and 6- 14) for the 2001 condition, and degradation probabilities computed (Figure 6- 1 5). 

After reclassifying this map to a binary image (intact-degraded), a cross-tabulation was 

performed with the satellite inference map of binary degradation (Figure 6- 1a) to 

determine overlap between the two maps. This cross-tabulation is summarized in Figure 

6-1 5 .  Recall that overall risk model accuracy was 82% (Table 5-7) indicating only a 

minor decrease in accuracy across the whole basin (accuracy = 78%). 
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Figure 6- 14. Site management factor degradation score for landuse in 200 1 .  
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Figure 6- 1 5. Overall degradation probability map for the Awach River basin in 200 1 .  

Inherent risk defines site degradation propensity before land management 
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decisions are made. It is the weighted sum of soil and hydro/terrain risk. Weighting was 

defined by overall risk (Table 4-7); the inherent risk map is given in Figure 6- 1 6. 

The overall risk model was also applied to the 1 986 land cover condition 

(assuming that there has been no change in inherent risk), and predictions of intact and 

degraded lands were compared with direct satellite inference (Figure 6-2). Table 6- 1 1  

summarizes back-casting accuracy in the same manner as presented for the 2001 risk map 

in Figure 6-1 5 .  Notably, the risk model overestimates the total area degraded by nearly 

40%, indicating the extent to which inherent risk may be responding to human 

management. Despite this simplification, the result indicates a relatively accurate, if 

somewhat conservative, model for forecasting effects of future landuse changes. 
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Figure 6- 1 6. Inherent risk scores for the Awach Basin. 

Table 6-1 1 .  Back-casting (to 1 986) accuracy of 
spatially interpolated overall risk versus direct 
satellite inference from 1 986 imagery. 

Overall Risk Model 
Satellite Interpolation 0 1 Total 

0 224608 79160 303768 
34598 77868 1 12466 

Total 259206 157028 416234 

% Accuracy 72.7% 
Odds Ratio 6.39 

Future Landuse Change Assessment 

Spatial risk assessment models allow comparison of various large-scale 

1 9 1  

intervention strategies. While most intervention takes place at the farm scale, the scope 

of the problem warrants decision support intervention at the regional scale. Future 

landuse scenarios were developed based on adjustments made to the Markov transition 

matrix, and assessed within a standardized framework that includes proportional 

degradation and projected agricultural benefits. A flow chart of the assessment 



framework is presented first, followed by explication of scenario development, and 

finally, results comparing each landuse scenario are presented. 

Scenario Assessment Framework 
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An assessment framework was developed to compare each alternative based on 

two criteria: first, reduction in degraded lands and second, maximized basin-wide 

agricultural benefit. The former, required to quantify the latter, was assessed using the 

spatial-statistical modeling framework presented in flow-chart form in Figure 6- 1 7. Each 

landuse scenario map is manipulated to produce a prediction of site risk based on nominal 

levels of cover characteristics for each landuse type. The other two risk factors (soil and 

hydro/terrain) are derived products previously presented, and are considered the inherent 

component of overall risk. The overall risk model is implemented for each landuse 

scenario, producing maps of degradation probabilities and eventually binary degradation 

classes. This product is developed by comparing a map containing random numbers (0 to 

1 ), labeling a site degraded if the random value is less than the degradation probability. 

This risk assessment model is coupled with emergy accounting analyses that 

indicate yields expected under specific land uses to provide an index that, when 

maximized, optimizes the trade-offs between soil protection and resource extraction. 

Specifically, computed values of the Agricultural Benefit Ratio (ABR) under both intact 

and degraded soil conditions for the Awach basin (Table 6- 12  summarizing Table 3- 1 5) 

were applied based on landuse and degradation coverages. The module "ABR Recl" in 

Figure 6- 1 7  applies information in Table 6- 1 2  to cross-tabulations of land use and 

resulting degradation maps for each scenario. ABR values for wetlands were not 

computed in this study; consequently, they were omitted from scenario assessment. 
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Figure 6- 17 .  Flow chart of the spatial model as implemented. Note that Soil Risk and 
Hydro/Terr risk surfaces are also derived, but these details are omitted. 

Table 6- 12.  Agricultural Benefit Ratio (ABR) computed 
for each landuse for both intact and degraded soil 
conditions. 

Degradation Status 

Landuse Intact Degraded 
Subsistence Agriculture 5.52 2.25 
Commercial Agriculture 6.42 3.01 
Dense Pasture 2.60 1 .93 
Sparse Pasture 1 .91  1 .32 
Shrublands 3 .76 1 .62 
Woodlands 7.4 1 1 .58 
Wetlands 
Severe Degradation 0.00 0.00 

This assessment framework provides two numbers with which to compare 
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alternatives. The first is the proportion of the basin predicted to be degraded under each. 

The other, which encompasses that information as well as predictions of rural livelihood 

support, is the basin mean ABR value. 
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Landuse Change Scenarios 

A suite of alternatives exists for erosion intervention. The majority of them are 

on-farm solutions that are best assessed at that scale. However, the information presented 

in Figure 6-1 6  (inherent risk) and Table 6- 1 2  (Agricultural Benefit Ratio) indicates that 

there may be leverage to improve livelihoods and reduce natural capital depletion by 

exploring basin-wide land cover changes. It should be noted, however, that this assumes 

that recovery is possible, and that degradation, once started, is reversible. 
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Figure 6- 1 8. Distribution of inherent risk scores. Risk classes were designated with 
centroids at -1 .5, -0.5, 0.5, 1 .5, 2.5 and 3.5.  Mean and median risk are 0.35 and 0.08. 

Changes in proportional landuse allocation 

All eight landuse change scenarios were explored using this technique: 1 )  do 

nothing, 2) commercial agriculture, 3) reforestation, 4) reduced livestock densities, S) 

active badland restoration, 6) combined efforts, 7) radical transformation and 8) historic 

condition. Specific description of how the Markov matrix was amended for each landuse 

scenario was previously presented. Transition matrices, modified from Table 6-7 for 

each scenario, are given in Table C-1 (Appendix C). 
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Figure 6- 1 9. Example of the effect of risk class (Figure 5-17) on conditional transition 
probabilities between land uses. Note that effect on transition probability 
is proportional to difference in degradation risk between land uses. 

Spatially targeted landuse allocation 

Inherent degradation classes were defined based on frequency counts of inherent 

risk scores (Figure 6- 1 8) derived from Figure 6- 1 6. Original transition probabilities 
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Figure 6-20. Percent change in landuse proportions in 201 6  under 5 development 

scenarios in comparison with landuse proportions under Scerario 1 -
predicted landuse in 201 6  without adjustment of Markov matrix. 
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(Table 6-7) were amended so that each landuse had transition probabilities defined 

contingent on pixel inherent risk. Figure 6- 1 9  shows five of the 64 transition probability 

trajectories. Uneven lines result from the constraint that transition probabilities for each 

pixel sum to one. The line slope corresponds to the difference in proportion of total area 

that is degraded between the given landuse and landuse to which it is transitioning. 

Scenario Landuse Proportions 

The results of proportional allocation to each landuse are given in Figure 6-20 

relative to Scenario 1 .  Scenario 1 is the condition for which transition probabilities 

inferred between 1 986 and 2001 are unchanged. It is important to note, particularly for 

assessing comparative risk presented later, that the "Spatially Specified" scenario 

maintained landuse proportions as nearly identical to Scenario 1 as possible. 

The transitional steady-state condition occurs after approximately 6 iterations. 

While little evidence suggests that landuse change patterns are linear with time, resulting 

steady state proportions further illustrate change trends: at steady-state, over 20% of the 

basin is severely degraded, 25% is under sparse pasture and only 7% of forest remains. 

Degradation Proportions 

Application of the risk protocol described for each landuse change scenario 

allowed tabulation of predicted spatial degradation prevalence. Table 6- 1 3  summarizes 

these data, showing for each scenario cell counts and proportions for intact and degraded 

condition. Since degradation is defined stochastically, standard errors associated with 

each parameter value were estimated. Standard error of proportions was defined for only 

Scenario 1 ,  based on 1 0  different random surfaces, and assumed to generalize to each 

other scenario. Standard errors were computed as 0.06%, indicating that each estimate of 
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degradation is relatively precise. While there is limited basis for assessing statistical 

significance in comparing scenarios, the small estimated standard errors indicate that 

even small differences observed between landuse scenarios cannot be attributed to the 

stochastic component of this analysis. For historic conditions (pre-settlement - scenario 

8), it should be noted that, while it is unlikely that degradation rates were as high as 30%, 

this figure provides a benchmark against which various scenarios can be assessed. High 

degradation prevalence is due to assuming invariant inherent risk. 

Table 6-1 3  suggests that relatively significant changes in land use decision-

making may have a relatively small effect on degradation prevalence. Specifically, 

doubling the number of sites under commercial agriculture only reduces basin wide 

degradation by 0.7%. Under scenarios 2 through 5, conditional probability values were 

changed to target one landuse; this model suggests that cattle density reduction, active 

restoration of severely degraded lands and reforestation offer comparably effective tactics 

for controlling degradation, though cattle density reduction appears most successful. 

When activities are implemented in combination (though with smaller 

proportional changes in Markov probabilities), as in Scenario 6, the result is a moderate 

Table 6-13 .  Comparison of degradation extent for 1 986 and 2001 conditions 
and ex�ected historic (pre-settlement) and future scenarios. 

Cell Counts Proportions 
Scenario Intact Degraded Intact Degraded 
Historic Condition (scenario 8) 293454 122780 70.5% 29.5% 
1986 259206 157028 62.3% 37.7% 
200 1 214573 20 166 1  5 1 .6% 48.4% 
201 6  Scenario 1 1 95264 220970 46.9% 53 . 1% 

2016 Scenario 2 197938 2 1 8296 47.6% 52.4% 
2016 Scenario 3 202348 2 13886 48.6% 5 1 .4% 
2016 Scenario 4 208381 207853 50. 1% 49.9% 
2016  Scenario 5 204093 212141  49.0% 5 1 .0% 
2016  Scenario 6 2088 1 1  207423 50.2% 49.8% 
2016 Scenario 7 254475 161759 6 1 . 1% 38.9% 
2016 - SEatiall� Targeted 199882 2 1 6352 48.0% 52.0% 
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decrease in erosion risk. However, substantial recovery of the basin is not observed until 

the unrealistic transition conditions of Scenario 7 are implemented, and even then, the 

basin condition does not recover fully to 1 986 levels. 

Of particular interest is exploration of the ability to adjust basin degradation rates 

by simply reallocating lands to uses based on inherent risk. The results suggest that even 

while keeping identical landuse proportions, degradation extent can be reduced over 1 %. 

While this result is not exceptionally encouraging, presumably due to the dominance of 

inherent risk components in the overall risk model, it does suggest some leverage for 

basin-wide management. Additionally, results suggest that the combined effect of spatial 

targeting and changes in transition probabilities can improve conditions. 

Watershed Scale Agricultural Benefit Ratio 

Table 6- 14  summarizes mean ABR scores for the basin under landuse and 

degradation conditions inferred for 1 986 and 200 1 .  The table indicates that mean ABR 

fell from 3 .80 to 3 .44 over the 1 5-year period, and is predicted to fall to 3 . 1 8  in 201 6. 

Interestingly, while reducing cattle densities reduces degradation rates most, the 

reforestation alternative (Scenario 3 - provided ground cover is carefully managed) 

provides the most improved agricultural benefit. When landuse changes are applied in 

combination (Scenario 6), mean ABR rises to 3 .39, which is still lower than in 200 1 .  

However, under dramatic changes (Scenario 7), mean basin benefit levels are higher than 

1 986. Application of spatial targeting without changing overall ianduse proportions 

results in improved mean ABR levels, but offers limited hope that better allocation can 

substantially improve rural livelihoods and decrease natural capital depletion. 



Table 6- 14.  Two metrics (percent degraded and 
Agricultural Benefit Ratio) to compare scenarios. 
Scenario % Degraded Basin Mean ABR 
Historic Condition (scenario 8) 29.5% 3.99 
1986 37.7% 3.80 
2001 48.4% 3 .44 
2016 Scenario 1 53.1% 3 . 1 8  
2016 Scenario 2 52.4% 3 .23 
2016 Scenario 3 5 1 .4% 3.36 
2016 Scenario 4 49.9% 3.30 
2016 Scenario 5 5 1 .0% 3 .26 
2016 Scenario 6 49.8% 3.39 
2016 Scenario 7 38.9% 3.93 
2016  - SQatially Targeted 52.0% 3.26 
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DISCUSSION 

Summary 

Soil erosion represents a significant cost of rural and urban development. 

Substantial evidence suggests that, while largely hidden from contemporaneous land use 

decision-making, these costs accrue to society in general and rural farmers in particular 

over time. The problem has been documented worldwide, but the conditions in sub

Saharan Africa of severe disease burden, rural poverty, and explosive population growth 

make reliance on rapidly depleting natural capital an acutely pressing concern (Sanchez 

et al. 1 999). Soil degradation is compounded by the lagging pace of agricultural 

intensification (e.g. improved varieties, nutrient subsidies) in sub-Saharan Africa (Bojo 

1 996). Resulting agricultural extensification has occurred into marginal lands that yield 

less and are more vulnerable to degradation. This dissertation explored the causes and 

costs of soil degradation at the regional scale with the intent to assist breaking this cycle. 

Effective decision support requires a framework for internalizing costs of natural 

resource depletion. That erosion is a social cost is widely acknowledged, but precisely 

how serious a cost remains unknown, with a multitude of proposed means to internalize 

these costs. The selected protocol for including soil depletion in decision-making was 

environmental accounting using emergy. Emergy offers one means to put natural capital 

depletion costs in units common to the whole system for meaningful comparison. 

200 



201 

Whole-cost accounting is critical for sustainable decision-making, but in the 

absence of accurate physical estimates of risk, such analyses are not sufficiently specific 

to be of local intervention value. A portion of this work involved developing rapid 

assessment protocols and developing analytical tools to process the data. Considerable 

emphasis was placed on using reflectance spectra for rapid, non-destructive soil analysis. 

Enumeration of potential risk variables allowed development of risk factor models 

that integrate these variables. Three risk models were developed for each of three aspects 

of the erosion process (energy dissipation, detachment resistance and transport). 

Erosion prevalence assessment and regional erosion control require that patterns 

of degradation be defined at the landscape scale. Using the Awach River basin as the 

analysis bounds, these risk models were interpolated to produce maps that form the basis 

of a spatial model. Concurrently, satellite image processing facilitated spatial inventory 

of landuse and degradation and parameterized change matrices necessary for forecasting 

future landuse conditions. These coverages provided the foundation for an assessment 

framework that links risk and emergy yields to assess a compliment of alternative land 

management scenarios for intervention effectiveness. 

Principal Conclusions of This Study 

• Erosion represents a substantial cost of production in Kenya. Erosion costs at the 
national scale are comparable in magnitude to total agricultural exports. The 
study region is even more severely impacted by soil loss than the national 
economy. At the landuse subsystem scale, soil loss ranged from 14  to 76% of 
total emergy use. Indices of agricultural benefit ranged from 7.4 to 1 .3 .  

• Observational field protocols coupled with spectral analysis of soil samples 
allows detailed data sets characterizing variability over large areas to be collected 
rapidly and cheaply. Sample density implications for regional studies are 
profound. 

• Detailed characterization of regional variability obviates the need for generalized 
models of erosion risk, which were shown to be ineffective for local risk 
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assessment. Development of locally calibrated multivariate risk factors limits 
model generality but significantly enhances predictive accuracy. Aggregated risk 
factors were developed for protective cover, soil erodibility and sediment 
transport capacity based on direct observations. 

• Spatial inventory assessment, calibrated by ground observations and interpolated 
using satellite imagery, displays high prevalence of soil degradation in the study 
area; comparison with 1 986 imagery indicates high incidence rates. Landuse 
change trajectories include forest clearing and rapid incidence of badlands. 

• An assessment framework that links emergy costs and benefits with land 
management risk provides evidence that, in the absence of dramatic changes in 
landuse patterns, degradation incidence will not reverse. However, results 
suggest that preventative actions may be taken to preempt degradation. This is 
the proposed strategy for overall management. However, land management 
strategies that are most likely to reverse advancing degradation include, in order 
of efficacy, cattle density reduction, reforestation and active restoration of 
badlands. Targeting landuse allocation based on inherent site risk offers 
comparable improvement in agricultural benefit and degradation prevalence 
without changing landuse subsystem proportions. 

Discussion of Principal Conclusions 

Emergy Costs of Soil Erosion 

An important conceptual issue about the valuation of soil and quantification of 

costs emerged from this work. Soil loss represents costs at several scales. There are 

clearly long-term costs to farm productivity as the high quality components of topsoil are 

selectively removed, but there are also costs that accrue off-site. For this dissertation, 

these latter costs are ignored. There are certainly areas where erosion is considered a 

benefit (e.g. Nile delta), and documenting whether sediment delivery is a cost or a benefit 

requires excessively specific data for aggregated analysis. Therefore, only sediment that 

is lost from the system (i.e. crosses the boundary) is included as a cost. For watersheds, 

sediment yield ratios provide a means to translate from in situ erosion rates to total loss. 

The implication of using sediment yield ratios for cross-scale evaluation is 

important. Specifically, analyses at the farm scale will tend to have higher erosion costs 
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because no sediment deposition on-site is assumed. In contrast, at the national scale, 

sediment delivery ratios can range between 0. 1 and 1 0% and even lower for large river 

systems indicating that a large proportion of on-site costs are hidden at larger scales. 

Consequently, comparison of index values across scales was done cautiously. 

Emergy analyses documented the substantial costs of soil erosion at three scales. 

In previous emergy evaluations, soil loss was lumped together with other locally depleted 

natural capital (e.g. minerals, groundwater). There is a strong conceptual difference, 

however, in that soil is not a traded commodity and not an intended input. This 

distinction is critical because, in assessing the emergy basis of a regional economic 

system, soil erosion is usually counted as an input, where it is really an undesirable by

product of production. While it is valid to include erosion costs in loading, investment 

and yield ratios because it represents a capital stock depletion that may be as necessary as 

any other intentional input, it is also useful to quantify the extent of these non-market 

losses separately. The indices Fraction Capital Stock Depletion (FCSD) and Agricultural 

Benefit Ratio (ABR) were attempts to do this. Each scale of evaluation is discussed 

below with regard to general aspects of resource base assessment and specific 

considerations of soil erosion. 

National emergy analysis 

Several specific insights about the Kenyan national economy were identified. 

Unsurprisingly, Kenya has low emergy use per capita (3 .77E15  vs. a world average of 

8.37E 1 5  sej/person). The relatively low fraction of total use that is electricity (3%) 

suggests that the emergy that is available for each person is not compatible with modem 
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economic activity. This results in agriculture and other natural-resource based economic 

sectors (e.g. tourism) representing over 50% of national economic activity. 

Kenya maintains an emergy trade deficit: that is, more emergy is exported 

annually than is imported. The magnitude of this deficit (Exports:lmports = 1 .23) is 

relatively small compared to other developing countries (e.g. Thailand = 2, Ecuador = 5). 

However, coupled with observations that Kenya is also in fiscal deficit ($2.75E9 paid for 

imports, $ 1 .98E9 received for exports) and carries a significant international debt (over 

60% of GNP - World Bank 2001), the emergy deficit suggests that future development 

will continue to rely on exported natural capital to generate foreign exchange. Future 

reliance on dwindling natural capital stocks warrants long-term policy concern. 

Among the most important indicators of Kenya's reliance on raw resources (soil, 

mineral, forest products) are the emergy money and environmental loading ratios. The 

emergy money ratio of 1 . 17E13  sej/$ is nearly five times larger than the world value 

(2.08E1 2  sej/$), which results in Kenya selling substantially more environmental service 

per fiscal unit of international trade than it receives. Among other reasons, this explains a 

relatively low ESI (sustainability) of 0.55 (Ulgiati and Brown 1 998). The environmental 

load is characteristic of developing countries (ELR = 0.8); a large component of that load 

is, in this case, soil loss. Overall, Kenya continues to rely substantially on renewable 

energy flows. The aggregated economic diagram (Figure 3-4) summarizes this condition. 

Focusing on indices that document the scope of soil degradation within the 

national context further illustrates the severity of Kenya's  reliance on declining natural 

capital stocks. The FCSD data for the national economy suggest that almost 4% of 

emergy driving the national economy comes from flows that are not directly tradable and 
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have substantial long term consequences for on-farm productivity and off-farm water 

quality. The national ABR value was 7.56. The same index computed for the United 

States in 1 985 (Odum 1 996) was 60.38. The Kenyan National FCSD and ABR values 

provide a benchmark against which evaluations at smaller scales can be assessed, and 

against which the effect of national policy instruments can be evaluated. 

Another means to assess the scope of erosion nationally is to compare the 

magnitude of these flows to other more familiar aspects of the economy. This is only 

made physically meaningful because of the common energetic basis of the evaluation. 

That soil loss (45.5E20 sejlyr) rivals total national electricity consumption (37.2E20 

sej/yr) or agricultural exports (49.7E20 sej/yr) strongly reinforces the need for a coherent 

and well-funded national policy for erosion control. 

District emergy analysis 

The national evaluation does not show the degree to which summary indices are 

spatially uneven. The major manufacturing centers (primarily Nairobi and Mombasa) 

exhibit significantly higher emergy per capita, loading and investment ratios, and lower 

emergy:money and sustainability ratios. Comparing results for each of the three district

scale evaluations with summary index values for the nation clarifies this point. 

