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Calculating Transformities with an Eigenvector Method

Dennis Collins and Howard T. Odum

ABSTRACT

Eigenvalues-eigenvectors were used to calculate transformities from sets of emergy equations
representing energy transformations, Transformity = emergy, spelled with an "m, " divided by available
energy. Thisprocedure extends the calculationof energy quality measures introduced by Murray Patterson
in 1983, The method wuses energy systems diagrams to organize data on the flow of available energy
throwgh transformation processes. For each transformation process, an equation is written with input
emergy equal to that of an output. Afier the data are combined with a matrix equation, iransformities are
calculared by minimizing eigenvalues. A program is provided for the commercial sofiware
MATHEMATTCA, which solves the simultaneous emergy equations and prints our a vector of transformities.
Comparisons are made berween the iransformiries determined in this way with those previously esrimared
with other methods. Examples include simple configurations, the ecosyvsiem in Silver Springs, Florida,
and the estuary in Lovwisiana used by Tennenbaum (1 258).

INTRODUCTION

Emergy, spelled with an “m" is the available energy (exergy) of one kind required to generate
the available energy (exergy) of other kinds. Calculating emergy has theoretical and practical importance
to energy analysis and public policies based on evaluating work of nature and the economy on a common
basis. This paper provides a convenient method for calculatingtransformities (the emergy per unit available
energy) from energy data of the environment and economy.

BACKGROUND

Energy svstems networkscan be used to represent the essence of real systems, including complex
encrgy flows and transformation processes. The systems are often made quantitative by estimating values
of energy flows into and out of each transformation. Numerical values can be written on the pathways of
systems diagrams, Figures -6 give examples of such encrgy sysems networks in which the symbols
carry additional mathematic and energetic meaning (Odum, 1971, 1983, 1996). The diagrams represent
the energy transformation hicrarchy concept by the position of items and flows, Flow of available energy
decreases as the quality of energy increases with successive energy transformation processes from left to
right. Each joule is capable of doing more when interacting with other energy flows. The energy flows
can also be represented in tabular ways amenable to matrix mathematics.

This concept of embodied energy was developed in the 1960°s and given the name emergy in
1983 (Odum, 1986; Scienceman, 1987) so that items of all kinds (environment, fuels, chemicals,
information) could be put on a common basis by expressing energy flows in units of one Kind of available
energy previously used and expressed as emjoules. The emergy for one unit of available energy was
defined as the transformity. Transformities measure the position of each kind of energy in the natural
energy hierarchy in which different kinds are on different scale in the universal series of energy
transformations. Available energy (exergy) of different kinds should not be added to imply work until
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Chapter 22, Calenlaring Transformities with an Eigenvector Method

Energy Flows at Steady state

Energy J2 =30 Electrical
Tramsformation ] ’ Energy
Joules per Time 70[™~
oules per _“_Used Energy

Emengy is the available energy of one kind used up to generate a flow
Emijoule is the unit of emengy
Transformity = emergy per unit energy with units: emjoules/joule

In this example::
Ememny flow of both input and outputs = 100 coal emjppules/time

%1 = 1 by definition (the coal transformity of coal)

x2 = Coal transformity of electricity = (100 coal emjppules/time)/(30 electrical joules/time)
= 3.33 coal emjoules/joule electrcity

Balance of emergy flows at steady state, 100 coal emjoules pertime

®1*J1 =100 Energy ¥2*J2 = 100
. L Tl ;
Transformation -

Emergy Flow Equation: x1"J1 = x2%J2
x1"J1 - 2*J2=0

Figure 1. An emergy tansformation with definitions.

multiplied by transformities to represent each in emergy units of one kind (Odum, 1996). Most
transformation processes have more than one kind of energy input, which can be put ona common basis
as the emergy of one kind,

Where a system has been aggregated so that outputs are fed back as necessary interactions, and
for a process at steady state with storages constant, the emergy inputs to the transformation process may
be conserved in the output products. An emergy balance equation can be written for inputs and outputs
with emergy out equal to the sum of the emergy flows in (Figure 1}, Emergy of any flow is the product of
the energy times the transformity relating the emergy for one kind to that type of energy, Transformity
was piven various names during the development period and renamed transformity in 1983 (Odum, 1976,
1986, 1987, After 1983, to avoid fractions, solar emergy was used, expressing transformities in terms of
the solar energy; the energy rype with the largest flows but lowest concentration. In a summary book, ten
ways of estimating transformities were given with examples (Odum 1996).