The three districts represent a gradient of development status that can be observed 

nationally. Kisumu, a regionally important manufacturing and trading center, exhibits 

characteristics of enhanced development (e.g. larger reliance on imported emergy, lower 

emergy money ratio, substantially higher investment ratio) compared to Kericho and 

Nyando; also note the substantially higher population density in Kisumu district. Of the 

three, Nyando district is clearly the least developed, with lower than national levels of all 
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indices, including emergy per capita, fraction electricity, emergy-to-money ratio and 

environmental loading ratio. Only Kisumu is consistently higher than the national 

average in most indices, and only Kisumu (exports:imports = 0.61 )  is a net importer of 

emergy. Nyando district ( 1 .27), a sugarcane producer, and Kericho ( 1 .49), a tea and 

dairy producer, are both major export districts within the national system. 

For different reasons, each district exhibits very low sustainability index scores. 

All three are lower than the national level; Kisumu because it is largely a fossil fuel 

driven system, and Kericho and Nyando because they are reliant on rapidly depleting 

natural capital stocks. Similarly, all three have loading ratios much higher than the 

national average. Kisumu in particular has high empower density and environmental 

loading. This is confirmed by reports of extremely degraded water quality in Kisumu 

Bay (Lake Victoria) because of untreated sewage discharge and urban runoff (Crul 1 995). 

Comparison of indices specific to natural capital depletion illustrates the severity 

of erosion is this region of the country. Kisumu district is impacted to a similar extent as 

the nation, with an ABR of 4.37 and an FCSD of 2.4%. While soil loss rates per area are 

very high, the small size of the district and the degree of external resource subsidy 

(typical for urban areas) mask these costs. The findings contrast with results from 

Nyando and Kericho districts. Kericho district exhibits relatively low levels of soil loss 

due to comparatively large areas of remnant forest, well-drained and stable soils and 

abundant rainfall, resulting in a high ABR value ( 1 1 . 1 1 ) and average FCSD (3.4%). 

There are, however, substantial natural resource management concerns in this district. 

Specifically, deforestation of legally protected forest represents 22% of total emergy use. 



This has implications for soil loss, but wider implications on biodiversity protection, 

carbon sequestration and a growing fuelwood crisis in rural western Kenya. 
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Nyando district also has the lowest ABR (2.25) and highest FCSD (14.2%) due to 

severe erosion, particularly in lowland regions around the Awach and Nyando rivers. 

That 1 5% of total emergy use flows from stocks of natural capital that must be treated as 

a non-renewable resource explains why the Nyando area has received international 

attention as a degraded landscape (e.g., Journey to Planet Earth, April 2nd, 2003 on PBS). 

A wach landuse subsystems analyses 

Emergy evaluation at the scale of the landuse subsystem is effectively an 

exploration of the magnitude of erosion under each. In general, use of subsidies for 

production (e.g., fertilizers, pesticides, improved seeds) is limited, so the major 

components of each evaluation are renewable flows, soil loss and labor. In each case, 

rainfall represented the primary renewable input. Soil loss rates, estimated from the 

mixed effects model results presented in Table 4-2 1 ,  were input for both intact and 

degraded conditions (yielding data in Table 3- 1 5). This analysis assumes no effect on 

physical yields from degradation, which would serve to amplify the observed differences 

in benefit indices between intact and degraded sites. 

Table 3- 15  provided several indices that document the effect of increased soil 

degradation. For each product, transforrnities go up in degraded sites. In this case, 

transforrnity is indicative more of inefficiency than of location in the energy hierarchy. 

Accordingly, the loading ratio increases substantially under degraded conditions, as does, 

perhaps counter to expectations, the yield ratio. The latter simply reflects the fact, 



mentioned before, that treating soil loss as an input (similar to seeds and labor) is 

confounding. 
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To address this problem, the ABR and FCSD indices, which at this scale of 

analysis are precisely inverted, are useful. For intact conditions, farm forests (woodlots) 

yield the greatest benefit, followed by commercial and subsistence agriculture. 

Shrub lands used for charcoal production and all rangelands, regardless of management 

scheme, are of limited benefit. The order of landuse desirability changes under degraded 

conditions. Woodlots were observed to have extremely high soil loss rates when 

managed or situated in a way that allowed degradation to occur, which is manifest in the 

dramatic change in ABR between intact and degraded sites (7.41 vs. 1 .58, respectively). 

Commercial and subsistence agriculture are the best landuse subsystems for 

agricultural benefit when a site is degraded. This is because soil loss estimates at sites 

judged spectrally degraded are less dramatically elevated under agricultural use. This 

may be because of more active infiltration capacity management at these sites or it may 

arise from the limited number of observations at agricultural sites. Future iterations of 

surface deflation estimation will concentrate on ensuring sufficient sample size for 

agricultural sites to avoid this. 

Finally, it was expected, and confirmed, that ABR levels for landuse subsystems 

are higher than for entire districts. This is due to sediment yield considerations for 

adjusting soil loss costs across scales. Specifically, soil loss for large areas is adjusted so 

that only material that actually leaves the region is counted. Sediment that is 

redistributed within the area is not counted as a cost. This is not the case for individual 

landuse evaluations, where all eroded material is included as a cost. 



209 

Field Protocols, Reflectance Spectra and Infiltration Testing 

The basis of empirical assessment of erosion risk is the ability to discern risk 

factors across the range of study area variability in a rapid manner. While the assessment 

protocol described and implemented for this work required 6 weeks of field time which 

may be prohibitive for each meso-scale study area, lessons learned during both field 

sampling and subsequent data analysis suggest that sampling time could be shortened 

substantially. Foremost amongst these is the conclusion that 420 sample sites is probably 

more than adequate to describe the 360 square kilometer basin. More samples would 

only increase statistical power, and, in some analyses (e.g., graphical models), 

significance criteria more stringent than conventional were necessary to avoid 

excessively complex models. Sample limitation was only observed for surface deflation 

analysis because of the physical removal of nails from croplands during tillage and 

weeding. Furthermore, given a sampling strategy that is cognizant of confounding 

factors, and with extensive use of satellite image-based interpolation procedures, large 

areas can be statistically described without excessive density. The limited effectiveness 

of geostatistical methods in this highly heterogeneous environment simply reinforces the 

conclusion that the main geographic sample considerations are geology, elevation and 

population. Several components of a rapid assessment protocol for large areas warrant 

further discussion and exploration. Each is discussed in brief below. 

Field sampling protocol 

First, observational sampling protocols maximize statistical power with regard to 

the main sorting variable (in this case soil degradation). The strategy herein to stratify 

only informally by other factors (landuse, geology) offered a flexible protocol that 
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allowed an average of 1 8  plots to be sampled each day. Informal stratification runs the 

risk of poor statistical power post-sampling if data are imbalanced with regard to 

conditioning variables, but this was not a problem in this study. Field protocol efficiency 

could be significantly improved by collecting only topsoil samples (subsoil samples were 

collected but never analyzed) and streamlining variable selection to only those variables 

that exhibit early promise as relevant predictors. 

Spectral reflectance methods 

Second, spectral methods for rapid soil assessment are an indispensable 

component of large area characterization. Not only was the analysis of 1 200 soils for a 

suite of standard soil properties made possible, but calibrations to non-conventional 

properties were also feasible. Binary screening tests for sodium, phosphorus and 

potassium, screening diagnostics for soil degradation and infiltration class, and direct 

inference of erodibility were developed using the information rich reflectance data, in 

addition to continuous regression models for organic carbon, texture and cation 

parameters. Mean hold-out validation efficiency for 1 0  soil properties is over 80% with 

proportional RMSE of less than 8%, which for many standard methods is within the 

tolerance limits for observation variability. Most ofthe residual error in the regression 

models is consistently observed for higher sample values, suggesting that laboratory 

variability may contribute to model error. 

Case/reference definition and degradation odds: Of particular importance were 

models to discriminate between intact and degraded soils. High model efficiencies, with 

over 95% of samples correctly classified by the optimal cross-validated tree were 

observed. This is well within the anticipated range of variability introduced by observer 
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error and temporal dynamics alone. The latter error is introduced at sites where 

degradation is just initiating, so the topsoil has not been significantly depleted, but visible 

cues such as splash pedestals have emerged. On several cleared steep sites where maize 

was planted for the first (and likely only) time, this was the situation. 

The case-reference definition based on spectral reflectance has this distinct 

advantage of providing early warning indicators of degradation, prior to the onset of 

visual diagnostic cues. This allows application in monitoring as well as assessment of 

large areas, with strategic spatial soil sampling offering the potential to engage in whole-

basin adaptive management in these remote regions. 

The three-category case definition model (Table 4-6) illustrates the power of the 

spectral screening model to identify severely degraded soils. Over 93% of severe sites 

were discriminated, even from moderately degraded soils, a result which offers similar 

monitoring opportunities. 

A spectral classification for degradation allowed all soils to be assigned based on 

the same algorithm. From the degradation status of each soil, binary odds ratios were 

presented that offer a glimpse at the marginal effects of various cover and landuse 

descriptors. Several notable conclusions from these figures (Fig. 4- 1 1  and 4- 1 2) include: 

• Significant protective effects were observed for commercial agriculture, forest 
and wetlands. While none of the active landuses appears significantly 
detrimental, subsistence agriculture has an odds ratio of 1 .5, which, while quite 
weak, indicates an elevated risk of degradation. 

• There is a strong protective effect of perennial vegetation and long-term landuse. 
This may be an effect rather than a cause (only annual vegetation can persist at 
highly degraded sites, for example). 

• Dense groundcover has the strongest protective effect; woody cover has a 
pairwise effect but is substantially weaker. 



• Specific landuses that offer protection are sugarcane and constrained pasture 
(paddock grazing). Communal pasture has a large, non-significant detrimental 
effect. 
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• The effect of woody cover disappears when the odds are conditioned on ground 
cover. This is particularly true for farm forests. This result suggests that 
extensive tree planting proposed for the basin to control erosion is of limited 
utility. 

Spectral inference of soil properties: Spectral calibrations of soil properties 

allowed inference of the effect of degradation on soil quality. Most observations were as 

expected: soil carbon declined, sand content rose while clay and silt were depleted, and 

the probability of observing depletions ofP or K increased. Strong trends in ANOVA 

significance were observed along the 5-category degradation gradient. There were few 

differences observed among intact soils under different landuse types. Only soil organic 

carbon showed a pattern, with lowest stocks under intact rangeland and highest under 

forest. This result suggests that selecting sites for specific landuse subsystems is not 

based on soil quality: landuses start with relatively similar soil functional capacities, but 

erode that capacity at different rates. 

In delineating soil properties for a large number of samples, a benchmark for 

long-term intervention assessment has been established. After 5 - 1 0  years, a similar 

sampling scheme could quantify the efficacy of selected activities. This is particularly 

true where specific sites are being observed through time. 

Spectral analysis for environmental characterization: Spectral reflectance 

characterization of materials is emerging as a useful tool for environmental analysis. 

Limiting most ecological or edaphic inventories is sample processing costs; the feasibility 

of spectral calibrations to predict standard analytical properties, as well as infer more 

complex composite metrics, should facilitate detailed spatial inventory and analysis. 
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While the methods herein have been confined to assessments of soil, spectral calibrations 

to vegetation properties (lignin content, ethylene stress, turgor pressure) have been 

demonstrated (Foley et al. 1 998, Gillon et al. 1 999, McClellan et al. 1 99 1 ). 

One component of spectral analysis that is critically important is screening new 

samples for calibration bound outliers. By compressing the data, using PCA or other 

ordination tools, and projecting new samples into primary axes ordination space (in this 

case two axes were sufficient), outlier samples can be identified. These outliers can be 

analyzed for the suite of target properties and included in the library, ensuring that model 

generality grows, and spectral predictions never exceed calibration bounds. 

Infiltration assessment 

One conclusion of this study (shown in the model fit for hydro/terrain risk factors) 

is that infiltration capacity is a fundamental control of the erosion process (see Figure 4-

1 6  for graphical indication of this). While physical models explicitly account for 

infiltration mechanisms, often in exceptional detail, most empirical models simply 

allocate uniform infiltration capacity to all sites in a landscape and assume that rainfall 

erosivity adequately describes site hydrology. This study indicates that, at least for the 

local condition in the Awach basin, this is an inadequate assumption. 

Assessment of infiltration capacity is most commonly done based on soil type. 

This has serious limitations that the approach developed herein only partially addresses. 

Most importantly, different landuse and land management dramatically alters inherent 

infiltration rates. Figure 4- 1 5  documents this conclusion, illustrating variability in 

infiltration conditioned only on site characteristics (i.e., lumping all soil types together). 

Among the indications that human management affects infiltration is the finding that sites 
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that recently changed landuse have a significantly lower risk of exhibiting slow 

infiltration than other sites. Cover characteristics also appear to significantly impact 

infiltration, perhaps because of root facilitation of water inflow, which will vary 

substantially within soil types. The spatial and categorical resolution of soil maps 

available for the region (Figure 5-2) is insufficient for characterization at the pixel scale. 

The methods developed to process infiltration data are complex, primarily 

because of sampling logistics. Each test was done for less than one hour, which was 

often insufficient time to reach saturated infiltration rates. Furthermore, tests were run 

with a variable hydrologic head (to minimize water hauling). The bounded non-linear 

parameter fitting routine was generally functional, but for some replicates, particularly 

those with infiltration rates that approached measurement resolution (approximately 1 

mm), the existence of local minima and global minima that violate physical parameter 

boundaries made model fitting tedious. However, a previous study of infiltration rates in 

western Kenya (Table 4- 14) (Wielemaker and Boxem 1 982) reported infiltration rates 

that correspond extremely well to observations in this study. 

Future iterations of infiltration assessment over large areas will incorporate 

procedural and sampling changes. First, constant-head tests will be used, and infiltration 

rates will be assessed for a longer period. Second, an effort to quantify spatial variance 

will be incorporated via a more strategic nested spatial sampling design. While there 

appears to be substantial spatial autocorrelation, the lack of paired observations at 

moderate distances (distances are either 1 0  m or much larger) complicates semi

variogram development. 
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Surface deflation estimation 

Finally, use of surface deflation measurements facilitates physical quantification 

of erosion while the remainder of this study dealt only with categorical erosion classes. 

While surface deflation data are characterized by substantial within plot variability, and 

were unavailable for all landuse types in sufficient quantity, the method proved extremely 

cost effective. In the absence of deflation data, values for soil loss to inform subsystem 

emergy evaluations would have been literature derived, and for every landuse, observed 

values deviated substantially from published rates. For example, subsistence agriculture 

in Kenya is usually assigned loss rates between 1200 and 1 500 g/m2/yr (Barber 1 982). 

Under intact conditions, the observed value was substantially less (600 g/m2/yr), while 

rates at degraded sites were much higher (2307 g/m2/yr). Another notable discrepancy 

between the literature and observations was for woodlot systems. Under intact 

conditions, loss rates were comparable to literature values (�300 g/m2/yr) (Barber 1 983), 

but if degraded conditions persist, that value jumps to nearly 3000 g/m2/yr, much higher 

than published values. While high loss rates were expected for severely degraded lands, 

the observed values (mean 7600 g/m2/yr and maximum 35,000 g/m2/yr) are alarming. 

Recall that these are model estimates after accounting for within-plot and within-position 

variability; localized rates within sites are therefore expected to be even higher. 

Erosion Risk Modeling 

The physical process of erosion is well understood and has been modeled 

extensively. Unfortunately, physical process models often require detailed information 

about soil or hydrologic properties that are difficult to estimate, particularly in regions 

like western Kenya where thematic spatial data are largely unavailable. Empirical 
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models of erosion are more flexible, but suffer from a lack of generality, particularly 

when models developed for temperate-zone field-scale conditions are applied to tropical 

watersheds. While it would be consistent with much of the current literature to use 

existing erosion prediction models to delineate risk, evidence interpreted during this 

study suggests that application of such models has serious limitations. Specifically, GIS

based application of the Universal Soil Loss Equation correctly allocated only 58% of 

sample sites to binary degradation classes (Cohen et al. submitted 2003). Contrasted with 

accuracy of over 82% for the empirical model developed herein, this suggests that rapid 

assessment methods and statistical inference may be more useful, if slower, for effective 

risk assessment and subsequent management. 

While application ofUSLE to the basin may not be suitable, the conceptual 

framework of the model proved useful for developing risk models. Erosion was 

conceptualized as a three-factor process, and for each (protective cover, inherent 

erodibility and sediment transport) a multivariate risk factor was defined. 

The analysis framework adopted is robust to variation in sampling protocol. A 

compliment of variables observed in the field is allocated as potential predictors from 

which extrapolative models are derived. It is at this stage that the conceptual overlap 

between this approach and USLE ends. Where other models assume full statistical 

interaction, this approach maximizes model parsimony by allowing the model functional 

form to be flexible. By delineating variables of interest for each factor and deleting those 

that are conditionally independent (using graphical modeling), simpler models were 

achieved. Each integrated risk factor exhibited features that warrant further attention. 
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Site risk factor 

The site factor links general landuse information with specific data on protective 

cover from trees, stones or ground vegetation. The variables selected for the multivariate 

parameter are generally as expected, but there were some notable omissions, discussed 

below. Landuse is a strongly significant predictor even after controlling for cover 

characteristics. Wetlands, forests and cropping systems exhibit the strongest protective 

effect, while shrublands and pasture appear to be at greater risk. 

Inherent landuse risk is modified substantially by site cover characteristics, 

illustrating the critical importance of within-land use management practices for mitigating 

erosion. The most important recommendation for within-Ianduse management is 

maintenance of ground cover, which might be maintained via conservation tillage, 

perennial cropping systems, more effective intercropping schedules or mulching. A 

single unit increase in ground cover score (ranging from 0 to 6) cuts the odds of 

degradation in half. Ground and woody cover height are both significant variables, but 

do not have strong effects. Woody vegetation cover was conditionally independent of 

degradation risk, reinforcing the pairwise analysis findings of Figure 4- 1 2  that suggest 

that trees by themselves do little to mitigate soil degradation. Annual vegetation 

dominance also has a strong impact. 

Soil erodibility risk factor 

Soil erodibility links soil properties and detachment capacity. The first 

conclusion is that the USLE nomograph does an exceedingly poor job of describing local 

erodibility. The result that K computed from the nomograph inversely predicts erosion 

risk in the A wach basin was cross-checked two ways. The first and most convincing is a 
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logistic regression relating K to binary degradation. The model is highly significant, with 

the direction of association implying that as K rises, the risk of degradation falls. A 

second way was devised to avoid making the prospective analysis assumption (page 63). 

Mean erodibility scores for intact sites only in each soil polygon were compiled and 

related to proportional degradation Figure 6- 1 .  That the direction of association is 

negative (higher polygon mean erodibility implies lower proportional degradation) 

reinforces the conclusion that a locally calibrated erodibility function is necessary even 

though the model fit is not exceptional. 

Development of such an empirical erodibility function allowed conditional 

associations between soil properties and degradation to be quantified. The strong inverse 

association inferred between soil organic carbon and erodibility was expected, as was the 

direction of association for sand and clay. The binary variable screening sodic content 

(Na) affected erodibility as expected. However, the direction of association for 

exchangeable bases and silt was inverse to expectation, and the effect of P and K on 

erodibility has limited precedence. As exchangeable base saturation rises, erodibility 

rises, which contradicts the pairwise findings (Table 4-7) that suggest that base saturation 

decreases with degradation. However, in controlling for clay and organic content, where 

bases are bound, the shifted effect direction may be due to higher base saturations and 2: 1 

clay mineralogy in lowland soils (Vertisols, Leptosols). The same explanation can be 

offered for the inverted effect of silt on erodibility. Silt, sand and clay are substantially 

correlated (Table 4-1 0), so while the pairwise effect of silt on degradation is positive, 

controlling for sand and clay causes the direction of influence to reverse. 
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The effect of P and K on erodibility is likely to be an effect of inherent fertility on 

cover. Soils with abundant nutrients will tend to support denser vegetation, which 

provides physical detachment protection. As such, inclusion of these variables might be 

considered an artifact. Controlling for cover in future efforts to quantify erodibility may 

reduce sensitivity to this kind of effect. However, retaining this effect in the absence of 

additional site information significantly improves predictive accuracy. 

Hydro/terrain risk factor 

Risk conditioned on hydrologic and terrain variables was overwhelmingly 

dominated by site infiltration, which in turn is strongly dependent on landuse and 

management. Strong conditional effects were also observed for soil depth and evidence 

of flooding, but contrasted with the odds of degradation given slow infiltration (O.R. = 

39.5), these are of limited importance. Notably, while infiltration was the core variable, 

other hydrologic variables were retained. Mean annual rainfall was a significant 

predictor, but the Fournier Index of erosivity was not. Increased rainfall reduces 

degradation risk, contrary to conventional application (e.g., Kassam et al. 1 99 1 ), which 

suggests a strong link between rainfall and site cover. When this effect is controlled, the 

expected association direction may be revealed. 