In 1983 and later papers, Murray Patterson (1983, 1984, 1993, 1998) expressed energy
transformation equations of systems networks in a matrix in which each row is a transformation process
equation and each energy flow is placed in a column according to the transformity. Figure 2 is a two
process example in which x’s are transformities. Then he used linear algebra methods to estimate the
coefficients from the properties of the set of equations for the whole network, adjusting the values to
minimize the residual with a least squares method. The coellicient of one type of energy was given the
value 1, and the mathematical selution generated the other coefficient values. Patterson’s method of
energy systems analysis appears to be an important way of estimating emergy and transformity, This
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paper provides an eigenvalue method and a convenient computer program to facilitate these calculations
with standard software.

As Patterson has explained, real energy transformation networks evaluated for study may not be
in steady state. They may be incomplete in representing main energy flows, They may not be aggregated
so that each output carries all the input emergy. The calculations can still be made, and the results used to
describe the energy network, but the coetficients obtained in these cases will have additional error in
representing transformity that is defined as the necessary emergy required to relate energy on one scale to
that on another.

Emergy Equations and Definitions

Figure | illustrates definitions with one energy transformation. Coal exergy is converted by a
transformation to electrical exergy. Emergy is defined as the available energy of one kind previously
used up in a transtormation to make a usetul energy flow of a different kind. Therefore, coal emergy in
coal emjoules required to generate one joule of electrical energy is called the coal transformity, 1t is the
quotient of one type of emergy flow divided by the energy flow of another kind. The example in Figure
| was simplified to contain only one input and one output. J's are energy flows, and x7s are transformities

of Type 1 energy.

(a) Energy Flows at steady state, conservation of ensrgy Type of Energy
o Fﬂh_‘_"—"ﬁ
Type 2 Ty 1 2 3 4 5

Jo J2 oo
&» - [ s 2 B

H J2 -2 0 0
=y X
_ 0 0 J3 Jd -J5

pe 4
1o Jz J4 x1 %2 X3 x4 x5
Typa 1 Type 3 Type 5
[

(b} Exampla: energy llow, joules per time Type of Energy

e
oo Il A R
1

®1 X2 *x3 x4 5

\____" 10 2
—— -
500 -5 o 4] 0
=L 9
‘——+—‘ _"i__ 1o B -0 0 0
{c) Emeray Flow 0 4 e 1 R
xE'.JEl oy Mi
171 #3143 #5°J5 :
X ) ) Transformity Vector:
1
L8
Emergy Balance Eguations: x2 100
4 ol R bl ¥1*500 = 2*5 3 | 60
X171 + %2702 = x3%3 17100 + %275 = 310 *g 238
K303 + %474 = xENJE 3710 + %41 = x6"2 3| |769

Figure 2. Energy flows, emergy flovs, and emerngy ransformation equations fov a seriesof two energy transformations,
fal Energy flows (S50 (b) numerical example; (ch emerey flows and equations; tabular form for representing enevgy
flows in a mateix used by computer programs o cadewlale transfomiities (x5,
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In a real energy systems network, there are usually two or more inputs to each transformation
(Figure 2). In any energy transtormation, such as those in Figure 2a, the available energy used and the
energy output from each transformation can be expressed in the same emergy units equal to the energy
flow (1"s) multiplied by one kind of transformity (x's). Pathways of exergy dissipation have zero emergy
flow and are omitted. If the lowest transformity energy is solar, the units are solar emjoules, Figure 2¢
has equations with an expression for the solar emergy flow accompanying each energy flow. The I's are
the flows of energy resulting from the previous transtormations. The x's are the solar transformities,

There are as many such emergy equations in an energy network as there are energy
transformations. If'the terms of each equation in Figure 2 are gathered on one side of the equals sign, the
output flows (on the right) become negative terms:

XML+ x2%)4 -x3*J3 =10 (1}

X3IMI3 + x4*]4 - x5%I5=0

The equations can also be shown in a tabular form with the transformities (x's) across the top
{Figure 2). Energy flow data in this form are expressed in matrix form as

Mx=10 (2)

where M is the matrix of energy flow and x is the vector of transformities.

Drawing the diagrams and placing the energy flow values on the pathways is a way of making
sure energy flows fit the following energy laws. (1) The energy outflows at steady state equal the inflows.
(2) Available energy flows decrease in passing through a transformation. (3) If the diagram is drawn with
the left-right convention, the highest transformity with the smallest energy flows enters from the right as
a contro] to the transformation, The lowest transformity with the most energy inflows from the left. The
transformed output is intermediate in available energy content and transformity.

EIGENVALUE-EIGENVECTOR METHOD FOR CALCULATING

Emergy and Transformity

In papers starting in 1983, Patterson (1983, 1984, 1993) worked the web evaluating procedure
backowards, deriving the transformities from the set of equations where only the energy flows (I's) were
available. Ome type of energy was given a transformity of | {for electricity in some examplks). He used
a least squares method to find the transformities that solve equation 2 with the least covor. The following
is the new procedure using sigenvalue-cizenvectors.

In the matnx equation: Mx =0, M isanm x n matrix of m processes and n ingredient inputs and
outputs. Matrix M has the energy flows amanged in columns according to energy type as in Figures 2-4.
The vector x is the a column vector of coefficients (transformities ) for these types of energy. An eigenvector
has the same result as the matrix when the eigenvector is multiplied by a set of numbers that are then
called eigenvalies (Appendix). The matix product of Mx is set equal to Lx where the L is the matrix of
gigenvalues for an cizenvector x made up of the transformities.

Mx=Lx i3
By finding an esigenvector which has almost zero eigenvalues, the matrix equation approaches:

Mx =0 (4)
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where the values of the vector x is the st of transformities. In other words, the procedure solves the
equation. Whatever small values there are for the minimum eigenvalues L of that vector are the residue.
The residue exists because the equations and data are not perfect. For analyses of real systems where data
and equations are not perfect representations of the real transformations, the residual (error) can be
represented with the vector e in equation (5)

Mx+e=0 (5)

The Appendix from Collins (1998) explains the mathematics further.

EVALUATING TRANSFORMITIES WITH MATHEMATICA

The program for the commercial software program MATHEMATICA is included (Table 1) so
anyone can rapidly evaluate emergy and transformities from data of network energy flows with the
following procedure:

1. Load the program MATHEMATICA. To see if everything is ready, type in 2+2 and press the SHIFT
Key and ENTER. If things are working OK, the program calculates and places the answer 4 on the
screen.

2. Either type in the program in Table 1 or paste it to the MATHEMATICA screen via the clipboard, from
a stored file (available from the authors),

3. Type in the emergy equations like the ones in equation #1 above. At the top of the blank screen write
the matrix of processes, one row for each energy transformation equation. In each equation one or
more ingredient input terms of the process are written with a plus sign and one output term with a
minus sign. The first number requires .0 to be included. The following is an example which shows
the use of punctuation without spaces for the two row, five column data matrix in Figure 2:

m= { {100.0, 5,-10,0,0}, (6)
{0,0, 10,1,-2}};

4. Press the SHIFT KEY and ENTER. The software follows the instructions in the program (Table 1)
and prints out the transformity vector x. The items of the matrix of energy dam are in the same order as

the column headings (kinds of energy). The program divides through by the smallest transformity and
rounds to get whole numbers.

Table 1. Program to enter into MATHEMATICA in order to calculate transformities from emergy
equations

m= | '
MatrixForm[m)

a = Transpose[m] .my;

p = Eigenvectors[a];

e = m.Transpose[p].
MatrixForm[err];

Matrix Form[ Transpose[p]]:
Eigenvalues|a];

u = Min[Abs[Take[Eigenvectorsfa], -1]]):
t = {L/u) Take[Eigenvectors[a], -1];
MatrixForm[ Transpose[t]]

m = matrix of energy lows from the emergy equations,
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5. Save the result as a file and/or print out the screen with the PRINT item in the FILE menu, Label the
transformities with the name of the energy type.

Table 2 is an example of the result of running the program with the matrix for the simple example
in Figure 3 set up to be in steady state with emergy in equal emergy oul. The matrix that was entered was
printed out so you can check it. At the bottom the transformities for the three kinds of energy were
printed as a column vector: 1, 1000, and 100, For this simple case each transformity can be checked by
dividing input emergy by output energy.