Terrain factors were of less importance in this model. Slope is only a marginally 

significant predictor, slope length and sediment transport index were omitted, and slope 

shape was of limited importance despite the finding that variable slope shapes increase 

risk. The clear reason that terrain measures were of limited importance is the prevalence 

of highly susceptible soils on shallow slopes, and rarely on steep slopes. Furthermore, 

active landuse systems were generally not found on steep slopes; the limited remnants of 
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intact forests remaining in the area are found there instead, and these lands are generally 

intact. As a result, there is a statistical tendency for steep slopes to be intact. Anecdotal 

observation during field sampling indicates that active landuse, particularly by farmers 

leasing land, is advancing on steep slopes. As a result, the statistical model form may be 

changing to include increased risk on steep sloping lands. 

Model suitability and generality 

A major difference between physical models and the approach taken herein 

concerns the form of the degradation target variable. Most models predict physical rates 

of soil loss (either physically or statistically), but the data required to calibrate such 

models is prohibitively expensive to collect, involving standardized plot experiments that 

require considerable replication to capture the range of factor variability. For rapid 

observational assessment over large areas, a more effective target is categorical erosion 

(e.g. intact/degraded or finer class resolution). This also lends itself more readily to 

monitoring applications over time. 

Centrally, a categorical target simplifies data collection, allowing much more 

comprehensive data sets to be collected. There are other advantages, however, including 

making risk (based on probabilities) the focal point of research, invoking use of logistic 

regression modeling. A further advantage is the demonstrated feasibility of using soil 

spectral reflectance to characterize condition, obviating the need for extensive runoff 

sampling and allowing collection of substantially larger, and statistically more powerful 

data sets. 

An alternative to runoff sampling is use of surface deflation estimation. The 

regression relating overall erosion risk at each plot with observed nail exposure is highly 
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significant, but reduces observed variance only approximately 40%. For accurate 

delineation of erosion, this may be insufficient accuracy. However, the entire analysis of 

surface deflation data illustrates the considerable variability that exists, even within-plot, 

for physical rates of soil loss. This observed variability reinforces the conclusion that 

categorical degradation designations are an improvement for large area assessment. 

The risk modeling approach adopted has several clear benefits and limitations. 

The foremost benefit is model accuracy, which is substantially improved using local 

empirical modeling. Specifically, application of USLE in the region was accurate in 58% 

of the cells (for binary classes), while the empirical model was 82% accurate. This has 

implications for effective spatial targeting of interventions, but most importantly for 

providing reliable predictions of which management actions are likely to provide 

enhanced protection of the soil resource. It is a significant finding of this work that 

locally developed calibrations are suitable for assessment. 

A clear limitation of highly data driven empirical modeling is that the calibrations 

are subject to extrapolation concerns. In the absence of physical process modeling, the 

results of each study will be of questionable general value, even in nearby areas, without 

some formal validation process that requires further field sampling. For generic 

assessment, particularly over extremely large areas, this poses logistical constraints. 

However, carefully designed spatial sampling protocols (e.g. targeting geologic and 

agroecological zone variability) with appropriate sampling intensity, coupled with 

satellite image-based interpolation, will allow model development applied within 

calibration bounds rather than extrapolated without validation. 
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Spatial Inventory and Risk 

Scaling observation from the plot scale to the watershed scale was necessary to 

begin evaluating and comparing land management scenarios. Satellite image 

interpretation figured prominently in this process, and proved, given appropriate 

analytical tools, extremely effective at spatial interpolation of degradation, infiltration, 

landuse, and erosion risk. Model accuracies were all acceptably high, primarily due to 

the use of non-linear statistical classification methods that can simultaneously delineate 

classes comprised of spectrally distinct groups. This is discussed further below. 

Spatial inventory 

Degradation: Spatial inventory indicates that almost half the watershed exhibits 

characteristics of soil degradation (46% in 2001 ). Maps of degradation inferred from 

satellite imagery illustrate a spatial pattern to degradation prevalence. Specifically, the 

lowlands « 1 400 m) were over 75% degraded. High rates of degradation incidence were 

also evident, with degradation observed in 36% ofthe basin in 1 986. During that same 

interval (1 986 to 2001), the extent of severely degraded land more than doubled. At 

nominal erosion rates across landuse types (Table 4- 1 9) this corresponds to an additional 

70,000 tons of soil lost from the basin each year, which is equivalent to more than 1 % of 

total annual emergy use in Nyando District. Given extreme soil loss rates from severely 

degraded lands (the most rapidly expanding class) this estimate is likely to be 

conservative. Some anecdotal evidence from the region suggests that severe degradation 

began in earnest in the early 1 960' s in response to the converging circumstances of a 

major EI Nino (which delivers substantially increased rainfall to the region) and 

population influx. However, other evidence from Lake Victoria sediment coring studies 
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suggests that degradation began earlier (M. Walsh and K. Shepherd, ICRAF - personal 

communication). If it is assumed that, prior to 1 960, there was only limited degradation 

prevalence, the mean incidence rate is 1 .2% annually, or 4 sq. km degraded per year. 

Infiltration: The map of infiltration classes for 2001 suggests that 33% of the 

basin infiltrates at less than 60 mm per hour. The majority of slow infiltration sites are in 

the lowlands, where soils are primarily alluvial and susceptible to surface crusting. It was 

shown (Table 5-6) that on-site infiltration is the primary hydrologic predictor of 

degradation. The spatial pattern of slow infiltration rates in the lowlands partially 

explains degraded site spatial patter, particularly for those classified severely degraded. 

Notably, the proportion of pixels classified as slow infiltration did not change 

between 1 986 and 200 1 .  The degree of overlap between 1 986 and 2001 is over 86%, 

suggesting that infiltration responds to land management more slowly than degradation. 

It should be noted that, while the classification model selected was accurate, even 

in cross-validation, there is evidence that selected model partitioning rules overly 

emphasize static features of the landscape (e.g., slope and elevation) over reflectance 

characteristics that would change over this period (see Appendix C for model rule-base). 

Landuse classification with CART: Landuse classification was done using 8 

categories with relatively limited spectral separability. The results indicate strong 

advantages of this data analysis approach, particularly given the spectral confounding 

observed between subsistence agriculture and all other landuse classes. 

Standard methods for statistical analysis of satellite reflectance data are well 

established, but they do not perform as well as classification tree models. For some 

classes (severe degradation, forest, wetlands) maximum likelihood classification accuracy 
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is comparable, but for others, CART, a non-parametric model wherein assumptions of 

continuous covariance are relaxed, performs by as much as 30% better. 

Figure 7- 1 offers a rationale for this dramatic improvement given identical 

predictor data. Two distinctly different clouds of sample points in feature space (axes of 

wetness and greenness) comprise a class (subsistence agriculture), with a second sample 

class (pasture) also shown. Standard linear methods lump the two subsistence agriculture 

clouds to form a central cloud, which exhibits both expanded variance and reduced 

spectral separability from the second class. 

Threshold-based recursive partitioning can circumvent this problem. The 

characteristics of the contrived example (Figure 7- 1 )  provide an explanation. CART 

readily assigns each cloud of subsistence agricultural plots to the same class based on 

entirely different partitioning criteria. In this case, low wetness plus low greenness and 
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Figure 7- 1 .  Schematic depiction of spectral confounding due to within-category variance 
as it affects linear discriminatory methods. Circle size reflects variance in class means 
for two imaginary axes (greenness and wetness). 
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high wetness plus high greenness would allocate a site to subsistence agriculture, while 

moderate wetness plus moderate greenness would be reserved for pasture sites. The 

particular condition of spectrally distinct areas categorized to the same functional class 

was observed in this study where wetlands and severely degraded lands were both 

classified to the slow infiltration category. The success of CART (82.5% accuracy) is 

contrasted with linear discriminant analysis (71 .5% accuracy) to illustrate this issue. 

Change detection 

The change detection results for degradation, infiltration and landuse assume that 

images from the two periods are directly comparable. While every effort was made to 

ensure strong statistical association between reflectance from pseudo-invariant ground 

features in the two scenes, the fact that the 1 986 scene is from earlier in the year 

(February) than 2001 (April) confounds interpretation. However, the expected effect of 

this seasonal shift is to inflate the extent of degradation in 1 986 because unvegetated 

areas prior to the onset of the rainy season in Marchi April will appear degraded. 

Furthermore, the expected trend in NDVI values is to observe an increase in 2001 (see 

Figure 6-8). Neither effect was observed. This does not suggest that spectral 

confounding was not present, simply that the direction of that confounding effect would 

be to make estimates of degradation rates between 1 986 and 2001 more conservative. 

Rates of land use change between 1 986 and 2001 align with observations of 

changing degradation patterns. While there is a substantial uncertainty in inferring a 

landuse change matrix from 1 5-year intervals, the results suggests a dramatic decrease in 

forest cover and a concomitant increase in severe degradation and sparse pasture. 
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Transition probabilities for conditional transfonnation from one landuse to another were 

presented; these fonned the foundation of landuse scenario development. 

Spatial risk maps 

Defining risk across the entire basin offers the ability to assess modifications to 

land management for the region. Interpolating the multivariate risk models (site, soil and 

hydro/terrain) required a variety of tools, but the results show that the process is readily 

accomplished given some simplifying assumptions. 

Site risk map: The most important assumption for spatial risk assessment is that 

cover characteristics for a pixel, critical for site risk computation, are assumed inherited 

from basin-wide nominal values for the landuse in each pixel. The logistic regression 

risk model contains both landuse effects and within-landuse effects of cover; this 

assumption creates the condition where there is no variability in cover within landuse 

type. Clearly, this is not the case. However, since within-landuse cover management is 

the focus of on-farm interventions, results produced after making this assumption reflect 

the potential to change basin-wide degradation conditions in the absence of on-farm 

intervention. Consequently, site risk maps for scenario assessment are almost entirely 

driven by landuse, with a variety of reclassification tables for delineating cover 

characteristics from pixel use. The exception is the map of stone cover, inferred spatially 

from soil depth and degradation maps. 

Soil risk map: Using satellite imagery to discern erodibility is a pure statistical 

relationship. Most of this basin is vegetated, so the inference is contingent on a strong 

association between erodibility and vegetative cover. The results indicate that there is 

variance in the regression model, but overall this �pproach seems tenable even if 
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conceptually problematic. When existing soil polygons are overlain on the map of 

erodibility, the loss of accuracy introduced by using soil survey data instead of this 

approach is clear (Figure 6- 1 3). There is no pattern evident to support existing polygon 

topology with regard to erodibility. Further, this map illustrates the significant within

polygon variability in erodibility scores that would be lost assigning a single score to 

each soil type. 

Hydro/terrain risk map: Rather than infer this risk factor from satellite imagery as 

a single function, each of the component variables was interpolated separately then 

integrated. Since infiltration so dominates this equation, the finding that infiltration class 

can be effectively inferred from satellite imagery aids model reliability. The other factors 

were extracted from existing databases (rainfall) or DEM inference (slope, slope shape, 

soil depth). The necessity of a high quality DEM is clear in this regard, and the DEM 

developed for this study appears more than adequate. 

Inherent risk: Inherent risk is defined as that risk assumed insensitive to landuse 

decision-making (soil + hydro/terrain). The concept was useful primarily for landuse 

allocation devised by modifying transition probabilities according to nominal degradation 

proportions under each landuse. Sites with high inherent risk should be limited to low

risk landuses; the methods and results of spatially specific landuse allocation are 

discussed later. 

Integrated Assessment of Future Landuse 

Comparison of future landuse propagated a variety of landuse scenarios through 

an automated spatial model that linked risk surfaces with emergy-based agricultural 
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benefit. This model produced maps of soil degradation, and provided a single index, the 

basin mean agricultural benefit ratio (ABR), that defined optimality. 

Optimality for landuse planning is a multi-criteria assessment. The goal is not to 

maximally reduce erosion, but to maximize system productivity while minimizing costs. 

The ABR, which divides yield (productivity) by erosion (costs), allows conditions of 

accelerated erosion to persist as long as local yields are proportionally higher (indicating 

investment/subsidy from other systems in need of the products). For example, 

subsistence and commercial agriculture exhibited nearly identical erosion rates (surface 

deflation) but have somewhat different ABR values, with commercial operations (tea, 

sugarcane) attracting outside resources more effectively than subsistence cropping 

systems. This has a net beneficial effect on the basin (more emergy per unit cost), and 

should be actively solicited. 

Landuse change scenarios 

There is no end to the array of potential landuse scenarios that can be explored 

using this assessment framework. The nine scenarios compared in this work were not 

intended to represent the entire variety of potential modifications, simply a sampling of 

the major options. Particularly for the spatially targeted scenario, additional testing 

would be informative. The result in this case is considered more the assessment tool 

(Figure 6- 1 7) than a comprehensive utilization of that tool. In fact, one extension of this 

tool is for participatory intervention that solicits land management strategies from 

stakeholders. The ability to systematically compare various stakeholder designs rapidly 

may be useful for integrating technical recommendations and participatory intervention. 
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Markov modeling: The first scenarios were spatially stochastic. Markov chain 

landuse change models are simple to implement, but have serious conceptual limitations. 

Most critically, there are no constraints on any given pixel changing to any other. This is 

particularly problematic for sites that remain under forest cover because they are either 

too steep or too infertile to support active rural landuses. This problem was also observed 

for the severe degradation landuse class, which was generally confined to the lowlands, 

but emerged more uniformly in space after Markov chain predictions. 

Spatial targeting: Implementation of spatial targeting to allocate low risk 

landuses to higher risk areas was somewhat complex. Risk classes were delineated, and 

for each risk class, a separate table of transition probabilities defined. These values were 

adjusted so that at higher risk, certain landuses were avoided. However, it is not 

reasonable to select where wetlands and badlands (severe degradation) persist; they are 

not managed landuses. Therefore, targeted allocation was developed for only the 6 active 

landuses. The results indicate that this approach was effective; almost identical 

proportions of each landuse were observed between the baseline scenario (do nothing) 

and spatially targeted landuse, but location in the basin varied. There is ample potential 

to explore these scenarios further, adjusting transition not only based on inherent risk, but 

also on altered overall management strategies (e.g. enhanced commercial agriculture). 

These explorations are left for further research. 

Farm management practices: The implementation of farm management strategies 

for erosion control is the most commonly proposed strategy for erosion control. This 

work illustrates the potential for on-farm management. Specifically, the management 

sensitive component of risk includes decisions about landuse and measures of cover and 
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cover height. Given the decision to use the land for subsistence agriculture, the potential 

to ameliorate risk is limited to ground cover, woody cover, annual-to-perennial ratio and 

ground cover height. In most subsistence agricultural fields, the crops are annuals, and 

woody biomass is absent. However, ground cover is a strongly significant predictor of 

risk: increasing cover from 33% to 66% changes the probability of degradation from 0.61 

to 0.45. Similarly, for pasture landuse an increase in cover from 50% to 80% changes the 

degradation probability from 0.88 to 0.67. Clearly, risk is strongly sensitive to site 

variables that are averaged for large scale spatial assessment. 

Scenario comparison 

Results indicate that landscape scale degradation advanced dramatically between 

1 986 and 2001 .  Using the historic condition (scenario 8) as a benchmark, the change 

between the two scenes appears even more profound. While it is likely that estimated 

background degradation prevalence is inaccurate due to long term effects on risk factors 

designated herein as immutable, that 1 986 is closer to the undeveloped condition than to 

the 2001 condition illustrates the persistent severity and intensity of the erosion problem. 

Future landuse in the absence of intervention (201 6  - scenario 1 )  results in 

ongoing degradation. By 201 6  it is estimated that an additional 5% of the basin will be 

degraded, with the proportion of severely degraded land increasing nearly 50%. 

Efforts to intervene at the landscape scale by altering patterns and proportions of 

landuse appear relatively ineffective according to model results. None of the adjustments 

to specific landuse transition probabilities (scenarios 2-5) had functionally significant 

effects of degradation rates or ABR levels (though each made a statistically significant 

difference, based on variance estimated for scenario 1 and assumed equal for all 
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scenarios). There were observable and significant differences between these scenarios, 

but even the most effective (reducing livestock densities) was not able to maintain 

degradation prevalence at 2001 levels. Reforestation and active badland restoration, 

assumed possible for this analysis, were marginally less successful interventions. 

The final two scenarios without spatial targeting explore the potential of more 

comprehensive changes in landuse pattern. The first, a combination of the four landuse

specific scenarios with more modest changes in each, was also relatively ineffectual. 

Only the deeply unrealistic landuse scenario (#7) had a net protective effect, reducing 

degradation prevalence and raising ABR values from the 2001 condition, in this case 

returning the basin to near 1 986 levels of both. 

Spatial targeting of landuse offers limited indication that large-scale management 

and control of landuse change can improve basin conditions. Without changing 

proportions of each landuse subsystem (see Figure 6-20), degradation prevalence is 

slowed by just over 1 % between 2001 and 201 6, and the basin mean ABR increases from 

3 . 1 8  to 3 .26. While these changes are statistically different, the effect magnitude is 

minimal, particularly given the needs of the local subsistence farming population. 

Landuse recommendations 

Based on the landuse forecasting models, there are three recommendations for 

more effective land management. The first is to reduce cattle grazing densities in the 

basin lowlands. Reduced densities, reflected by increased transition probability to dense 

pasture, was the most effective landuse specific change explored. Second, spatial 

allocation of higher risk landuse (sparse pasture, logged shrublands) away from areas 

with high inherent degradation risk had a small but significant effect on landuse 



232 

degradation prevalence and indices of net benefit. Finally, a substantial portion of risk 

management will have to be accomplished by changes in on-farm practices. The 

potential for mitigating erosion risk via within-landuse management is clear, particularly 

with respect to ground cover maintenance, and presents the most reasonable short term 

possibility for attenuating the costs of degradation. 

A central conclusion of this work is that degradation assessment is feasible over 

large areas. However, despite the ability to delineate and project risk to various 

intervention scenarios, little leverage to provide substantial improvements in land 

degradation were observed. This suggests, perhaps, that the emphasis of further work 

should be on prevention in other regions of sub-Saharan Africa wherein degradation is 

not so alarmingly advanced. These results also indicate that anticipating landuse change, 

and making plans to accommodate future production needs within the context of resource 

vulnerability is a critical need for these areas. Specifically, efforts to characterize 

resource vulnerability prior to development and develop landuse plans at the basin scale 

that integrate these concerns will greatly attenuate the prevalence of degraded lands and 

offers the best scenario for meeting the resource needs of growing rural populations. 

Suggestions for Further Research 

Emergy Simulation Modeling for Yields and Uncertainty 

Emergy analysis is synoptic in the sense that tabular assessment of systems is 

done given singular data values. This has two major disadvantages with respect to the 

kinds of decision support tools developed in this dissertation. First, synoptic yield 

assessment does not account for variability in production that results from operating on 

degraded soils, different climatic regimes or different soil types. Second, still more 



233 

variance emerges from smaller-scale differences between sites, which can be treated as 

random variability. This leads to inherent uncertainty that may affect decision makers. 

For example, the spectral methods outlined in this work could be applied in a 

systematic way to yield trials (either observational or experimental) to develop a formal 

link between degradation and soil functional performance measures and yield. In this 

way, the true costs of degradation (i.e., including the loss of yield) could be incorporated. 

A solution to both problems was addressed in work associated with this 

dissertation but omitted from this text. Spreadsheet simulation modeling offers a flexible 

framework to 1 )  facilitate emergy evaluation along gradients of forcing functions (e.g., 

rainfall, soil degradation, and crop variety) and 2) overlay Monte Carlo simulation meta

analysis tools to propagate flow and transformity uncertainty through to final estimates of 

yields and intensity indices. Further work on specifying uncertainty and incorporating 

simulation modeling into emergy evaluation will benefit individual analyses as well as 

offer improved information for integrated assessment. 

Constrained Landuse Change Modeling 

The landuse change models used in this dissertation are excessively simple. 

There are clear processes and constraints that guide landuse change, and allocating sites 

to specific landuse subsystems based on stochastic simulation ignores these process 

considerations. A more realistic modeling framework is offered by cellular automata 

(CA), wherein each pixel is allocated to a specific landuse in a manner strongly 

constrained by process rules and inferred spatial dependence structure in the landscape. 

For example, slopes constrain allocation to subsistence agriculture, and much of the 

remnant forest cover in the Awach basin is located on steep escarpment faces. Including 
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probabilistic constraints on pixel allocation would improve model realism and mapping 

clarity. Given detailed agroecological zone information available for each crop in Kenya, 

these process constraints could be included in change scenarios relatively easily. 

Tools to Support Participatory Decision Making 

The models developed herein represent an effort at scientific inquiry about a 

problem that has important implications for rural populations in the region. A history of 

failure of technically sound, but prescribed solutions to problems in developing countries 

has led the development community to adopt a participatory, bottom-up approach to 

decision-making and natural resource management. While there is evidence to suggest 

that this approach has favorable effects on stakeholder involvement (Garrity et al. 1 997), 

considerable debate continues about optimality and efficiency of emergent solutions. The 

consensus is that technical expertise of participating scientists (top-down information) 

should be formally incorporated into the participatory strategy in a manner that does not 

prescribe, but rather informs aspects of the decision making process. 

The spatial risk assessment tools outlined in this study might offer a bridge 

between technical solutions and the need for strong institutions to make solutions persist. 

In particular, the ability to assess landuse plans emerging from stakeholders dialog within 

a quantitative framework, and provide feedback in the form of maps and summary 

indices might successfully integrate knowledge. The more flexibility built into the 

assessment framework with respect to model assumptions, and therefore the more control 

a decision-making group has over the model, the more likely synergy between the 

technical information and stakeholder experience and needs is to occur. This dissertation 

offers initial steps towards this interactive tool, but substantial refinement is necessary. 