Explanation of the Program

Each line in the program (Table 1} is a step in the calculations. Where the lines end in a semicolon,
the result of the calculation is not printed out. Remove the semicolon from any line which you want to
print. As written in Table 1. only the input matrix, minimum eigenvalues of the eigenvector indicating
residue, and the transformity vector are printed.

The program first instructs the software to find the matrix a= MT M where MT is the transpose
of M.

Mext it finds the eigenvalues and corresponding eigenvectors of the matrix a. In MATHEMATICA
the eigenvectors are the columns of the transpose of the matrix p = eigenvectors[a].

The program finds the residual (error) matrix e = M* Transpose[p] (in MATHEMATICA), A
given column represents the error of each process (row of M) according to the given column valuation.
The most efficient processes are those with the most negative error, supposing the components of the
corresponding eigenvector are all positive. More explanation is given in Appendix A.

Table 2. Cutput of MATHEMATICA evaluating the three transformation syvstem in Figure 3

o= {{100.0, 1, -11},
{100, 2, =21},
{100, 0, -1}};

MatrixForm[m]
a=Transpose[m] .m;

p = Eigenvectors[a];
err = m.Transposa[p] ;

MatrixForm[err];
MatrixForm[Transpose(p]];
Eigenvalues[a]

u =Min[Abs[Take [Eigenvectors[a], -1]1];
t= (1/u) Take[Eigenvectors[a], -1];
MatrixForm|[Transpose(t]]

100, 1 -11
100 2 -21 l
\ 100 0 -1

{30368.5, 199.549, 7.41222x107%)

1.
1000.
100.
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(b) Emergy Flows
Transformities: x1, ¥2, x3

Emergy Transformation Equations
1001 + 1°%2 = 11%3 =0

PR 100°%1 + 2'X2- 213 =0
b 100%1 +0  -1%3 =0

Enargy of
Tyoe 3
x3
{c¢) Results from Calculation Program:
By Setting x3 = 1 If X3 is 100, then
xl -ﬂ'ﬂ" X1 =1
x2 =10 2 =1000

Figure 3. An energy web with three energy tramformarions and its emergy equations. {a) Energy flow and matrix
for entering dava; {B) emergy equations and flows.

At the end the program divides the eigenvector (with the minimum eigenvalues) by the smallest
emergy, which becomes unity and the rest become whole numbers (transformities in emjoules of the
lowest energy type in the group). Thus, the final vecior is expressed in transformitics of the lowest
quality tvpe of coergy.  These can be converted info solar transformities in solar emjoulesjoule by
multiplying them each by the solar transformity of the lowest energy type m the group.
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EVALUATION EXAMPLES

Evaluating Transformations with Energy Flows that Branch

Whereas the systems in Figures 2 and 3 had one output of each transformation without branching,
most networks have energy flows that branch. In aggregating the real world detail in an energy sysiems
diagram, two Kinds of branches may be arranged. In the matrix a separate line is required for each
branch.

A go-product branch has two outputs of different energy tvpe and transformity based on the
same input emergy. Figure 4 has an example with two input energy flows. For the transformation co-
products for one line of the matrix, enter inputs of 100 and 10 and an output of -50. For the other line,
enter the same inputs 100 and 10 and a different output -200. For this simple example, you can check the
output transformities by dividing each output energy into the total input solar emergy = 2000 sej(Figure
da).

A split divides an energy flow of one kind into two flows, both of the same energy type and
transformity. The emergy is divided in the same proportion. A little energy disperses in the process. For
example, in Figure 5, the inputs to the organics are 2.8 and 57 with -40 the product. The energy of
organics splits 40 into flows of 15 and 25. All three have the same transformity and can be entered in the
same column. One branch of the split has the input 15 and output -13.8; the other branch has input 25 and
output -24.2,

{a) Block with Co-products, Outputs with Diffarent Transformities
Energy Flows at Steady State

x1
1000 %2

Transformity: x3 = 2000/50 = 40 sej/J
solar 10 -i- y

anargy yﬁﬂ

x1=1" 4000 X

%Transfnrmity: ®4 = 2000/200 = 10 sej/Jd
200

(b) Emergy Equations for Eigenvector Program, one output each:
x1°100 = x2"10
®1*1000 + x2*10 = x3*50
x1*1000 + x2"10 = x4"200

Energy/time 760

{c) Program Matrix: Energy Flows Arranged by Transformity :
x1 x2 =3 x4
{{1000,-10,0,0},
{1000,10,-50, D},
(1000,10,0,200})};

(d) Program Qutput, Transformity Vector

x1 g |

x2 100
*3 40
T | 10

Figure 4. Ewaluation of co-product pathways with a separate line for each otiput,
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Figure 5. Energy svatems diagram with seody siate energy flows for Silver Springs Florida (modified from Odum.
1988}, Solar rangformitics were caladated by dividing energy flows by the contributing emergy. Emergy flow to
herbivores and detrilus-microcoa s spiit m proportion (o mergy bronching.

Evaluating an Ecosystem in Silver Springs, Florida

An evaluation of an ecological system is provided next for Silver Springs, Florida (Odum, 1955),
using the energy systems diagram (Odum, [986). In Figure 5 the ecosystem was aggregated into a long
chain, which allows estimation of emerzy and transformities by nspection (dividing the input emegy by
the output energy at each step). In this procedure closed loops are eliminated since, their net efect on
steady state emengy is zero (Odum, 1996, Chapter 6). The emergy equations for the separate enengy
transformations for Silver Springs are listed as Table 3, and the output of MATHEMATICA program in
Table 4 and Table 5. The lowest quality energy is solar insolation, given the value 1, and the values are
represented in units of solar transformity (sej/l).

Table 3. Emergy equations for the Silver Springs energy system in Figure 5

xl Solar energy 247000%x 1 = 10.8"x2
x2 kinetic enerzy 4658*x] = |124*x3
x3 Light into plants B*x2 + 1124%x3 =57*x4

x4 Gross photosynithesis 2E8*x2 +57*x4 = 40*x5

x5 Net production 15%x5 = |3.8%xb

x6 Organics to detritus 25%x5 =342%7

x7 Organics to herbivores 24.2%x7 = |*x8

x8 Herbivores to camivores 1*x8 = {.036"x9
x9 Camivores 1o top camiv. 0.036%x9 = (L.0036%*x10
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Table 4. Output of MATHEMATICA evaluating the transformities of Silver Springs encmy flows in
Figure 5.

Dutf 2 A fMatrixForm=

247342 -10.8 0 ] i i 0 0 0 0
4658 o -1124 o 0 i o Q a 0

o ] 1124 -57 0 0 0 a a o

0 2.8 a 5T —d0. 0 b o 0 1
L] i} L] a 15 -13.8 o o i} ]

0 a o 0 25 o ~-24,2 @ 0 o

0 i 0 i 0 0 24.2 -1 i e
o a o 0 o 0 o 1 -0.036 ] |
o o o o o 0 0 0.036 —0.0036)

PutF)= [6.119908x10'", 2.52796x10%, 6261.79, 1649.35,
649.705, 149,381, 14.0594, 0.973340, 000120724, 2.16298x107""}

dut[ 11}/ MatrixFora=
| 1.
22902,
4.14413
3296.04
6300,
&H47.83
6508.26
157500.

4.375= 10*
1 4.375=107

The energy tvpes in the input matrix headings are the following : x1 =
solar energy, x2 = kinetic energy of water, x3 = solar energy to plants, x4 =
gross photosynthesis, x5 = net production, x6 = organics to detritus, x7 =
energy to herbivores, x8 = energy to carnivores, X9 = energy to top
carnivores, x10 = outpults from top carnivores.