APPENDIX A 
FOOTNOTES TO EMERGY EVALUATION TABLES 

These tables provide reference information for energy, material and transformity 

values reported for national, district and landuse subsystem emergy evaluations. Given 

first are energy and material flow notes for each scale of evaluation. Given next are 

transformity values used throughout this dissertation with sources. Finally, a summary of 

transformity values computed in this study for important products is given. 
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Table A-I .  Notes to the emergy evaluation of Kenya (Table 3-1). 
Notes 

SOLAR ENERGY 

Cont Shelf Area = 4.02E+IO m"'2 

Land Area = 5.80E+ 1 1  mA2 

Insolation = 1 .83E+02 Kcal/cmA2/yr 

Albedo = 22% 

Energy(J) = 3.70E+21 J/yr 

2 RAIN, CHEMICAL POTENTIAL ENERGY 

Rain (land) = 0.61 m/yr 

Rain (shelf) = 0.3 1 m/yr 

Evapotrans. = 0.55 m/yr 

Energy (land) (J)= 1 .56E+ 1 8  J/yr 

Energy (shelf) (1)= 6.06E+1 6 J/yr 

Total energy (J) = 1 .62E+18 J/yr 

3 RUNOFF, GEOPOTENTIAL ENERGY 

Rainfall = 

Avg. Elev = 

Runoff rate = 

Energy(J) = 

4 WIND ENERGY 

Energy(1) = 

5 WAVE ENERGY 

Coast Length= 

Effective length = 
Wave Energy = 

Time = 

Energy(J) = 

6 TIDAL ENERGY 

Tide Range = 

Density = 

Tides/year = 

Energy(J) = 

7 EARTH CYCLE 

Heat flow = 

Energy (J) = 

0.58 m 

801.37 m 

10.60% 

2.78E+1 7 J/yr 

3.39E+ 1 8  J/yr 

8.04E+05 m 

4.82E+05 m 

2.20E+04 W/m 

3. 15E+07 s/yr 

3.34E+17 J/yr 

1 .89 m 

1 .03E+03 kg/mA3 

7. 62E+02 

5.49E+17 J/yr 

6.28E+OI mW/A2 

1 . 15E+ 1 8J/yr 

8 HYDROELECTRICITY: 

Kilowatt Hrs/yr = 

Energy(J) = 

3. 12E+09 KwH/yr (assume 80% load) 

1 . 1 2E+16 J/yr 

Source 

Geological World Atlas (1976) 

Europa ( 1998) 

Agroecological Data for Africa (1984) 

Agroecological Data for Africa ( 1984) 

Corbett 1993 

(est. 50% ofterrestrial rain) 

National Water Master Plan ( 1992) 

Corbett 1993 

National Water Master Plan ( 1992) 

Chipeta (1976) 

Corbett 1 993 

60% parallel to wave front 

Average Wave Height = 1 . 5  m 

Tide Tables ( 1995) 

Half tidal energy absorbed at shelf 

Pollack et al. ( 1991)  

UN Energy Yearbook ( 1998) 
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Table A-I .  Continued. 

Notes Source 

9 GEOTHERMAL ELECTRIC 

Kilowatt Hrs/Yr= 

Energy (J)= 

6.25E+08 KWh/yr 

2.25E+15J  

10 AGRICULTURAL PRODUCTION 

Production = 

Energy(J) = 

1 .2 1E+07 MT 

I .  62E+ 17  J/yr 

1 1  LIVESTOCK PRODUCTION 

Production = 

Energy(J) = 

2.84E+06 MT 

1 .3 1E+ 16J/yr 

12 FISHERIES PRODUCTION 

Fish Catch = 

Energy(J) = 

1 .78E+05 MT 

7.47E+ 14J/yr 

13 FUEL WOOD PRODUCTION 

Fuelwood = 

Energy(J) = 

1 .90E+07 m"3 

I .72E+17J/yr 

14 CONSTRUCTION MATERIALS (SAND, BALLAST STONE) 

Cement Use = 

Bitumen Usage = 

1 . 13E+06 tonnes 

2.40E+04 tonnes 

Aggregate Usage = Cement use x 3 + Bitumen Usage x 12 

Aggregate Usage = 3.69E+ 12 grams 

1 5  SODA ASH & CRUSHED SODA 

Consumption = 5.81E+ 1 1  g/yr 

16 MISe. MINING (Fluorspar, Salt, Limestone) 

Consumption = 1 .  72E + 1 1  g/yr 

17  GOLD 

Consumption = 9.90E+05 g 

18 PRECIOUS/SEMI-PRECIOUS GEMS 

Consumption = 

19  FOREST CLEARING 
Clearing Rate = 

Forest Area = 

Biomass = 

Energy = 

4.30E+07 g/yr 

1 .70% per year 

5.43E+09 m"2 

5 .00E+Ol kg/m"2 

6. 18E+ 16 J/yr 

UN Energy Yearbook ( 1998) 

Europa (1998) 

80% caloric 

Europa ( 1998) 

20% protein 

Europa (1998) 

20% protein 

Europa ( 1998) 

20% waste cellulose 

Kenya Statistical Abstract (1999) 

Kenya Statistical Abstract ( 1999) 

Construction Ratios 

Kenya Bureau of Mines (1999) 

Kenya Bureau of Mines (1999) 

Kenya Bureau of Mines (1999) 

Kenya Bureau of Mines ( 1999) 

Kaufman et al. ( 1997) 

FAO Estimate ( 1994) 
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Table A-I .  Continued 
Notes Source 

20 TOPSOIL 

Soil loss = 2.67E+ 13 glyr After Barber (1982) 

Energy(J) = 1 .81E+ 16 J/yr 

21  OIL DERIVED PRODUCTS 

Imports = 1 .96E+06 MT Crude Petroleum Kenya Statistical Abstract ( 1999) 

1 .39E+06MT Refined Petroleum Kenya Statistical Abstract ( 1999) 

2.40E+04 MT Petroleum Products Kenya Statistical Abstract ( 1999) 

Energy (J) = 8.20E+16 J/yr Crude Petroleum 

5.80E+16 J/yr Refined Petroleum 

1 .00E+1 5  J/yr Petroleum Products 

22 METALS 

Imports = 3.94E+05 MT/yr Ferrous Metals UN (1997) 

2.50E+04 MT/yr Non-Ferrous Metals UN ( 1997) 

1 .39E+04 MT/yr Structures and Tools UN ( 1997) 

Mass (g) = 3.94E+1 1 glyr Ferrous Metals 

2.50E+ 10 glyr Non-Ferrous Metals 

1 .39E+ 10 glyr Structures and Tools 

23 MINERALS 

Imports = 3.94E+04 MT/yr Cement UN ( 1997) 

1 .68E+04 MT/yr Clay UN ( 1997) 

1 .24E+04 MT/yr Glass UN ( 1997) 

Mass (g) = 3.94E+l O glyr Cement 

1 .68E + 10 glyr Clay 

1 .24E+ 10 glyr Glass 

24 FOOD and AGRICULTURAL PRODUCTS 

Imports = 1 .27E+06 MT/yr Kenya Statistical Abstract ( 1999) 

Energy (J) = 1 .48E+16 J/yr 

25 LIVESTOCK, MEAT, FISH 

Imports = 2. 77E +04 MT/yr Kenya Statistical Abstract (1999) 

Energy (J) = 1 .27E+14J/yr 

26 PLASTICS & RUBBER 

Imports = 1. 19E+05 MT/yr Rubber UN ( 1997) 

1 .45E+05 MT/yr Plastics 

Energy(J) = 1 . 19E+ 1 1  glyr Rubber 

1 .45E+ 1 1  glyr Plastics 

27 CHEMICALS 

Imports = 1 .44E+05 MT/yr Chemicals & Dyes UN ( 1997) 

3.87E+05 MT/yr Fertilizers 



Table A-I .  Continued 
Notes 

Mass (g) = 1 .44E+1 1 glyr 

3.87E+ 1 1  glyr 

28 WOOD, PAPER, TEXTILES,LEATHER 

Imports = 2. 1 7E+04 MT/yr 

6.53E+04 MT/yr 

2. 58E+04 MT/yr 

Energy(J) = 3.25E+14 J/yr 

9.79E+14 J/yr 

3.87E+14 J/yr 

29 MACHINERY, TRANSPORTATION, EQUIPMENT 

Imports = 4.45E+04 MT/yr 
Mass (g) 

4.45E+ 10 glyr 

30 IMPORTED SERVICES 

Dollar Value = 2.75E+09 $US 

3 1  FOOD and AGRICULTURAL PRODUCTS 

Exports: 9.84E+05 MT/yr 

Energy(J) = 1 .32E+16 J/yr 

32 LIVESTOCK, MEAT, FISH 

Exports = 1 .01E+05 MT/yr 

Energy (J) = 4.66E+14 J/yr 

33 WOOD, PAPER, TEXTILES, LEATHER 

Exports = 3.44E+05 MT/yr 

3.33E+04 MT/yr 

2. 13E+04 MT/yr 

5.41E+03 MT/yr 

Energy (J) = 4. 1 5E+ 1 5  J/yr 

4.01E+14 J/yr 

2.57E+14 J/yr 

6.53E+ 13 J/yr 

34 OIL DERIVED PRODUCTS 

Exports = 

Energy (J) = 

35 METALS 

Exports = 

Mass (g) = 

1 .97E+06 MT/yr 

1 .20E+16 J/yr 

1 .67E+05 MT/yr 

2.57E+03 MT/yr 

1 . l4E+04 MT/yr 

1 .67E+ 1 1  glyr 

2.57E +09 glyr 

1 . 14E+ 1 0  glyr 

Chemicals & Dyes 

Fertilizers 

Wood 

Paper 

Textiles 

Wood 

Paper 

Textiles 

Wood 

Paper 

Textiles 

Leather 

Wood 

Paper 

Textiles 

Leather 

Ferrous Metals 

Non-Ferrous Metals 

Stuctures and Tools 

Ferrous Metals 

Non-Ferrous Metals 

Stuctures and Tools 
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Source 

Kenya Statistical Abstract ( 1999) 

UN ( 1997) 

UN ( 1997) 

Kenya Statistical Abstract ( 1999) 

Kenya Statistical Abstract ( 1999) 

Kenya Statistical Abstract ( 1999) 

UN ( 1997) 

UN ( 1 997) 
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Table A-I .  Continued 
Notes Source 

36 MINERALS 

Exports = 6.90E+05 MT/yr Cement Kenya Bureau Mines ( 1999) 

2.59E+04 MT/yr Glass 

4.40E+04 kg/yr Gold and Gems 

Mass (g) = 6.90E+ 1 1  g/yr Cement 

2.59E+ 10 g/yr Glass 

4.40E+07 g/yr Gold and Gems 

37 CHEMICALS 

Exports = 7.90E+04 MT/yr UN (1997) 

Mass (g) = 7.90E+ 10 g/yr 

38 MACHINERY, TRANSPORTATION, EQUIPMENT 

Exports = 1 .48E+03 MT/yr UN ( 1997) 

Mass (g) = 1 .48E+09 g/yr 

39 PLASTICS & RUBBER 

Exports = 4.78E+04 MT/yr Plastics UN ( 1997) 

5.26E+03 MT/yr Rubber 

Energy(J) = 4.78E+1O J/yr Plastics 

5.26E+09 J/yr Rubber 

40 SERVICES IN EXPORTS 

Dollar Value = 2.88E+09 $US UN ( 1997) 

41  TOURISM 

Dollar Value = 4.74E+08 $US EuroQa {1998} 
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Table A-2. Emergy Evaluation of Resource Basis for Kisumu District, Ken�a (c.2000) 
Note Item Raw Units Transformity Solar Emergy EmDollars 

(sej/unit) (EI9sej) (E7 1994 US$) 

RENEWABLE RESOURCES 
1 Sunlight 5.69E+1 8 J  0.57 0.57 
2 Rain, chemical 6.19E+15 J 3 1000 19.20 19. 1 7  
3 Rain, geopotential 3 . 14E+14J  47000 1 .48 1.47 
4 Wind, kinetic energy 2.43E+ 1 5 J  2450 0.59 0.59 
5 Waves 4.05E+14 J 5 1 000 2.06 2.06 
6 Earth Cycle 1 . 19E+1 5 J  58000 6.93 6.92 

INDIGENOUS RENEWABLE ENERGY 
7 Agriculture Production 5 . 18E+15 J  see Table B l  10.25 10.23 
8 Livestock Products 2.93E+13 J see Table B l  10.03 10.02 
9 Fisheries Production 1 .26E+13 J 5.04E+06 6.35 6.34 

10 Fuelwood Production 6.69E+14J  5 .  86E+04 3 .92 3 .91 

NONRENEWABLE SOURCES FROM WITHIN SYSTEM 
1 1  Forest Extraction 1 . 19E+14 J 6.72E+04 0.80 0.80 
12 Aggregates and Sand 2.00E+ l l g 1 .68E+09 3.36 3.35 
13  Top Soil 2.0 1E+14J  2.35E+05 4.73 4.73 

IMPORTS AND OUTSIDE SOURCES 
14 Oil derived products 2.58E+15 J 1 .06E+05 27.34 27.29 
15 Electric Power 4.02E+1 4 J  2.69E+05 10.80 1 0.78 
16 Metals l .30E+ l O g  2.99E+09 3.89 3.88 
17  Wood and Charcoal 5.84E+15 J  5.86E+04 34.24 34. 19  
1 8  Food & ago products 2.68E+14 J 1 .80E+05 4.82 4.82 
19 Meat and Milk 3.22E+13 J 3.40E+06 10.96 10.94 
20 Fish for Processing 1 .93E+13 J 5.04E+06 9.75 9.73 
21 Plastics & rubber 8.52E+1 3 J  3.61E+05 3.08 3 .07 
22 Textiles & Paper 8.99E+13 J 6.38E+05 5.73 5.72 
23 Chemicals 3.45E+09 g 6.38E+08 0.22 0.22 
24 Mech.& trans equip. 7.43E+09 g 1 . 1 3E+I 0  8.36 8.35 
25 Service in imports 6.2 1E+07 $ 1 .26E+13 78.25 78. 12 

EXPORTS 
26 Food & ago products 3 .75E+13 J 2.00E+05 0.75 0.75 
27 Processed Fish 1 .6 1E+13 J 8.47E+06 13.65 13.63 
28 Other Processed Foods 9.5 1E+14 J 3.36E+05 3 l .97 3 l .92 
29 Furniture 4.20E+I 0 g 9.30E+08 3.91 3.90 
30 Mech. & trans equip. 4.50E+09 g 1 . 1 3E+1O 5.09 5.08 
31 Plastics & rubber 4.56E+1 3 J  3 .6 I E+05 1 .65 1 .64 
32 Service in exports 6.03E+07 $ 1 .00E+13 60.39 60.30 
33 Tourism 2.20E+06 $ 1 .00E+13  2.20 2.20 



Table A-2. Continued - footnotes to emergy analysis 
Note 
RENEWABLE RESOURCES 

1 SOLAR ENERGY 

Lake Area = 5.02E+08 m"'2 at 200 m depth. 

Land Area = 6.60E+08 ml\2 

Insolation = l .50E+02 Kcal/cml\2/yr 

Albedo = 22% 

Energy(J) = 5.69E+18 J/yr 

2 RAIN, CHEMICAL POTENTIAL ENERGY 

Rain (land) = 

Rain (lake) = 

l .36rn1yr 

l .20 rnlyr 

Evapotranspiration = 0.99 rnlyr 

Energy (land) (1)= 3.22E+15 J/yr 

Energy (shelf) (J)= 2.98E+ 1 5  J/yr 

Total energy (J) = 6. 19E+1 5 J/yr 

3 RAIN, GEOPOTENTIAL ENERGY 

Avg. Elev = 1265.00 m 

Runotfrate = 27% 

Energy(1) = 3. 14E+14J/yr 

4 WIND ENERGY 

Energy(J) = 2.43E+ 1 5  J/yr 

5 WAVE ENERGY 

Coast Length = 9.87E+04 m 

Parallel Compo = 5.92E+04 m 

Front Wave Energy = 2. 1 7E+02 W/m 

Energy(J) = 4.05E+14 J/yr 

7 EARTH CYCLE 

Heat flow = l .8 IE+06 J/m1\2 

Energy (J) = 1 . 19E+15 

INDIGENOUS RENEWABLE ENERGY 

8 AGRICULTURAL PRODUCTION 

Production = 3.30E+05 MT 

Energy(J) = 5 . 18E+ 15 J/yr 

9 LIVESTOCK PRODUCTION 

L'stock Production = 7.00E+03 MT 

Energy(J) = 2.93E+ 13 J/yr 

10 FISHERIES PRODUCTION 

Fish Catch = l .51E+03 MT 

Energy(J) = l .26E+ 13 J/yr 

1 1  FUEL WOOD PRODUCTION 

Fuelwood Prod = l . l 1E+05 ml\3 

Energy(J) = 6.69E+14 J/yr 
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Source 

Kisumu District Dev. Plan (1997) 

Kisumu District Dev. Plan (1997) 

Agroecological Data for Africa ( 1984) 

Agroecological Data for Africa ( 1984) 

Corbett ( 1993) 

Corbett ( 1993) 

Corbett (1993) 

Corbett (1993) 

Chipeta ( 1976) 

Corbett 1993 

Assume 60% parallel to wave front 

Average Wave Height = 0.2 m 

Global Avg Heat Flow (Wylie 1971) 

District Development Plan (1997) 

District Development Plan (1997) 

Ministry of Fisheries (2001)  

District Development Plan (1997) 

NONRENEWABLE RESOURCE USE FROM WITHIN KISUMU DISTRICT 

l2 FOREST EXTRACTION 

Harvest = l .32E+05 ml\2 

Energy(J) = 1 . 19E+14 J/yr 

UNEP (1996) 



Table A-2. Continued 
Note 

13 AGGREGATES AND SAND 

14 TOPSOIL 

Production = 2.00E+07 MT/yr 

Mass(g) = 2.00E+ 1 1  g/yr 

Soil loss = 2.97E+ 1 1  g/yr 

Energy(J) = 2.0lE+14 J/yr 

IMPORTS OF OUTSIDE ENERGY SOURCES 

15 OIL DERIVED PRODUCTS 

Imports = 6. 17E +04 MT 

Energy (J) = 2.58E + 1 5  J/yr 

16 ELECTRICITY 

17  METALS 

Kilowatt Hrs/yr = 1 . 12E +08 kwh 

Energy(J) = 4.02E+14 J/yr 

Imports = 

Mass (g) = 

18 WOOD AND CHARCOAL 

l .30E+04 MT/yr 

l .30E+ 10 g/yyr 

Imports = 3.87E+05 Tons 

Energy (J) = 5.84E+15 J/yr 

19  FOOD and AGRICULTURAL PRODUCTS 

Imports = 2.29E+04 MT/yr 

Energy (J) = 2.68E+ 14 J/yr 

20 MEAT AND MILK 

Imports = 7.00E+03 MT/yr 

Energy (J) = 3.22E+13 J/yr 

21  FISH FOR FACTORY PROCESSING 

Imports = 4.20E+03 MT/yr 

Energy (J) = l .93E+ 13 J/yr 

22 PLASTICS & RUBBER 

Imports = 2.84E+03 MT/yr 

Energy(J) = 8.52E+ 13 J 

23 TEXTILES AND PAPER 

24 CHEMICALS 

Imports = 3.00E+03 MT/yr 

Energy(J) = 8.99E+ 13  

Imports = 3.45E+03 MT/yr 

Mass (g) = 3.45E+09 g/yr 

25 MACHINERY, TRANSPORTATION, EQUIPMENT 

Imports = 7.43E+03 MT/yr 

Mass (g) = 7.43E+09 g/yr 

26 IMPORTED SERVICES 

Dollar Value = 6.2l E+07 $US 
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Source 

Estimated 

Barber ( 1982) 

Kenya Pipeline Authority (2001)  

Kenya Power Corporation (2001)  

Central Bureau of Statistics (2001 )  

UNEP Projection (1994) 

Central Bureau of Statistics (2001 )  

Central Bureau o f  Statistics (2001)  

Ministry of  Fisheries (2001)  

Central Bureau of Statistics (200 1 )  

Central Bureau of Statistics (2001 )  

Central Bureau of Statistics (2001 )  

Central Bureau of Statistics (2001)  

Central Bureau of Statistics (200 1 )  



Table A-2. Continued 
Note 
EXPORTS OF ENERGY, MATERIALS AND SERVICES 

3 1  AGRICULTURAL PRODUCTS 

Exports: 3 .20E+03 MT/yr 

Energy(J) = 3.7SE+13 J/yr 

32 PROCESSED FISH 

Exports = 3.50E+03 MT/yr 

Energy (J) = 1 .6IE+ 13 J/yr 

33 PROCESSED FOODS 

34 FURNITURE 

3S METALS 

36 MINERALS 

37 CHEMICALS 

Exports = 7. 89E+04 MT/yr 

Energy (1) = 9.S1E+14 J/yr 

Exports = 4.20E+04 MT/yr 

Energy (J) = 4.20E+ 10  g/yr 

Exports = 2.0IE+04 MT/yr 

Mass (g) = 2.0I E+lO g/yr 

Exports 3.7SE+04 MT/yr 

Mass (g) = 3.7SE+lO g/yr 

Exports = 2.09E+OS MT/yr 

Mass (g) = 2.09E+l l g/yr 

38 MACHINERY, TRANSPORTATION, EQUIPMENT 

Exports = 4.S0E+03 MT/yr 

Mass (g) = 4.S0E+09 g/yr 

39 PLASTICS & RUBBER 

Exports = l .52E+03 MT/yr 

Energy(J) = 4.56E+13 

40 SERVICES IN EXPORTS 

30 TOURISM 

Dollar Value = 2.33E+08 $US 

Dollar Value = 2.20E+06 $US 

Source 

Central Bureau of Statistics (200 1 )  

Ministry of Fisheries (2001 )  

Ministry ofTrade (2001 )  

Ministry ofTrade (2001 )  

(UN, 1997) 

(UN, 1997) 

(UN, 1997) 

(UN, 1 997) 

Ministry of Trade (2001 )  

(UN, 1 997) 

District Development Plan (1997) 
Estimate 
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Table A-3 . Emergy evaluation of resource basis for Kericho District, Ken�a (c.2000) 
Note Item Raw Units Transformity Solar Emergy EmDollars 

(sej/unit) (E19 sej) (E6 US$) 

RENEWABLE RESOURCES 
1 Sunlight 1 .23E+19 1 1 1 .23 1 .03 
2 Rain, chemical 1 .43E+16 1 3 1 000 44.20 37.05 
3 Rain, geopotential 3 .67E+15 1 47000 17.25 14.46 
4 Wind, kinetic energy 1 .34E+16 1 2450 3 .29 2.75 
5 Earth Cycle 4.55E+15 1 58000 26.40 22. 13  

INDIGENOUS RENEWABLE ENERGY 
6 Agriculture Production 1 . 14E+16 J see Table B l  39.58 33. 1 8  
7 Livestock Production 1 .4 I E+14 1 see Table B l  33.39 27.99 
8 Fuelwood Production 4.19E+1 5 1  3.09E+04 12.92 10.83 

NONRENEWABLE SOURCES FROM WITHIN SYSTEM 
9 Forest Extraction 6.65E+15 1 6.72E+04 44.66 37.43 

10 Sand, Gravel and Ballast 5 .90E+1O g 1 .6 I E+09 9.50 7.96 
1 1  Top Soil 2.79E+14 1 2.35E+05 6.57 5.50 

IMPORTS AND OUTSIDE SOURCES 
12 Oil derived products 1 .54E+15 1  1 .06E+05 16.29 13 .66 
13 Electricity 3 .47E+14 1 2.69E+05 9.32 7.82 
14 Metals 8.97E+09 g 2.99E+09 2.68 2.25 
15 Minerals 3.95E+09 g 1 .6 1E+09 0.64 0.53 
16 Food & ago products 1 .35E+14 1 1 .80E+05 2.43 2.04 
17 Livestock, meat, fish 5.76E+12 1 3 .40E+06 1 .96 1 .64 
18  Plastics & rubber 1 .09E+14 1 6.60E+04 0.72 0.60 
19 Chemicals 3 .50E+1O g 6.38E+08 2.23 1 .87 
20 Wood, paper,textiles 5.33E+13 J 6.38E+05 3 .40 2.85 
21 Mech.& trans equip. 4.29E+09 g 1 . 1 3E+I 0  4.85 4.06 
22 Service in imports 2.77E+07 $ 1 .26E+13 34.90 29.26 

EXPORTS 
23 Tea 5.58E+14 1 5 .76E+05 32.12 26.92 
24 Milk & Meat 2.07E+13 1 3 .40E+06 7.05 5.91 
25 Wood and Charcoal 2.67E+15 1 5.86E+04 1 5.65 13 . 12  
26  Raw Ag. Goods 1 . 12E+14 1 1 .80E+05 2.02 1 .70 
27 Processed Ag. Goods 3.70E+14 J 3.36E+05 12.44 10.43 
28 Service in exports 2.23E+07 $ 1 . 1 9E+13  26.60 22.30 
29 Tourism 4.50E+06 $ 1 . 1 9E+13 5.37 4.50 



Table A-3. Continued (table footnotes) 
Note 

RENEWABLE RESOURCES 

1 SOLAR ENERGY 

Lake Area = O.OOE+OO ml\2 

Land Area = 2.S2E+09 ml\2 

Insolation = I .S0E+02 KcaVcml\2/yr 

Albedo = 0.22 

Energy(J) = 1 .23E+19 J/yr 

2 RAIN, CHEMICAL POTENTIAL ENERGY 

Rain (land) = 1 .43 m1yr 

Evapotranspiration = 1 .  I S  m1yr 

Total energy (J) = 1 .43E+ 16 J/yr 

3 RAIN, GEOPOTENTIAL ENERGY 

Rainfall = 

Avg. Elev = 

Runoffrate = 

Energy(J) = 

4 WIND ENERGY 

Energy(J) = 

S EARTH CYCLE 

Land Area = 

Heat flow = 

Energy (J) = 

INDIGENOUS RENEWABLE ENERGY 

6 AGRICULTURAL PRODUCTION 

1 .43 m 

1901 .00 m 

20% 

3.67E+l S  J/yr 

l .34E+ 16 J/yr 

2.S2E+09 ml\2 

1 .81E+06 J/ml\2 

4.5SE+l S  

Energy(J) = 1 . l 4E+ 16 J/yr 

7 LIVESTOCK PRODUCTION 

Energy = 1 .41E+14 J/yr 

8 FUELWOOD PRODUCTION 

Fuelwood Prod = 28937 ha 

Energy(J) = 4. 19E+15  
NONRENEWABLE RESOURCE USE 

9 FOREST EXTRACTION 

Harvest and Clearing = 

Area Cleared and Harvested = 

Biomass = 

Energy(J) = 

10 SAND, GRAVEL & BALLAST 

Consumption = 

1 .30% annually 

689 Ha 

80 kg/ml\2 

6.6SE+ l S  J/yr 

S.90E+04 MT/yr 

Mass(g) = S.90E+l O g/yr 

1 1  TOPSOIL: 

Soil loss = 4.12E+ l l g/yr 

Energy(J) = 2.79E+14 J/yr 
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Source 

Kericho District Dev. Plan ( 1997) 

Kericho District Dev. Plan (1997) 

Agroecological Data for Africa ( 1984) 

Agroecological Data for Africa ( 1984) 

Corbett (1993) 

Corbett (1993) 

Corbett (1993) 

Chipeta (1976) 

Pollack et al. ( 1991 )  

MoARD 
(1999) 

MoARD 
( 1999) 

MoARD 
(1999) 

District Development Plan (2001)  

District Development Plan (2001 )  

estimate 

District Development Plan (2001)  

Barber (1982) & MoARD (1999) 



Table A-3 . Continued 
Note 

IMPORTS OF OUTSIDE ENERGY SOURCES 

12 OIL DERIVED PRODUCTS 

13 ELECTRICITY 

14 METALS 

15 MINERALS 

Imports = 

Energy (J) = 

Kilowatt Hrs/yr = 

Energy(J) = 

Imports = 

Mass (g) = 

6.80E+07 Lts 

1 .54E+15 J/yr 

9.64E+07 kwh 

3.47E+14 J/yr 

8.97E+03 MT/yr 

8.97E+09 glyyr 

Imports = 3.95E+03 MT/yr 

Mass (g) = 3.95E+09 glyr 

16 FOOD and AGRICULTURAL PRODUCTS 

Imports = 1 . 15E+04 MT/yr 

Energy (J) = l .35E+14 J/yr 

1 7  LIVESTOCK, MEAT, FISH 

Imports = 1 .25E+03 MT/yr 

Energy (J) = 5.76E+ 12 J/yr 

1 8  PLASTICS & RUBBER 

1 9  CHEMICALS 

Imports = 3.64E+03 MT/yr 

Energy(J) = 1 .09E+ 14 J/yr 

Imports = 3.50E+04 MT/yr 

Mass (g) = 3.50E+ 10 glyr 

20 WOOD, PAPER, TEXTILES, LEATHER 

Imports = 3.55E+03 MT/yr 

Energy(J) = 5.33E+ 13 J/yr 

21  MACHINERY, TRANSPORTATION, EQUIPMENT 

Imports = 

Mass (g) = 

22 IMPORTED SERVICES 

4.29E+03 MT/yr 

4.29E+09 glyr 

Dollar Value = 2.77E+07 $US 

EXPORTS OF ENERGY, MATERIALS AND SERVICES 

23 TEA 

24 MILK, MEAT 

Exports: 2.47E+04 MT/yr 

Energy(J) = 5.58E+ 14 J/yr 

Exports = 4.50E+03 MT/yr 

Energy (J) = 2.07E+ 13 J/yr 

25 WOOD AND CHARCOAL 

Exports = 1 .45E+05 MT/yr 

Energy (J) = 2.67E+ 15 J/yr 
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Source 

Kenya Pipeline Authority (2001)  

Kenya Power Corporation (2001 )  

CBS Kenya (2001 )  

CBS Kenya (2001 )  

CBS Kenya (2001)  

CBS Kenya (2001)  

CBS Kenya (2001)  

CBS Kenya (2001)  

CBS Kenya (2001)  

CBS Kenya (2001)  

CBS Kenya (2001)  

Kenya Tea Dvlp. Authority (2000) 

Ministry of Agriculture (2001)  

UNEP ( 1996) 



Table A-3 . Continued 
Note 

26 RAW AGRICULTURAL GOODS 

Exports = 6. lOE+03 MT/yr 

Energy (J) = 1 . 1 2E+l 4  J/yr 

27 PROCESSED AGRICULTURAL GOODS 

Exports = 2.01E+04 MT/yr 

Mass (g) = 3.70E+14 glyr 

28 SERVICES IN EXPORTS 

29 TOURISM 

Dollar Value = 2.23E+07 $US 

Dollar Value = 4.50E+06 $US 

Source 

Kenya Cereal and Produce Board 
(2000) 

Kenya Cereal and Produce Board 
(2000) 

District Development Plan (200 I ) 
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Table A-4. Emerg}: evaluation of resource basis for N}:ando District, Ken}:a (c.2000) 
Note Item Raw Units Transformity Solar Emergy EmDollars 

(sej/unit) (E19 sej) (E6 1999 US$) 

RENEWABLE RESOURCES 
1 Sunlight 7.34E+18 J 0.73 0.28 
2 Rain, chemical 6.90E+15 J 3 1 000 2 1 .38 8. 16  
3 Rain, geopotential 1 .28E+15 J 47000 6.01 2.29 
4 Wind, kinetic energy 5 .27E+15 J 2450 1 .29 0.49 
5 Waves 3 .28E+13 J 5 1 000 0. 17  0.06 
6 Earth Cycle 2.59E+15 J 58000 15.04 5 .74 

INDIGENOUS RENEWABLE ENERGY 
7 Agriculture Production 8.46E+15  J see Table B l  1 1 .24 4.29 
8 Livestock Products 4.06E+14 J see Table B l  7.84 2.99 
9 Fisheries Production 1 . 13E+12 J 5.04E+06 0.57 0.22 

10 Fuelwood Production 1 .46E+15 J 5.86E+04 8.53 3 .26 

NONRENEWABLE SOURCES FROM WITHIN SYSTEM 
1 1  Forest Extraction 9.49E+14 J 6.72E+04 6.38 2.44 
12 Ballast Rocks 3 .37E+09 g 1 .6 1E+09 0.54 0.21 
13 Sand Mining 1 .83E+1O g 1 .61E+09 2.94 1 . 1 2  
1 4  Top Soil 5.22E+14 J 2.35E+05 12.27 4.68 

IMPORTS AND OUTSIDE SOURCES 
15  Oil derived products 3 .73E+14 J 1 .06E+05 3.95 1 .5 1  
16 Electric Power 7.13E+13  J 2.69E+05 1 .92 0.73 
17 Metals 1 .63E+09 g 2.99E+09 0.49 0.19 
1 8  Wood and Charcoal 9.64E+14 J 5.86E+04 5.65 2 . 16  
19  Food & ago products 1 .03E+14 J 1 .80E+05 1 .85 0.7 1 
20 Milk and Meat 1 .84E+13 J 3 .40E+06 6.26 2.39 
21 Plastics & rubber 1 .34E+13 J 6.60E+04 0.09 0.03 
22 Chemicals 3.24E+09 g 6.38E+08 0.21 0.08 
23 Textiles, Paper 6.38E+ 12 J 6.38E+05 0.41 0. 16  
24  Mechanical Equip. 1 . 17E+09 g 1 . 13E+10  1 .32 0.50 
25 Service in imports 6. 13E+06 $ 1 .28E+13 7.85 2.99 

EXPORTS 
26 Sugar (processed) 1 .83E+15 J 5.56E+04 10. 1 7  3 .88 
27 Crops and Livestock 2.72E+ 1 3  J 5 .00E+05 1 .36 0.52 
28 Aggregates and Sand l .56E+10 g 1 .6 1E+09 2.5 1 0.96 
29 Agrochemicals 1 . 12E+09 g 3 .36E+10 3.76 1 .44 
30 Service in eXEorts 6.30E+06 $ 2.62E+13 16.5 1 6.30 



Table A-4. Continued 
Note 

1 SOLAR ENERGY 

Lake Area = 6.50E+07 mA2 

Land Area = 1 .43E+09 mA2 

Insolation = 1 .50E+02 Kcal/cmA2/yr 

Albedo = 0.22 

Energy(J) = 7.34E+1 8 J/yr 

2 RAIN, CHEMICAL POTENTIAL ENERGY 

Rain (land) = 

Rain (lake) = 

Evapotranspiration = 

Energy (land) (J)= 

1 .3 1 m1yr 

1 .20 mlyr 

0.92 m1yr 

6.5 1 E+ 15 J/yr 

Energy (shelf) (J)= 3.85E+ 14 J/yr 

Total energy (J) = 6.90E+15 J/yr 

3 RAIN, GEOPOTENTIAL ENERGY 

Avg. Elev = 1365.00 m 

Runoff rate = 30% 

4 WIND ENERGY 

Energy(J) = 1 .28E+1 5  J/yr 

Energy(J) = 5.27E+ 1 5  J/yr 

5 WAVE ENERGY 

Coast Length (inc!. Islands) = 8.00E+03 m 

Parallel Compo = 4.80E+03 m 

Front Wave Energy = 2. 1 7E+02 W/m 

6 EARTH CYCLE 

Energy(J) = 3.28E+13 J/yr 

Land Area = 1 .43E+09 mA2 

Heat flow = 1 .8 IE+06 J/mA2 

Energy (1) = 2.59E+15 

INDIGENOUS RENEWABLE ENERGY 

7 AGRICULTURAL PRODUCTION 

Production = 5.95E+05 MT 

Energy(J) = 8.46E + 1 5  J/yr 

8 LIVESTOCK PRODUCTION 

L'stock Production = 9.70E+04 MT 

Energy(J) = 4.06E + 14 J/yr 

9 FISHERIES PRODUCTION: 

Fish Catch = 1 .35E+02 MT 

Energy(J) = 1 . 1 3E+ 12 J/yr 

1 0  FUEL WOOD PRODUCTION 

Fuelwood Prod = 1 .6 IE+05 mA3 

Energy(J) = 1 .46E+ 1 5  J/yr 
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Source 

Kisumu District Dev. Plan ( 1 997) 

Kisumu District Dev. Plan (1 997) 

Agroecological Data for Africa (1984) 

Agroecological Data for Africa ( 1984) 

Corbett ( 1993) 

Corbett ( 1993) 

Corbett ( 1993) 

Corbett ( 1993) 

Chipeta ( 1976) 

Corbett 1993 

assumed 

Avg. Wave Height = 0.2 m 

Pollack et a!. ( 1991)  

Ministry of Agriculture (2000) 

Ministry of Agriculture (2000) 

Ministry of Fisheries (2000) 

District Development Plan ( 1997) 



Table A-4. Continued 
Notes 

NONRENEWABLE RESOURCE USE FROM WITHIN NY ANDO DISTRICT 

1 1  FOREST EXTRACTION 

Clearing = 

Energy(J) = 

1 2  ROCKS AND AGGREGATE 

1 .05E+06 mA2 annually 

9.49E+ 14 J/yr 

Consumption = 

Energy(J) = 

1 .27E+03 MT/yr 

3.37E+09 g/yr 

1 3  SAND MINING 

Consumption = 

Energy(J) = 

1 .83E+04 MT/yr 

1 .83E+ 10  g/yr 

1 4  TOPSOIL 

Soil loss = 7.70E+ 1 1  g/yr 

Energy(J) = 5.22E+ 14 l/yr 

IMPORTS OF OUTSIDE ENERGY SOURCES 

1 5  OIL DERIVED PRODUCTS 

Imports = 8.91E+03 MT 

Energy (J) = 3.73E+l4 1/yr 

1 6  ELECTRICITY: 

1 7  METALS 

Kilowatt Hrs/yr = 1 .98E+07 kwh 

Energy(J) = 7. 13E+13  J/yr 

Imports = 

Mass (g) = 

1 8  WOOD AND CHARCOAL 

1 .63E+03 MT/yr 

1 .63E+09 g/yr 

Imports = 6.40E+04 MT/yr 

Energy (J) = 9.64E+ 14 J/yr 

1 9  FOOD and AGRICULTURAL PRODUCTS 

Imports = 8.77E+03 MT/yr 

Energy (J) = 1 .03E+ 14 J/yr 

20 LIVESTOCK, MEAT, FISH 

Imports = 4.00E+03 MT/yr 

Energy (J) = 1 .  84E+ 13  J/yr 

21  PLASTICS & RUBBER 

Imports = 4.48E+02 MT/yr 

Energy(J) = l .34E+ 13 

22 CHEMICALS 

Imports = 3.24E+03 MT/yr 

Mass (g) = 3.24E+09 g/yr 
23 WOOD, PAPER, TEXTILES,LEATHER 

Imports = 4.25E+02 MT/yr 

Energy(J) = 6.38E+12 J/yr 

24 MACHINERY, TRANSPORTATION, EQUIPMENT 

Imports = 

Mass (g) = 

1 . 17E+03 MT/yr 

1 . 1 7E+09 g/yr 

25 1 

Source 

UNEP (1996) 

Estimate 

Estimate 

This Study 

KPA (2001 )  

KPC (2001 )  

CBS (2001 )  

CBS (2001)  

CBS (2001 )  

CBS (2001 )  

CBS (2001 )  

CBS (2001 )  

CBS (2001 )  

CBS (2001 )  



Table A-4. Continued 
Notes 

25 IMPORTED SERVICES 

Dollar Value 6. 13E+06 $US 

EXPORTS OF ENERGY, MATERlALS AND SERVICES 

26 SUGAR (PROCESSED AND RAW) 

Exports: 

Energy(J) = 

27 CROPS AND LIVESTOCK 

Exports = 

Energy (J) = 

28 AGGREGATES AND SAND 

Exports = 

Mass (g) = 

29 AGROCHEMICALS 

8.09E+04 MT/yr 

1 .83E+ 1 5  J/yr 

l .30E+03 MT/yr 

2.72E+13 J/yr 

1 .  56E+04 MT/yr 

1 .  56E+ 10 giyr 

Exports = 1 . 12E+03 MT/yr 

Mass (g) = 1 . 12E+09 giyr 

30 SERVICES IN EXPORTS 

Dollar Value = 6.30E+06 $US 
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Source 

Economic Survey ( 1999) 

Kenya Sugar Authority (2000) 

Ministry of Agiculture (2000) 

Estimate 

Ministry ofTrade (2001)  

Economic Survey ( 1999) 
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Table A-5. Energy and material flows for Awach River basin subsystem evaluation. All 
analyses were performed for 1 hectare of .Qroduction. 
SUBSISTENCE AGRICULTURE 

Note 
1 SUNLIGHT 

Insolation: 1 .75E+02 Kcal/cm2/yr (Vishner 1954) 

Albedo: 1 5% assumed 

Energy (1) : 6.23E+13 J 

2 RAINFALL 

Rainfall 1 100 mmlyr Jaetzold and Schmidt 1982 

Runoff 9.5% Kenya Nat'l Water Master Plan 1992 

Energy (1) : 4.47E+IO J 

3 MANURE 

Application Rate 1 .80E+05 g/yr Jaetzold and Schmidt 1982 

Energy (1) : 4.07E+09 J 

4 NATIVE SEEDS 

Grams: 1 .34E+04 g Jaetzold and Schmidt 1982 

Energy: 2.24E+08 J 

5 SOIL LOSS 

Erosion rate = 613.00 g/m2/yr This Study 

% organic in soil = 3.0% Assumed 

Energy (1) : 4. 16E+09 J 

6 HYBRID SEEDS 

Grams: 4.66E+04 g Jaetzold and Schmidt 1982 

Energy: 7.8l E+08 J 

Transformity: 1 .73E+05 sej/J assumed 

7 POTASH 

Mean Annual Use: 47.6 g1ha/yr Jaetzold and Schmidt 1982 

8 PESTICIDES 

Mean Annual Use: 1476.2 g1ha/yr Jaetzold and Schmidt 1982 

9 PHOSPHATE ROCK 

Mean Annual Use: 1 8904.8 g1ha/yr Jaetzold and Schmidt 1982 

1 0  NITROGEN FERTILIZER 

Mean Annual Use: 4952.4 g1ha/yr Jaetzold and Schmidt 1982 

I I  LABOR 

Person-days: 1 .30E+02 Rommelse 1999 

Annual energy: 1 .36E+09 

12  SERVICES 

$ for nutrient inputs 20.5 Rommelse 1 999 

$ for pesticide inputs 5.9 
$ for seeds (improved) 7.8 

1 3  YIELDS 

Dry weight = 2.56E+06 g1ha Jaetzold and Schmidt 1982 

14 ENERGY YIELDS 

Energy per gram: 1 .89E+Ol kJ Rommelse 1 999 

Energy Total: 4.85E+IO J  
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Table A-5. Continued 
COMMERCIAL AGRICULTURE (TEA) 
Note 
1 SUNLIGHT 

Insolation: 1 .75E+02 Kcal/cm2/yr (Vishner 1954) 

Albedo: 1 5% assumed 

Energy (J) : 6.23E+13 J 

2 RAINFALL 

Rainfall 1350 mmlyr Jaetzold and Schmidt 1982 

Runoff 0.095 Kenya Nat'l Water Master Plan 1992 

Energy (J) : 6.04E+I0 J  
3 MANURE 

Application Rate O.OOE+OO glyr Jaetzold and Schmidt 1982 

Energy (J) : O.OOE+OO J 

4 NATIVE SEEDS 

Grams: O.OOE+OO g Jaetzold and Schmidt 1982 

Energy: O.OOE+OO J 

5 SOIL LOSS 

Erosion rate = 736 glm2/yr This Study 

% organic in soil = 3.0% Assumed 

Energy (J) : 4.99E+09 J 
6 HYBRID SEEDS 

Grams: 1 .20E+04 g Jaetzold and Schmidt 1982 

Energy: 2.0I E+08 J 

Transformity: 1 . 73E+05 sej/J assumed 

7 POTASH 

Mean Annual Use: 4978.7 g/ha/yr Jaetzold and Schmidt 1982 

8 PESTICIDES 

Mean Annual Use: 0.0 g/ha/yr Jaetzold and Schmidt 1982 

9 PHOSPHATE ROCK 

Mean Annual Use: 7750.0 g/ha/yr Jaetzold and Schmidt 1982 

10  NITROGEN FERTILIZER 

Mean Annual Use: 43000.0 g/ha/yr Jaetzold and Schmidt 1982 

1 1  LABOR 

Person-days: 1 .27E+02 d/ha/yr Rommelse 1 999 

Annual energy: l .33E+09 J/ha/yr 

12  SERVICES 

$ for nutrient inputs 60.6 Rommelse 1999 

$ for pesticide inputs 0.0 

$ for seeds (improved) 2.0 

1 3  YIELDS 

Dry weight = 5 . 14E+06 g/ha Jaetzold and Schmidt 1982 

1 4  ENERGY YIELDS 

Energy per gram: 1 .47E+Ol kJ Rommelse 1 999 

Energy Total: 7.53E+l0 J 
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Table A-5. Continued 
COMMERCIAL AGRICULTURE (SUGARCANE) 
Note 
1 SUNLIGHT 

Insolation: 1 .75E+02 Kcal/cm2/yr (Vishner 1 954) 

Albedo: 1 5% assumed 

Energy (J) : 6.23E+13 J 

2 RAINFALL 

Rainfall 1350 mm/yr Jaetzold and Schmidt 1982 

Runoff 0.095 Kenya Nat'l Water Master Plan 1992 

Energy (J) : 6.04E+I 0  J 

3 MANURE 

Application Rate O.OOE+OO glyr Jaetzold and Schmidt 1 982 

Energy (1) : O.OOE+OO J 

4 NATIVE SEEDS 

Grams: O.OOE+OO g Jaetzold and Schmidt 1982 

Energy: O.OOE+OO J 

5 SOIL LOSS 

Erosion rate = 736 glm2/yr This Study 

% organic in soil = 3.0% Assumed 

Energy (J) : 4.99E+09 J 
6 HYBRID SEEDS 

Grams: 1 .67E+05 g Jaetzold and Schmidt 1982 

Energy: 2.79E+09 J 

Transformity: 5 .45E+03 sej/J assumed 

7 POTASH 

Mean Annual Use: 0.0 glha/yr Jaetzold and Schmidt 1982 

8 PESTICIDES 

Mean Annual Use: 0.0 glha/yr Jaetzold and Schmidt 1982 

9 PHOSPHATE ROCK 

Mean Annual Use: 0.0 glha/yr Jaetzold and Schmidt 1982 

l O  NITROGEN FERTILIZER 

Mean Annual Use: 3 1 42.9 glha/yr Jaetzold and Schmidt 1982 

1 1  LABOR 

Person-days: 1 .27E+02 d/ha/yr Rommelse 1 999 

Annual energy: l .33E+09 J/ha/yr 

12  SERVICES 

$ for nutrient inputs 3.0 Rommelse 1 999 

$ for pesticide inputs 0.0 

$ for seeds (improved) 27.8 

13 YIELDS 

Dry weight = 5.33E+07 glha Jaetzold and Schmidt 1982 

1 4  ENERGY YIELDS 

Energy per gram: 1 .63E+01 kJ Rommelse 1999 

Energy Total: 8.68E+l l J 



Table A-5. Continued 
RANGELAND (LOWLAND COMMUNAL) 
Notes 

SUNLIGHT 

Insolation: 1 .75E+02 Kcallcm2/yr (Vishner 1 954) 

2 RJ\nNFALL 

3 SOIL LOSS 

4 MEDICINES 

5 LABOR 

6 SERVICES 

Albedo: 

Energy (1) : 

Rainfall 

Runoff 

Energy (J) : 

Erosion rate = 
% organic in soil = 

Energy (J) : 

Mean Annual Use: 

Person-days: 

Annual energy: 

$ for nutrient inputs 

$ for pesticide inputs 

$ for seeds (improved) 

7 YIELDS 

8 

Dry weight (milk) = 
Dry weight (meat) = 

ENERGY YIELDS 

Energy per gram (milk): 

Energy Total (milk): 
Energy per gram (meat): 

Energy Total (meat): 

1 5% 

6.23E+13 J 

1 000 mmlyr 

25% 
2.96E+ l O J 

1443 g/m2/yr 

2.0% 

6.52E+09 J 

650.0 g/halyr 

1 .08E+02 d/halyr 

7.03E+08 J/halyr 

0.0 

2.6 

0.0 

4.44E+04 g/ha 

2.89E+03 g/ha 

3.05E+03 kJ/g 

1 .36E+08 J 
9.24E+00 kJ/g 

2.67E+07 J 

RANGELAND (HIGHLAND CONSTRAINED) 
Notes 

SUNLIGHT 

Insolation: 1 .75E+02 Kcal/cm2/yr 

Albedo: 1 5% 

Energy (J) : 6.23E+ 1 3  J 

2 RAINFALL 

Rainfall 1500 mmlyr 
Runoff 15% 

Energy (1) : 6.30E+I0 J  

assumed 

Jaetzold and Schmidt 1 982 

Kenya Nat'l Water Master Plan 1992 

This Study 

Assumed 

Jaetzold and Schmidt 1982 

De Boer et al. 1984 

Rommelse 1 999 

Simpson and Evangelou 1984 

Simpson and Evangelou 1985 

Rommelse 1999 

Rommelse 1999 

(Vishner 1954) 

assumed 

Jaetzold and Schmidt 1982 

Kenya Nat'l Water Master Plan 1992 
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Table A-5 .  Continued 
3 SOIL LOSS 

Erosion rate 1222.505698 glm2/yr This Study 

% organic in soil = 3 .0% Assumed 

Energy (J) : 8.29E+09 J 

4 MEDICINES 

Mean Annual Use: 2.50E+03 glha/yr Jaetzold and Schmidt 1 982 

5 LABOR 

Person-days: 83.0 d/ha/yr Rommelse 1 999 

Annual energy: 6.72E+08 J/ha/yr 

6 SERVICES 

$ for nutrient inputs 5.0 Rommelse 1 999 

$ for pesticide inputs 1 0.0 
$ for seeds (improved) 0.0 

7 YIELDS 
Dry weight (milk) = 2.33E+05 glha Simpson and Evangelou 1 984 

Dry weight (meat) = 7.50E+03 glha Simpson and Evangelou 1 985 

8 ENERGY YIELDS 

Energy per gram (milk): 3.05E+03 kJ/g Rommelse 1 999 

Energy Total (milk): 7. 12E+08 J 
Energy per gram (meat): 9.24E+00 kJ/g Rommelse 1 999 

Energy Total (meat): 6.93E+07 J 

FARM FORESTS (WOODLANDS AND WOODLOTS) 

Notes 
SUNLIGHT 

Insolation: 1 .75E+02 Kcal/cm2/yr (Vishner 1 954) 

Albedo: 1 5% assumed 

Energy (J) : 6.23E+13 J 

2 RAINFALL 

Rainfall 1350 mmiyr Jaetzold and Schmidt 1 982 

Runoff 0.095 Kenya Nat'l Water Master Plan 1 992 
Energy (1) : 6.04E+I0 J  

3 NATIVE SEEDS 

Grams: 1 .50E+05 g Jaetzold and Schmidt 1 982 

Energy: 2.5 1 E+09 J 

4 SOIL LOSS 

Erosion rate = 267 glru2/yr This Study 

% organic in soil = 3 .0% Assumed 
Energy (J) : 1 .8 1 E+09 J 

5 LABOR 

Person-days: 5.00E+Ol d/ha/yr Chavangi and Zimmerman 1 987 
Annual energy: 5.23E+08 J/ha/yr 



Table A-5 . Continued 
6 SERVICES 

$ for nutrient inputs 

$ for pesticide inputs 

$ for seeds (improved) 

7 YIELDS 

8 

Dry weight = 

ENERGY YIELDS 

Energy per gram: 

Energy Total: 

SHRUB LANDS 

Notes 
SUNLIGHT 

Insolation: 

Albedo: 

Energy (J) : 

2 RAINFALL 

Rainfall 

Runoff 

Energy (1) : 
3 NATIVE SEEDS 

Grams: 

Energy: 

4 SOIL LOSS 

Erosion rate = 

% organic in soil = 

Energy (J) : 

5 LABOR 

Person-days: 

Annual energy: 

6 SERVICES 

$ for nutrient inputs 

$ for pesticide inputs 

$ for seeds (improved) 

7 YIELDS 

Dry weight (wood) = 

Dry weight (charcoal) = 

8 ENERGY YIELDS 

Energy per gram (wood): 

Energy Total (wood): 
Energy per gram (charcoal): 

Energy Total (charcoal): 

0.0 

0.0 

1 0.0 

8.00E+06 glha 

1 .47E+Ol kJ 

1 . 17E+l l J 

1 .75E+02 Kcal/cm2/yr 

1 5% 

6.23E+l3 J 

1350 mmlyr 

0.095 
6.04E+I0 J 

O.OOE+OO g 

O.OOE+OO J 

550 glm2/yr 

3.0% 

3 .73E+09 J 

4.00E+Ol d/ha/yr 

4. 1 9E+08 J/ha/yr 

0.0 

0.0 

0.0 

8.00E+06 glha 

1 . 1 4  E +06 glha 

1 .47E+OI kJ/g 

1 . 1 7E+l l  J 
1 .47E+O l kJ/g 

1 .67E+lO J 
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Chavangi and Zimmerman 1 987 

Chavangi and Zimmerman 1987 

Rommelse 1999 

(Vishner 1954) 

assumed 

Jaetzold and Schmidt 1 982 

Kenya N at'l Water Master Plan 1 992 

Jaetzold and Schmidt 1982 

This Study 

Assumed 

Chavangi and Zimmerman 1987 

Chavangi and Zimmerman 1 987 

Chavangi and Zimmerman 1 987 

Chavangi and Zimmerman 1988 

Rommelse 1 999 
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Table A-6. Transformity values and references for emergy anal�ses. 
Product Units Transformity Source 

Sunlight J 1 .00E+00 Definition 
Wind J 2.45E+03 Odum et al. (2000) 

Rain, Chemical Potential J 3 . 10E+04 Odum et al. (2000) 

Runoff, Geopotential J 4.70E+04 Odum et al. (2000) 

Waves J 5 . lOE+04 Odum et al. (2000) 

Earth Cycle J 5.80E+04 Odum (2000) 

Tides J 7.39E+04 Odum et al. (2000) 

Cassava J 1 .24E+04 this study 
Sweet Potatoes J 1 .  84E+04 this study 
Plantains J 2.09E+04 this study 
Potatoes J 2.87E+04 this study 
Wood J 3 .09E+04 Brown et al. ( 1992) 

Sisal J 3.37E+04 this study 
Tea J 5.44E+04 this study 
Maize J 6. 1 5E+04 this study 
Forest Biomass J 6.72E+04 Brown et al. ( 1992) 

Grapefruits J 7.04E+04 Brandt Williams ( 1999) 

Oranges J 7.04E+04 Brandt Williams ( 1999) 

Pineapples J 7.04E+04 Brandt Williams ( 1999) 

Sugar Cane J 8.63E+04 this study 
Manure J 9.25E+04 assumed 
Rice J 9.26E+04 Brown and McClanahan ( 1992) 

Millet J 1 . 13E+05 this study 
Sorghum J 1 . 14E+05 this study 
Wheat J 1 . 1 4E+05 Odum et al. ( 1987) 

Coffee J 1 .23E+05 this study 
Sugar J 1 .41E+05 this study 
Wood Products J 1 .43E+05 Brown et al. ( 1992) 

Pulses J 1 .60E+05 this study 
Vegetable Oils J 2.02E+05 Odum et al. ( 1983) - coconut oil 
Tobacco J 2.3 1E+05 this study 
Cotton Lint J 3 .22E+05 this study 
Cow's Milk J 3.70E+05 Odum et al. ( 1983) 

Goats Milk J 3.70E+05 this study 
Honey J 3.70E+05 assumed 
Sheep's Milk J 3.70E+05 this study 
Cottonseed J 3.72E+05 this study 
Beverage and Tobacco J 4.37E+05 Odum (1 996) 

Vegetables and Fruit J 4.37E+05 Odum et al. ( 1987) 

Butter J 2. 1 8E+06 Odum et al. ( 1983) 

Milk and Cream J 2. 1 8E+06 Odum et al. ( 1983) - butter 
Goat J 2.86E+06 this study 
Mutton and Lamb J 2.86E+06 Odum et al. ( 1983) 

Animal Fats J 3.36E+06 this study 
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Table A-6. Continued. 
Product Units Transformity Source 

Eggs J 3.36E+06 assumed 
Poultry J 3.36E+06 Odum et al. ( 1987) 
Crude Fibers and Textiles J 6.38E+06 Brown et al. ( 1992) 
Beef and Veal J 6.72E+06 Odum et al. ( 1983) 
Hides, Furs, Skins J 6.72E+06 this study 
Pigs/Pork J 6.72E+06 this study 
Fish and Fish Preparations J 8.47E+06 Brown et al. ( 1992) - Tilapia Yield 
Leather J 1 .44E+07 Odum et al. ( 1987) 
Crude Petroleum J 8.90E+04 Odum et al. ( 1983) 
Processed Oil J l .06E+OS Odum (1 996) 
Refined Pertroleum Products J l .06E+OS Odum (1996) 
Top Soil J 2.2SE+OS this study 
Geothermal Electricity J 2.69E+OS Odum et al. ( 1983) 
Hydroelectricity J 2.77E+OS Odum (1996) 
Books, Maps and Paper J 3.6 1E+OS Brown et al. ( 1992) 
Furniture J S.86E+OS assumed 
Labor J l .03E+06 This study 
Glass g l .08E+07 Haukoos (1994) 
Inorganic Chemicals g 6.38E+08 Brown et al. ( 1992) 
Organic Chemicals g 6.38E+08 Brown et al. ( 1992) 
Plastics g 6.38E+08 Brown et al. ( 1992) 
Crude Minerals g l .5SE+09 Brown et al. ( 1992) 
Cement g 1 .73E+09 Haukoos (1994) - USA w/o services 
Clay g 2. 86E+09 Odum (1996) 
Iron and Steel g 2.99E+09 Odum et al. ( 1983) 
Fertilizers Manufacture g 7.06E+09 Odum et al. (1983) - phosphate fertilizer 
Rubber g 7.22E+09 Odum et al. ( 1987) 
Non-Ferrous Metals g 2.69E+1O Odum et al. ( 1983) - for aluminum 
Electric Machinery g 1 . 13E+ l 1 Odum et al. ( 1 987) 
General Industrial Machinery g 1 . 13E+l l Odum et al. ( 1987) 
Machines g 1 . 13E+1 1 Odum et al. ( 1987) 
Metal Working Machinery g 1 . 13E+1 1 Odum et al. ( 1987) 
Power Generating Equip. g 1 . 13E+1 1 Odum et al. ( 1987) 
Special Industrial Machines g 1 . 13E+1 1 Odum et al. ( 1987) 
Telecomm. & Sound Equip g 1 . 13E+1 1 Odum et al. ( 1987) 
Vehicles (Road) g 1 . 13E+l l Odum et al. ( 1987) 
Metal Stuctures g l .3SE+ 1 1  Haukoos (1996) - structural steel 
Tools g l .35E+ 1 1  Haukoos (1996) - structural steel 
Medicines $ 2.08E+12 assumed 
Medical and Precision Instruments $ 2.08E+12 assumed 
PerfumeslHygiene Products $ 1 .29E+13 assumed 
Semi Precious Stones g 7.39E+13 assumed 
Precious Stones g 1 .8SE+14 assumed 
Gold g 7.39E+14 Brown et al. ( 1992) 
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Table A-7. Summary of transformity assessment for Kenyan agricultural 2roducts. 
Transformity 

Product w/Serv. w/o Servo EIR EYR ELR ESI % Renew. % FCSD 

Cassava 2.07E+04 1 .43E+04 0.44 3 .25 0.8 1 0.55 38% 3 1 . 1% 
Sweet Potatoes 3 .83E+04 2 . 1OE+04 0.83 2.20 1 .44 0.58 32% 22.9% 
Cooking Bananas 3 .  1 7E+04 2.27E+04 0.40 3.52 0.54 0.73 52% 19.1% 
Sugarcane 8.02E+03 6.37E+03 0.29 4.48 0.82 0.35 27% 50.4% 
Potatoes 5.54E+04 3 .22E+04 0.75 2.33 1 . 1 8  0.64 36% 20.8% 
Sisal 6.50E+04 3.89E+04 0.67 2.49 1 .23 0.55 33% 27. 1% 
Tea 1 .3 1 E+05 9.88E+04 0.84 2. 19  2.41 0.35 19% 35.4% 
Maize 9.98E+04 6.40E+04 0.98 2.02 1 .59 0.62 3 1 %  19.2% 
Groundnuts 1 .2 1 E+05 7. 16E+04 0.70 2.43 1 .32 0.53 3 1 %  27.5% 
Millet 2. 15E+05 1 .33E+05 0.62 2.62 1 .28 0.48 30% 32. 1% 
Sorghum 2. 1OE+05 1 .32E+05 0.62 2.61 1 .20 0.52 32% 29.8% 
Coffee 1 .74E+05 1 .29E+05 0.91 2. 10  1 . 17 0.77 40% 12.0% 
Pyrethrum 2 . 12E+05 1 .44E+05 0.50 3.01 0.73 0.68 46% 2 1 .3% 
Beans 2.93E+05 1 .8 1E+05 0.69 2.44 1 . 1 8  0.58 35% 24.5% 
Tobacco 3.90E+05 2.50E+05 2.75 1 .36 7.33 0.37 10% 16.7% 
Cotton 4.97E+05 3.56E+05 0.97 2.03 1 .79 0.54 28% 23.1% 
Lowland Livstock (milk) 4.06E+07 3 .77E+07 0. 1 7  6.75 2.04 0.09 33% 52.3% 
Highland Livestock (milk) 8.66E+06 7.3 1E+06 0.27 4.73 1 .47 0 . 18  40% 38.4% 
Lowland Livestock (meat) 2.06E+08 1 .91E+08 0. 1 7  6.75 2.04 0.09 33% 52.3% 
Highland Livestock (meat) 8.90E+07 7.5 1E+07 0.27 4.73 1 .47 0. 1 8  40% 38.4% 
Refined Sugar 5. 14E+04 4.84E+04 
Refined Tea 5.76E+05 5.34E+05 

Table A-8. Summary of dynamic simulation model to predict soil component 
transformities for tropical soils under two ecosystems. 

Biomass (sej/J) 
Litter (sej/J) 
Soil Org. Matter (sej/J) 
Nutrients (sej/g) 
CEC/Clay (sej/g) 
Soil Structure (sej/J) 

Savanna Forest 
Transformity Standard Deviation Transformity Standard Deviation 

4.46E+04 1 .24E+04 4.56E+04 6.50E+03 
6.24E+04 8.94E+03 6.65E+04 9.90E+03 
2.23E+05 
2.60E+10 
1 .34E+1O 
5. 14E+10 

4.04E+04 
3 .80E+09 
1 .30E+09 
5.79E+1O 

2 . 1 8E+05 
2.56E+I0 
1 .34E+I0 
1 . 1 1E+ l l 

3 .86E+04 
4.29E+09 
1 .88E+09 
1 .25E+ l l 



APPENDIX B 
SPECTRAL CALIBRATION MODELS 

Spectral calibration models for rapid assessment of soil properties are provided in 

this section. Presented first is a summary of soil properties for the 5 1 3  soil samples that 

comprise the calibration library and a table of functional thresholds for each soil property 

(after Shepherd and Walsh 2002). For each property for which continuous regressions 

were developed, a calibration and validation model fit is presented. A table follows that 

summarizes with root-mean-square error estimates for each quartile of the calibration 

range, given in raw soil property units. Finally, a summary of soil property values 

inferred for the Awach basin is given; where binary screening models were used, the 

proportions of soils meeting the specified screening criteria are given. Screening criteria 

are designed so that a case (positive classification) indicates a soil with functional 

impairment. 
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Table B-1 .  Soil functional capacity thresholds for local interpretation of soil 
property observations (adapted from Shepherd and Walsh 2002). 
Soil testt Critical limitt Risk indicated 
Low pH <5.5 Strongly acid soils; AlIMn toxicity 
High pH >7.3 Salinity, sodicity, micronutrient deficiency 
Low ECEC <4.0 cmole kg-l Low cation retention capacity 
High ECEC >8.0 cmole kil High cation retention capacity 
Low EXK <0.2 cmoic kg-l Plant K-deficiency 
High EXK >0.4 cmole kg-! No plant response to applied K 
Low EXP <5 mg kg-! Plant P-deficiency 
High EXP > 15  mg kg-l No plant response to applied P; P loading 
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t pH in 1 :2. 5 soil:water suspensions; ECEC = sum of exchangeable acidity and exchangeable 
cations (unbuffered); ECECclay = ECEC divided by the clay fraction; EXK = exchangeable K; EXP 
= bicarbonate extractable P; AMN = anaerobic N mineralization potential. t If the logical condition 
is met then case is classified as abnormal, else normal. 

Table B-2. Summary of functional properties for soils in the spectral library (n=5 1 3). 
Mean, 25th and 75th percentile are given. 

Count Minimum 25th Percent Mean 75th Percent Maximum 
pH 5 1 3  4.84 5 .77 6.63 7.60 9.98 
Exch. Ca (cmollkg) 5 1 3  1 . 1 9  3 .70 1 5 . 1 8  27. 10  38.60 
Exch. Mg (cmollkg) 5 1 3  0.00 1 . 1 5 4.48 8.83 14.30 
Exch. K (cmollkg) 5 13  0.06 0. 1 8  0.74 1 .38 6.23 
Exch. P (mg/kg) 5 1 3  0.32 1 .0 1  15 .28 37.59 328.49 
SOC (%) 5 1 3  0. 1 1  0.82 1 .85 3 .86 9.22 
Clay (%) 5 13  5.00 1 7.00 38.07 64.84 79.32 
Sand (%) 5 1 3  9. 17  16.00 41 .36 72. 14 93 .98 
Silt (%) 5 1 3  1 .00 10.00 2 1 .95 34.00 48.68 
Exch. Bases (cmollkg) 351  1 .95 5.36 1 7.96 33.62 46. 16 
Exch. CEC (cmollkg) 351  1 .95 5.48 1 8.03 33 .62 46. 16  
Exch. Na (cmollkg) 47 0 . 10 0.40 2.5 1 3.87 1 7.70 
Note: Exch. Na was determined only for soils with pH greater than 7.5. 
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Figure B-1 .  Regression fits between predicted and observed soil performance criteria 
based on regression tree models from reflectance spectra. Shown are fits for calibration 
and holdout validation for SOC, Silt, Sand and Clay content. 
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Figure B-2. Regression fits between predicted and observed soil performance criteria 
based on regression tree models from reflectance spectra. Shown are fits for calibration 
and holdout validation for pH, cation exchange capacity and exchangeable Ca and Mg. 
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Figure B-3. Regression fits between predicted and observed soil performance based on 
regression tree models from reflectance spectra. Shown is the fit for calibration and 
holdout validation for exchangeable bases. 
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Table B-3 .  Root mean squared error (RMSE) by quartile for regression 
tree models in calibration and holdout validation. 

1 st Quartile 2nd Quartile 3rd Quartile 4th Quartile 
SOC - Calibration (%) 0.24 0 . 16 0. 12  0.22 

SOC - Validation (%) 0.29 0.32 0.44 0.56 

Sand - Calibration (%) 4.75 3.65 3 . 15  6.60 

Sand - Validation (%) 9.76 8.76 6.47 12.43 

Clay - Calibration (%) 3.58 3.43 3 .93 3.41 

Clay - Validation (%) 9.04 6.50 5.28 8 .14 

Silt - Calibration (%) 2.02 1 .84 2.35 2. 1 1  

Silt - Validation (%) 4.03 5 .14 5 . 13  4.25 

pH - Calibration 0.23 0. 1 3  0. 13  0.27 

pH - Validation 0.54 0.29 0.27 0.65 

Exch. Mg - Calibration (cmol/kg) 0.63 0.37 0.70 0.83 

Exch. Mg - Validation (cmol/kg) 0.89 0.99 1 . 13 1 .42 

Exch. Ca - Calibration (cmol/kg) 1 .57 1 .50 1 .53 1 .82 

Exch. Ca - Validation (cmol/kg) 3.14 3 .74 3.47 4.13 

CEC - Calibration (cmol/kg) 1 .64 1 .59 1 .72 1 .78 

CEC - Validation (cmol/kg) 2.43 3.23 4.04 3 .93 

Exch. Bases - Calibration (cmol/kg) 1 .57 1 .67 1 .74 1 .8 1  

Exch. Bases - Validation (cmol/kg) 2.59 3 . 13  3.79 4.34 

Table B-4. Summary of soil properties for Awach basin samples. For 
properties that were assessed using binary screening models proportions 
of cases are given. 

Count Minimum - 1  s.d. Mean + I s.d. Maximum 
pH 1 260 5.43 6.14 6.65 7. 15  8.4 1  

ExCa 1260 4.58 8.67 1 5.79 22.91 32.24 

ExMg 1260 1 .59 2.76 4.22 5 .68 8.95 

SOC 1260 0.75 1 .38 2.71 4.05 8 . 12  

Clay (%) 1260 17.54 30. 1 8  38.76 47.34 58.20 

Sand (%) 1260 2 1 .57 3 1 .20 37.79 44.37 69. 13  

Silt (%) 1260 9.83 19.37 23.74 28. 1 1  33.45 

ExBases 1260 6.42 1 0.78 1 7.32 23.86 33.76 

CEC 1260 6.41 1 1 .26 17.73 24.20 36.26 

Count ProEortion Positive 
Exch. P « 5 ppm) 1260 0.56 
Exch. K « 0.4 cmol/kg) 1260 0.73 

Exch. Na (> 0.4 cmol/kg) 1 260 0.3 1 



APPENDIX C 
RULE-BASES FOR SATELLITE IMAGE INTERPRETATION 

Satellite image interpretation was done using classification trees. Optimal 

trees were selected based on cross-validation accuracy, and provide a simple set of 

sequential decision nodes based on reflectance characteristics with which pixels can 

be classified. These are presented in the following order: binary degradation, ordinal 

degradation, binary infiltration and landuse. For each, the set of rules that allocate 

pixels to a specific terminal node are given. For binary degradation, terminal node 1 

is degraded and 0 is intact. For ordinal degradation, terminal node 2 is severe 

degradation, node 1 is moderate degradation and 0 is intact. For binary infiltration 

class, terminal node 1 indicates a region with < 60 mmIhr infiltration. For landuse, 

terminal nodes are: 1 = subsistence agriculture, 2 = commercial agriculture, 3 = dense 

pasture, 4 = sparse pasture, 5 = shrub land, 6 = woodland, 7 = wetland and 8 = severe 

degradation. 
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Model Rule Base 1 - Binary Degradation Status 

/*Terminal Node 1 */ /*Terminal Node 5*/ 

if if 

( ( 
B5B4 <= 1 . 14208 B5B4 > 1 . 14208 && 

) B5B4 <= 1 .396 && 

{ B5B3 > 1 .8 1725 && 
terminalNode = - 1 ;  BAND5 <= 1 00.5 && 
class = 0; B3B2 > 0.87408 1 && 

} B2B1 <= 0.840925 

) 
/*Terminal Node 2*/ { 
if terminalNode = -5; 

( class = 1 ;  

B5B4 > 1 . 14208 && } 
B5B4 <= 1 .396 && 
B2B l <= 0.862062 && /*Terminal Node 6*/ 

B5B3 <= 1 .8 1725 && if 

B7B5 <= 0.632407 ( 
) B5B4 > 1 . 14208 && 

{ B5B4 <= 1 .396 && 
terminalNode = -2; B5B3 > 1 .8 1 725 && 
class = 0; BAND5 <= 1 00.5 && 

} B3B2 > 0.87408 1 && 
B2Bl > 0.840925 && 

/*Terminal Node 3*/ B2Bl <= 0.862062 

if ) 
( { 

B5B4 > 1 . 14208 && terminalNode = -6; 

B5B4 <= 1 .396 && class = 0; 

B2B 1 <= 0.862062 && } 
B5B3 <= 1 .8 1725 && 
B7B5 > 0.632407 /*Terminal Node 7*/ 

) if 

{ ( 
terminalN ode = -3 ; B5B4 > 1 . 14208 && 
class = 1 ;  B5B4 <= 1 .396 && 

} B2B 1 <= 0.862062 && 
B5B3 > 1 .8 1725 && 

/*Terminal Node 4*/ BAND5 > 100.5 

if ) 
( { 

B5B4 > 1 . 14208 && terminalNode = -7; 

B5B4 <= 1 .396 && class = 0; 

B2B 1 <= 0.862062 && 
B5B3 > 1 .8 1 725 && 
BAND5 <= 100.5 && /*Terminal Node 8*/ 

B3B2 <= 0.87408 1 if 

) ( 
{ B5B4 > 1 . 14208 && 

terminalNode = -4; B5B4 <= 1 .396 && 
class = 1 ;  B2Bl > 0.862062 && 

} B7B5 <= 0.553927 

) 
{ 

} 
terminalNode = -8; 
class = 0; 
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/*Terminal Node 9*/ 
if 

( 

) 
{ 

} 

B2B 1 > 0.862062 && 
B7B5 > 0.553927 && 
B5B4 > 1 . 14208 && 
B5B4 <= 1 .3399 

terminalNode = -9; 
class = 1 ;  

/*Terminal Node 1 0*/ 
if 

( 

) 
{ 

B2Bl > 0.862062 && 
B7B5 > 0.553927 && 
B5B4 > 1 .3399 && 
B5B4 <= 1 .396 

terminalNode = - 10; 
class = 0; 

/*Terminal Node 1 1  */ 
if 

( 

) 
{ 

} 

B5B4 > 1 .396 && 
BANDI <= 78.5 && 
NDVI <= 0.0703 1 67 && 
B3B2 <= 0.98373 

terminalNode = - 1 1 ;  
class = 0; 

/*Terminal Node 12*1 
if 

( 
B5B4 > 1 .396 && 
BANDI <= 78.5 && 
NDVI <= 0.0703 1 67 && 
B3B2 > 0.98373 && 
B2B 1 <= 0.80283 1 



) 
{ 

} 
tenninalNode = -12;  
class = 0; 

/*Tenninal Node 1 3*/ 
if 

( 

) 
{ 

BAND 1 <= 78.5 && 
NDVI <= 0.0703 1 67 && 
B3B2 > 0.98373 && 
B2B l > 0.80283 1 && 
B5B4 > 1 .396 && 
B5B4 <= 1 .52697 && 
BAND3 <= 64.5 

tenninalN ode = - 13 ;  
class = 1 ;  

/*Tenninal Node 14*/ 
if 
( 

) 
{ 

} 

BANDI <= 78.5 && 
NDVI <= 0.0703 1 67 && 
B3B2 > 0.98373 && 
B2B l > 0.80283 1 && 
B5B4 > 1 .396 && 
B5B4 <= 1 .52697 && 
BAND3 > 64.5 

tenninalNode = - 14; 
class = 0; 

/*Tenninal Node 1 5*/ 
if 

( 

) 
{ 

} 

BANDI <= 78.5 && 
NDVI <= 0.0703 1 67 && 
B3B2 > 0.98373 && 
B2Bl > 0.80283 1 && 
B5B4 > 1 .52697 

tenninalN ode = - 15 ;  
class = 1 ;  

/*Tenninal Node 16*/ 
if 
( 

B5B4 > 1 .396 && 

) 
{ 

} 

BANDI <= 78.5 && 
NDVI > 0.0703 1 67 

tenninalNode = - 16; 
class = 1 ;  

/*Tenninal Node 1 7*/ 
if 
( 

) 
{ 

} 

B5B4 > 1 .396 && 
BANDI > 78.5 

tenninalN ode = - 17; 
class = 1 ;  
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Model Rule Base 2 - Ordinal (Three Catoregory) Degradation Status 

/*Tenninal Node 1 */ ( B3B2 <= l .04445 && 
if B5B4 > 1 .2 1 857 && B5B3 > 1 .69848 && 

( B5B4 <= 1 .48926 && B5B3 <= 1 .84687 && 
B5B4 <= 1 .21 857 B7B5 <= 0.637212 && B2Bl <= 0.863606 

) B2B l > 0.870779 ) 
{ ) { 

tenninalNode = - 1 ;  { tenninalNode = -9; 
class = 1 ;  tenninalNode = -5; class = 1 ;  

} class = 2; } 
} 

/*Tenninal Node 2*/ /*Tenninal Node 10*/ 
if /*Tenninal Node 6*/ if 

( if ( 
B7B5 <= 0.63721 2  && ( B5B4 > 1 .48926 && 
B2B l <= 0.870779 && B5B4 > 1 .2 1 857 && B3B2 <= 1 .04445 && 
B5B4 > 1 .2 1 857 && B5B4 <= 1 .48926 && B5B3 > 1 .69848 && 
B5B4 <= 1 .28759 B7B5 > 0.63721 2  B5B3 <= 1 .84687 && 

) ) B2B 1 > 0.863606 

{ { ) 
tenninalNode = -2; tenninalN ode = -6; { 
class = 2; class = 2; tenninalNode = - 10; 

} } class = 2; 

/*Tenninal Node 3*/ /*Tenninal Node 7*/ 
if if /*Tenninal Node 1 1  */ 

( ( if 
B7B5 <= 0.63721 2  && B5B4 > 1 .48926 && ( 
B2B 1 <= 0.870779 && B3B2 <= 1 .04445 && B5B4 > 1 .48926 && 
B5B4 > 1 .28759 && B5B3 <= 1 .69848 && B3B2 <= 1 .04445 && 
B5B4 <= 1 .48926 && BAND4 <= 64.5 B5B3 > 1 .84687 
BAND 1 <= 72.5 ) ) 

) { { 
{ tenninalN ode = -7; tenninalN ode = -1 1 ;  

tenninalNode = -3 ; class = 2; class = 3 ;  
class = 3;  } } 

} 
/*Tenninal Node 8*/ /*Tenninal Node 12*/ 

/*Tenninal Node 4*/ if if 
if ( ( 
( B5B4 > 1 .48926 && B5B4 > 1 .48926 && 

B7B5 <= 0.63721 2  && B3B2 <= 1 .04445 && B3B2 > 1 .04445 
B2B l <= 0.870779 && B5B3 <= 1 .69848 && ) 
B5B4 > 1 .28759 && BAND4 > 64.5 { 
B5B4 <= 1 .48926 && ) tenninalNode = - 12; 
BANDI > 72.5 { class = 3 ;  

) tenninalNode = -8; } 
{ class = 3 ;  

tenninalNode = -4; } 
class = 1 ;  

/*Tenninal Node 9*/ 
if 

/*Tenninal Node 5*/ ( 
if B5B4 > 1 .48926 && 
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Model Rule Base 3 - Binary Infiltration Status (threshold = 60 mm/hr) 

/*Tenninal Node 1 */ SLDN <= 5.25 
if ) 
( { 

BANDI <= 7 1 .5 tenninalNode = -5; 

) class = 1 ;  

{ } 
tenninalNode = - 1 ;  
class = 0; /*Tenninal Node 6*/ 

if 

( 
/*Tenninal Node 2*/ BANDI > 7 1 .5 && 
if ELEV > 1 295 && 

( SLDN > 5.25 && 
BANDI > 7 1 .5 && BAND2 <= 66.5 && 
ELEV <= 1 249 B5B4 <= 1 .33 l 3 8  

) ) 
{ { 

tenninalN ode = -2; tenninalNode = -6; 
class = 1 ;  class = 1 ;  

} } 
/*Tenninal Node 3*1 /*Tenninal Node 7*/ 
if if 

( ( 
BANDI > 7 1 .5 && BAND 1 > 71 .5 && 
ELEV > 1 249 && ELEV > 1 295 && 
ELEV <= 1 295 && SLDN > 5.25 && 
NDVI <= -0.0766979 BAND2 <= 66.5 && 

) B5B4 > 1 .33 l38  
{ ) 

tenninalNode = -3 ; { 
class = 1 ;  tenninalNode = -7; 

} class = 0; 
} 

/*Tenninal Node 4*1 
if /*Tenninal Node 8*/ 
( if 

BAND 1 > 7 1 .5 && ( 
ELEV > 1249 && BANDI > 7 1 .5 && 
ELEV <= 1 295 && ELEV > 1295 && 
NDVI > -0.0766979 SLDN > 5.25 && 

) BAND2 > 66.5 
{ ) 

tenninalN ode = -4; { 
class = 0; tenninalNode = -8; 

} class = 1 ;  

} 
/*Tenninal Node 5*1 
if 

( 
BAND 1 > 71 .5 && 
ELEV > 1 295 && 
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Model Rule Base 4 - Landuse (8 classes) 

/*Terminal Node 1 */ class = 5;  B3B2 <= 1 .02963 && 
if } B5B4 <= 1 . 12792 && 

( SLDN > 2.25 && 
B3B2 <= 1 .02963 && /*Terminal Node 5*/ ELEV > 171 1 .5 && 
B5B4 <= 1 . 12792 && if B2B 1 <= 0.826343 
SLDN <= 2.25 && ( ) 
B2B l <= 0.866169 B3B2 <= 1 .02963 && { 

) B5B4 <= 1 . 12792 && terminalNode = -8; 

{ SLDN > 2.25 && class = 5;  
terminalNode = - 1 ;  ELEV <= 1 7 1 1 .5 && } 
class = 3 ;  BAND5 > 83 && 

BANDI <= 68.5 && /*Terminal Node 9*/ 
EASTING <= 735916  if 

/*Terminal Node 2*/ ) ( 
if { B3B2 <= 1 .02963 && 

( terminalNode = -5; SLDN > 2.25 && 
B3B2 <= 1 .02963 && class = 3; ELEV > 171 1 .5 && 
B5B4 <= 1 . 12792 && } B2B 1 > 0.826343 && 
SLDN <= 2.25 && B7B5 <= 0.529423 && 
B2B l > 0.866 169 /*Terminal Node 6*/ B5B4 <= 0.690076 

) if ) 
{ ( { 

terminalNode = -2; B3B2 <= 1 .02963 && terminalNode = -9; 
class = 7; B5B4 <= 1 . 12792 && class = 7; 

} SLDN > 2.25 && } 
ELEV <= 171 1 .5 && 

/*Terminal Node 3*/ BAND5 > 83 && /*Terminal Node 10*/ 
if BANDI <= 68.5 && if 
( EASTING > 735916  ( 

B3B2 <= 1 .02963 && ) SLDN > 2.25 && 
B5B4 <= 1 . 12792 && { ELEV > 171 1 .5 && 
SLDN > 2.25 && terminalN ode = -6; B2B l > 0.826343 && 
ELEV <= 1 7 1 1 .5 && class = 6; B7B5 <= 0.529423 && 
BAND5 <= 83 && B5B4 > 0.690076 && 
NORTH <= 9.969E6 B5B4 <= 1 . 12792 && 

) /*Terminal Node 7*/ B3B2 <= 0.874153 

{ if ) 
terminalN ode = -3; ( { 
class = 6; B3B2 <= 1 .02963 && terminalN ode = -10; 

} B5B4 <= 1 . 12792 && class = 2; 
SLDN > 2.25 && } 

/*Terminal Node 4*1 ELEV <= 171 1 .5 && 
if BAND5 > 83 && /*Terminal Node 1 1  */ 
( BANDI > 68.5 if 

B3B2 <= 1 .02963 && ) ( 
B5B4 <= 1 . 12792 && { SLDN > 2.25 && 
SLDN > 2.25 && terminalNode = -7; ELEV > 171 1 .5 && 
ELEV <= 171 1 .5 && class = 2; B2Bl > 0.826343 && 
BAND5 <= 83 && } B7B5 <= 0.529423 && 
NORTH > 9.969E6 B5B4 > 0.690076 && 

) /*Terminal Node 8*/ B5B4 <= 1 . 1 2792 && 
{ if B3B2 > 0.874153 && 

terminalNode = -4; ( B3B2 <= 1 .02963 
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) BAND4 <= 73.5 && BAND4 <= 73.5 && 

{ NORTH <= 9.9666E6 && NORTH > 9.9666E6 && 
tenninalN ode = - 1 1 ;  B5B4 > 1 . 12792 && B5B4 > 1 .4307 && 
class = 3 ;  B5B4 <= 1 .590 16 B5B3 <= 1 .66706 

} ) ) 
{ { 

/*Tenninal Node 12*/ tenninalN ode = -15 ;  tenninalNode = - 1 8; 
if class = 3;  class = 5;  

( } } 
B3B2 <= 1 .02963 && 
B5B4 <= 1 . 1 2792 && /*Tenninal Node 16*/ /*Tenninal Node 1 9*/ 
SLDN > 2.25 && if if 
ELEV > 171 1 .5 && ( ( 
B2B l > 0.826343 && B7B5 <= 0.674608 && B7B5 <= 0.674608 && 
B7B5 > 0.529423 B3B2 > 0.83999 && B3B2 > 0.83999 && 

) B3B2 <= 1 .02963 && B3B2 <= 1 .02963 && 

{ BAND7 <= 66.5 && BAND7 <= 66.5 && 
tenninalNode = -12;  ELEV > 1 160.5 && ELEV > 1 160.5 && 
class = 3 ;  ELEV <= 1 367.5 && ELEV <= 1 367.5 && 

} BAND4 <= 73.5 && BAND4 <= 73.5 && 
NORTH <= 9.9666E6 && NORTH > 9.9666E6 && 

/*Tenninal Node 13*/ B5B4 > 1 .59016 B5B4 > 1 .4307 && 
if ) B5B3 > 1 .66706 

( { ) 
B5B4 > 1 . 12792 && tenninalNode = - 16; { 
B7B5 <= 0.674608 && class = 5;  tenninalN ode = - 19; 
B3B2 <= 0.83999 } class = 1 ;  

) 
{ /*TenninaI Node 17*/ 

tenninalNode = - 13 ;  if /*Tenninal Node 20*/ 
class = 6; ( if 

B7B5 <= 0.674608 && ( 
B3B2 > 0.83999 && B5B4 > 1 . 12792 && 

/*Tenninal Node 14*/ B3B2 <= 1 .02963 && BAND7 <= 66.5 && 
if BAND7 <= 66.5 && ELEV > 1 160.5 && 

( ELEV > 1 160.5 && ELEV <= 1367.5 && 
B5B4 > 1 . 12792 && ELEV <= 1 367.5 && BAND4 > 73.5 && 
B7B5 <= 0.674608 && BAND4 <= 73.5 && B3B2 > 0.83999 && 
B3B2 > 0.83999 && NORTH > 9.9666E6 && B3B2 <= 0.903698 && 
B3B2 <= 1 .02963 && B5B4 > 1 . 12792 && B7B5 <= 0.587986 && 
ELEV <= 1 1 60.5 B5B4 <= 1 .4307 NORTH <= 9.9696E6 

) ) ) 
{ { { 

tenninalN ode = - 14; tenninalN ode = -17;  tenninalNode = -20; 
class = 7; class = 5;  class = 4; 

} } } 
I*Terminal Node 1 5*1 I*Terminal Node 1 8*1 I*Terminal Node 2 1  *1 
if if if 
( ( ( 

B7B5 <= 0.674608 && B7B5 <= 0.674608 && B5B4 > 1 . 12792 && 
B3B2 > 0.83999 && B3B2 > 0.83999 && BAND7 <= 66.5 && 
B3B2 <= 1 .02963 && B3B2 <= 1 .02963 && ELEV > 1 160.5 && 
BAND7 <= 66.5 && BAND7 <= 66.5 && ELEV <= 1367.5 && 
ELEV > 1 1 60.5 && ELEV > 1 160.5 && BAND4 > 73.5 && 
ELEV <= 1 367.5 && ELEV <= 1367.5 && B3B2 > 0.83999 && 
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B3B2 <= 0.903698 && { { 
B7BS <= 0.S87986 && terminalNode = -24; terminalNode = -27; 
NORTH > 9.9696E6 class = 6; class = 3;  

) } } 
{ 

terminalN ode = -21 ;  /*Terminal Node 25*/ /*Terminal Node 28*/ 
class = 3; if if 

} ( ( 
B5B4 > 1 . 12792 && B5B4 > 1 . 12792 && 

/*Terminal Node 22*/ B7B5 <= 0.674608 && B7B5 <= 0.674608 && 
if B3B2 > 0.83999 && B3B2 > 0.83999 && 

( B3B2 <= 1 .02963 && B3B2 <= 1 .02963 && 
B5B4 > 1 . 12792 && BAND7 <= 66.5 && BAND7 <= 66.5 && 
BAND7 <= 66.5 && ELEV > 1 393 && ELEV > 1 393 && 
ELEV > 1 160.5 && NORTH <= 9.9674E6 && NORTH <= 9.9673E6 && 
ELEV <= 1 367.5 && B5B3 <= 1 .80857 && B5B3 > 1 .80857 && 
BAND4 > 73.5 && EASTING <= 737866 && B5B3 <= 2.04678 && 
B3B2 > 0.83999 && NDVI <= 0.204557 NDVI <= 0.1 87452 && 
B3B2 <= 0.903698 && ) EASTING <= 7341 63 
B7B5 > 0.587986 && { ) 
B7B5 <= 0.674608 terminalNode = -25; { 

) class = 1 ;  terminalNode = -28; 

{ } class = 4; 
terminalNode = -22; } 
class = 6; /*Terminal Node 26*/ 

} if /*Terminal Node 29*/ 

( if 
/*Terminal Node 23*/ B5B4 > 1 . 12792 && ( 
if B7B5 <= 0.674608 && B5B4 > 1 . 12792 && 

( B3B2 > 0.83999 && B7B5 <= 0.674608 && 
B5B4 > 1 . 12792 && B3B2 <= 1 .02963 && B3B2 > 0.83999 && 
B7BS <= 0.674608 && BAND7 <= 66.5 && B3B2 <= 1 .02963 && 
BAND7 <= 66.S && ELEV > 1393 && BAND7 <= 66.5 && 
ELEV > 1 160.S && NORTH <= 9.9674E6 && ELEV > 1 393 && 
ELEV <= 1 367.5 && B5B3 <= 1 .80857 && NORTH <= 9.9674E6 && 
BAND4 > 73.5 && EASTING <= 737866 && B5B3 > 1 .80857 && 
B3B2 > 0.903698 && NDVI > 0.204557 B5B3 <= 2.04678 && 
B3B2 <= 1 .02963 ) NDVI <= 0.1 87452 && 

) { EASTING > 734 1 63 

{ terminalNode = -26; ) 
terminalNode = -23 ;  class = 2 ;  { 
class = 3 ;  } terminalNode = -29; 

} class = 1 ;  
/*Terminal Node 27*/ } 

/*Terminal Node 24*/ if 
if ( /*Terminal Node 30*/ 
( B5B4 > 1 . 12792 && if 

BSB4 > 1 . 12792 && B7BS <= 0.674608 && ( 
B7B5 <= 0.674608 && B3B2 > 0.83999 && B5B4 > 1 . 12792 && 
B3B2 > 0.83999 && B3B2 <= 1 .02963 && B7B5 <= 0.674608 && 
B3B2 <= 1 .02963 && BAND7 <= 66.S && B3B2 > 0.83999 && 
BAND7 <= 66.5 && ELEV > 1393 && B3B2 <= 1 .02963 && 
BSB3 <= 2.04678 && NORTH <= 9.9674E6 && BAND7 <= 66.5 && 
ELEV > 1367.S && BSB3 <= 1 .808S7 && ELEV > 1 393 && 
ELEV <= 1 393 EASTING > 737866 NORTH <= 9.9674E6 && 

) ) B5B3 > 1 .80857 && 
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B5B3 <= 2.04678 && B7B5 <= 0.674608 && class = 8; 
NDVI > 0 . 1 87452 BAND3 <= 56.5 } 

) ) 
{ { /*Terminal Node 37*/ 

terminalNode = -30; terminalN ode = -33;  if 
class = 1 ;  class = 4; ( 

} } B5B4 > 1 . 12792 && 
B3B2 > 0.83999 && 

/*Terminal Node 3 1  */ /*Terminal Node 34*/ B3B2 <= 1 .02963 && 
if if ELEV > 1 160.5 && 

( ( BAND7 > 66.5 && 
B5B4 > 1 . 12792 && B5B4 > 1 . 12792 && B7B5 > 0.570871 && 
B7B5 <= 0.674608 && B3B2 > 0.83999 && B7B5 <= 0.674608 && 
B3B2 > 0.83999 && B3B2 <= 1 .02963 && BAND4 <= 72 
B3B2 <= 1 .02963 && BAND7 <= 66.5 && ) 
BAND7 <= 66.5 && B5B3 <= 2.04678 && { 
B5B3 <= 2.04678 && ELEV > 1393 && terminalNode = -37; 
ELEV > 1393 && NORTH > 9.9674E6 && class = 4; 
NORTH > 9.9674E6 && B2B l > 0.834502 && } 
B2B 1 <= 0.834502 B7B5 > 0.561283 && 

) B7B5 <= 0.674608 && /*Terminal Node 38*/ 

{ BAND3 > 56.5 if 
terminalNode = -3 1 ;  ) ( 
class = 6; { B5B4 > 1 . 12792 && 

} terminalNode = -34; B3B2 > 0.83999 && 
class = 1 ;  B3B2 <= 1 .02963 && 

/*Terminal Node 32*/ } BAND7 > 66.5 && 
if B7B5 > 0.57087 1 && 
( /*Terminal Node 35*/ B7B5 <= 0.674608 && 

B5B4 > 1 . 12792 && if BAND4 > 72 && 
B3B2 > 0.83999 && ( ELEV > 1 160.5 && 
B3B2 <= 1 .02963 && B5B4 > 1 . 12792 && ELEV <= 1326.5 && 
BAND7 <= 66.5 && B7B5 <= 0.674608 && EASTING <= 723581 
B5B3 <= 2.04678 && B3B2 > 0.83999 && ) 
ELEV > 1 393 && B3B2 <= 1 .02963 && { 
NORTH > 9.9674E6 && BAND7 <= 66.5 && terminalNode = -38; 
B2B 1 > 0.834502 && ELEV > 1367.5 && class = 5;  
B7B5 <= 0.561283 B5B3 > 2.04678 

) ) 
{ { /*Terminal Node 39*/ 

terminalNode = -32; terminalN ode = -35;  if 
class = 2; class = 3;  ( 

} } B5B4 > 1 . 12792 && 
B3B2 > 0.83999 && 

/*Terminal Node 33*/ /*Terminal Node 36*/ B3B2 <= 1 .02963 && 
if if BAND7 > 66.5 && 
( ( B7B5 > 0.570871 && 

B5B4 > 1 . 12792 && B5B4 > 1 . 12792 && B7B5 <= 0.674608 && 
B3B2 > 0.83999 && B3B2 > 0.83999 && BAND4 > 72 && 
B3B2 <= 1 .02963 && B3B2 <= 1 .02963 && ELEV > 1 160.5 && 
BAND7 <= 66.5 && ELEV > 1 160.5 && ELEV <= 1326.5 && 
B5B3 <= 2.04678 && BAND7 > 66.5 && EASTING > 723581 
ELEV > 1393 && B7B5 <= 0.57087 1 ) 
NORTH > 9.9674E6 && ) { 
B2B 1 > 0.834502 && { terminalN ode = -39; 
B7B5 > 0.561283 && terminalNode = -36; class = 1 ;  
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} B3B2 > 1 .02963 && /*Tenninal Node 47*/ 
SLDN <= 2.25 && if 

/*Tenninal Node 40*/ BAND2 <= 66.5 && ( 
if EASTING <= 724435 B3B2 > 1 .02963 && 
( ) SLDN <= 2.25 && 

B5B4 > 1 . 12792 && { BAND2 > 66.5 && 
B3B2 > 0.83999 && tenninalN ode = -43; BAND7 <= 1 13.5 && 
B3B2 <= 1 .02963 && class = 1 ;  BAND3 > 75.5 
BAND7 > 66.5 && } ) 
B7B5 > 0.570871 && { 
B7B5 <= 0.674608 && /*Tenninal Node 44*/ tenninalNode = -47; 
BAND4 > 72 && if class = 4; 
ELEV > 1326.5 && ( 
ELEV <= 1 523 B3B2 > 1 .02963 && 

) SLDN <= 2.25 && /*Tenninal Node 48*/ 
{ BAND2 <= 66.5 && if 

tenninalNode = -40; EASTING > 724435 ( 
class = 3 ;  ) B3B2 > 1 .02963 && 

} { SLDN <= 2.25 && 
tenninalNode = -44; BAND2 > 66.5 && 

/*Tenninal Node 4 1  */ class = 4; BAND7 > 1 13.5 
if } ) 
( { 

B5B4 > 1 . 1 2792 && /*Tenninal Node 45*/ tenninalNode = -48; 
B3B2 > 0.83999 && if class = 8; 
B3B2 <= 1 .02963 && ( } 
BAND7 > 66.5 && SLDN <= 2.25 && 
B7B5 > 0.570871 && BAND2 > 66.5 && /*Tenninal Node 49*/ 
B7B5 <= 0.674608 && BAND7 <= 1 1 3.5 && if 
BAND4 > 72 && BAND3 <= 75.5 && ( 
ELEV > 1 523 B3B2 > 1 .02963 && B3B2 > 1 .02963 && 

) B3B2 <= 1 .05798 SLDN > 2.25 && 
{ ) B2B l <= 0.807765 

tenninalN ode = -4 1 ;  { ) 
class = 4; tenninalNode = -45; { } class = 4; tenninalNode = -49; 

class = 1 ;  
/*Tenninal Node 42*/ } 
if /*Tenninal Node 46*/ 
( if /*Tenninal Node 50*/ 

B3B2 <= 1 .02963 && ( if 
B5B4 > 1 . 12792 && SLDN <= 2.25 && ( 
B7B5 > 0.674608 BAND2 > 66.5 && B3B2 > 1 .02963 && 

) BAND7 <= 1 13.5 && SLDN > 2.25 && 
{ BAND3 <= 75.5 && B2B l > 0.807765 

tenninalNode = -42; B3B2 > 1 .05798 ) 
class = 1 ;  ) { { terminalNode = -50; 

tenninalNode = -46; class = 8; 
/*Tenninal Node 43*/ class = 8; } 
if } 
( 



Table C-l .  Transition probabilities for Markov-based landuse scenarios. 

Scenario 1 

To Landuse 

SA 

CA 

IP 
OP 
SL 

WL 
WT 

SO 

Overall 

Scenario 2 

To Landuse 

SA 

CA 

IP 
OP 
SL 

WL 
WT 

SO 

Overall 

Scenario 3 

To Landuse 

SA 

CA 

IP 
OP 
SL 

WL 
WT 

SO 

Overall 

Scenario 4 

To Landuse 

SA 

CA 

IP 
OP 
SL 

WL 
WT 

SO 

Overall 

From Landuse 

SA CA IP OP SL WL 
0.37 0.17 0.22 0.06 0. 1 5  0 . 15  

0.08 0.40 0.06 0.00 0,01 0.03 

0. 1 5  0.09 0.29 0.2 1 0.07 0.07 

0.14 0.07 0. 19  0.42 0.22 0.08 

0. l 3  0. 1 1  0.07 0. 1 1  0.36 0.25 

0.03 0 . 10 0. 1 1  0,01 0.14 0.39 

0.02 0.00 0.00 0.0 1 0.00 0.00 

0.09 0.06 0.05 0. 1 8  0.05 0.04 

1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 

From Landuse 

SA CA IP OP SL WL 
0.30 0.07 0.20 0.06 0. 14  0. 14 

0.25 0.75 0. 1 5  0.05 0.05 0. 1 0  

0.12 0.04 0.26 0.20 0.06 0.06 

0. 1 1  0.03 0. 1 7  0.40 0.22 0.08 

0. 10 0.04 0.07 0. 1 0  0.34 0.23 

0.02 0.04 0. 10  0.0 1 0. l 3  0.36 

0.0 1 0.00 0.00 0.01 0.00 0.00 

0.07 0.03 0.05 0. 17  0.05 0.04 

1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 

SA CA 

0.34 0. 1 5  
0.07 0.34 

From Landuse 

IP OP SL WL 
� 1 9  �06 �08 �02 

0.06 0.00 0.00 0.00 

0.14 0.08 0.26 0.20 0.03 0.01 

0. l 3  0.06 0. 17  0.39 0. 1 1  0.01  

0. 19  0.16 0. 1 1  0. 16  0.54 0.37 

0.05 0 . 14 0. 1 6  0.01 0.2 1 0.58 

0.02 0.00 0.00 0.0 1  0.00 0.00 

0.08 0.05 0.05 0 . 17  0.03 0.01 

1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 

From Landuse 

SA CA IP OP SL WL 
0.40 0. 19  0.22 0.09 0. 17  0. 1 5  
0.08 0.44 

0. 19  0.06 
0.06 0.01 

0. l3  0 . 12  
0.03 0. 1 1  
0.02 0.00 
0.09 0.07 

1 .00 1 .00 

0.06 0,0 1 

0.40 0.30 

0.09 0.20 

0.07 0. 1 5  
0. 1 1  0.0 1 
0.00 0,01 
0.05 0.24 

1 .00 1 .00 

0.0 1 

0.09 

0. 1 1  

0.40 

0.16 

0.00 

0.06 

1 .00 

0.03 

0.09 

0.04 

0.25 

0.39 

0.00 

0.04 

1 .00 

WT 

0. 1 0  

0.00 

0.03 

0.01 

0.00 

0.01 

0.83 

0.0 1 

1 .00 

WT 

0. 10  

0.00 

0.03 

0.01 

0.00 

0,01 

0.83 

0,0 1 

1 .00 

WT 

0. 1 0  

0.00 

0.03 

0.01  

0,01 

0.0 1 

0.83 

0.0 1 

1 .00 

WT 

0. 10  

0.00 

0.04 

0.01 

0.00 

0.0 1 

0.83 

0.0 1 

1 .00 
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SO Overall 

0.08 1 .30 

0.00 0.58 

0.04 0.95 

0. 14 1 .28 

0.09 1 . 1 1  

0.00 0.78 

0.00 0.87 

0.65 1 . 1 4  

1 .00 

SO Overall 

0.08 1 .09 

0.00 1 .35  

0.04 0.82 

0. 14  1 . 1 6  

0.09 0.98 

0.00 0.67 

0.00 0.87 

0.65 1 .07 

1 .00 

SO 

0.07 

0.00 

0.04 

0. 14 

0. l3  

0.00 

0.00 

0.62 

1 .00 

SO 

0.08 

0.00 

0.06 

0.07 

0.09 

0.00 

0.00 

0.69 

1 .00 

Overall 

1 .01  

0.48 

0.78 

1 .02 

1 .67 

1 . 1 6  

0.86 

1 .0 1  

Overall 

1 .39 
0.63 

1 .23 

0.58 

1 .22 

0.8 1 

0.87 

1 .26 
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Table C-l .  Continued 

Scenario 5 From Landuse 

To Landuse SA CA IP DP SL WL WT SD Overall 

SA 0.37 0.17 0.22 0.06 0. 1 5  0. 15  0.10 0.08 1 .30 

CA 0.08 0.40 0.06 0.00 0.01 0.03 0.00 0.00 0.58 

IP 0. 15  0.09 0.29 0.2 1 0.07 0.07 0.03 0.04 0.95 

DP 0.14 0.07 0.19 0.42 0.22 0.08 O.oI 0 .14 1 .28 

SL 0. 17  0 . 14  0 . 10 0.20 0.39 0.27 0.0 1 0.41 1 .68 

WL 0.03 0. 10 0. 1 1  0.01 0.14 0.39 O.o I 0.00 0.78 

WT 0.02 0.00 0.00 0.0 1 0.00 0.00 0.83 0.00 0.87 

SD 0.04 0.03 0.03 0.09 0.03 0.02 0.0 1 0.32 0.57 

Overall 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 

Scenario 6 

To Landuse SA CA IP DP SL WL WT SD Overall 

SA 0.30 0. 15  0. 17  0. 10  0.12 0 . 12 0.08 0. 10 1 . 14 

CA 0. 1 7  0.44 0.12 0.02 0.05 0.07 0.03 0.02 0.92 

IP 0.20 0.13 0.39 0.28 0.09 0.09 0.03 0.07 1 .28 

DP 0.09 0.04 0.09 0.35 0.20 0.06 0.00 0.20 1 .04 

SL 0.09 0.08 0.06 0.08 0.27 0.19 0.00 0 . 10  0.87 

WL 0.06 0 . 12 0 . 13  0.03 0.23 0.45 0.01 0.02 1 .05 

WT 0.02 0.00 0.00 0.01 0.00 0.00 0.83 0.00 0.87 

SD 0.07 0.05 0.04 0.14 0.04 0.03 O.oI 0.49 0.85 

Overall 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 

Scenario 7 From Landuse 

To Landuse SA CA IP DP SL WL WT SD Overall 

SA 0.50 0.25 0. 10  0. 10 0.00 0.00 0.00 0.00 0.95 
CA 0.25 0.50 0 . 10 0. 10  0.00 0.00 0.00 0.00 0.95 
IP 0.25 0.25 0.60 0. 15  0.25 0.00 0.00 0.00 1 .55 
DP 0.00 0.00 0.20 0.50 0. 10  0.00 0.00 0.25 1 .05 

SL 0.00 0.00 0.00 0 . 15  0.50 0.00 0.00 0.50 1 .20 

WL 0.00 0.00 0.00 0.00 0 . 15  1 .00 0.00 0.00 1 . 1 5  

WT 0.00 0.00 0.00 0.00 0.00 0.00 1 .00 0.00 1 .00 

SD 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.25 

Overall 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 1 .00 
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