Table 5. Comparison of ransformities for Silver Springs, Figure 3

Energy Type Pathway Ratios® Mathematicas

xl Solar energy 1 1

x2 Kinetic energy 22E4 23 E4
x3 Light into plants 4.1 4.1

x4 Gross photosynthesis 33 E3 44 E3
x5 MNet production 6.3 E3 6.3 E3
X Organics to detritus 6.9 E3 0.6 E3
X7 Orgzanics to herbivores 0.5 E3 6.6 E3
x5 Herbivores to carnivores 1.57 E5 1.58 E3
X9 Camivores to top camiy. 44 En 44 E6
%10 Top camivores 44 E7 44 E7

* Quotients from Figure 3
# Eigenvector from Table 4
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Figure 6. Energv systems diagram with energy flows for the Lomisiana Coastal Ecosystem: modified from Tenmenbaum (1985). See Table 6
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Table 6 . Emergy equations using data from Tennebaum (1988) for energy transformation processcs
of the Louisiana coastal system in Figure 4 described by Balr et al, (1982)

Input Energy Flows Process Cutput Flow
E12 kcal/yr E12 kealiyr
x1*1,729.503 Solar wetland use to wetland production x2*359
X1™628,058 Solar aquatic use to aquatic production x3*134
x2*369 Wetland prod. to wetland net prod. x4+ 198
x3*134 Aquatic prod, to aquat. net prod. x5%04
X425 504 1177941
+xB*0.570 +X9%0.159
+x10%0.29 MNet production and consumer waste to partic. org. x6%124
x6*124 Particulate organics to detritus, zooplank., mesozoa x7*16.18
x7%6.54 Deiritus efc. to consumers xB*1.43
XTH)L 165 +x8*0.525 Detritus and consumers to mid consumers x0%0.42
x8*0.279 +x9%0.221 Consumers and mid consumers 1o upper consumers x10*0.31

Evaluating a Louisiana Estuarine System

Tennenbaum (1988) used a pathway tracking method for calculating transformities in an estua-
rine ecosystem energy network published by Bahr, Day, and Stone (1982). Figure 6 is the energy systems
diagram with energy flows on the pathways., The emergy equations for the separate energy transtorma-
tions are listed as Table 6, and transformity vector from the MATHEMATICA run in Table 7. The net-
work diagram has many splits, some indicated by inter-unit pathways that branch, and others indicated by
small squares. The lowest quality energy is solar insolation given the value 1, so that the other values are
represented in units of solar ransformity (sej/J).

Table 7. Comparison of ransformities of the Louisiana coastal ecosystem calculated with three
methods.

Item Track Method? Holistic Eigenvector®
Insptcdﬂnb

Solar energy utilized | 1 =
Gross primary production 4.7 E3 4.7 E3 4.7 E3
MNet primary production 8.1 E3 9.3 E3 6.7 E3
Suspended organic matter 1.8 E4 1.5 E4 9.0 E4
Detritus, microbiota, meiotauna 1.36 E5 1.40 E5 6.63 E5
Lower consumers 146 Eb 1.41 E6 3.04 E6
Mid consumers 4.0 E6 5.6 E6 4.1 Ed
Upper consumers 52E6 5.0 Eq 5.6En

a Pathway track summing by Tennebaum (1988). Explanation given by Odum (1996, page 99),
b Inspection from values on energy systems diagram which are aggregated with few branches,
¢ Besults of MATHEMATICA program (Table 1) with data from Table 6.
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COMPARISON OF TRANSFORMITIES WITH DIFFERENT METHODS

In his papers, Patterson uses the term energy qualicy eguivalents for the flows of the same encrey
quality and qualin: coefficients for the values per unit energy. In 1998 he questioned whether these are
the same concepts as emergy and transformity. The results from simple evaluation of the encrgy chain
aggregation of the Silver Spnngs and Louisiana data are similar to those evaluated with the emergy
matnx method (Table 3). In Table 7 the results of this computation are compared with those of Tennenbaum
using two other methods.

We also evaluated a simplified energy network of New Zealand (Panerson (1993) which he
described: “Although this is a hypothetical system, the conversion efficiencies are similar to thoss that
actually occur in the New Zecaland energy system.” He sct electric power as 1 and evaluated the lower
quality energy types. When his values were all multiplied by 1.7 ES solar emjoules per joule electricity,
previously established solar transformity for electricity (Odum. 1996), the other kinds of encrgy had solar
transformity values of similar magnitude (in solar emjoulesjoule):

Hypothetical NZ Energy Odum 1996
Electric Power (set equal) 1.7ES 1.7 ES
Oil Products 5.4 E4 66 E4
Crude Oil 44 F4 54 E4
Delivered Gas 7.3 F4 Pipeline 48 F4

SUMMARY

Eigenvalue-sigenvector computations provide a way to calculate transformities from emergy
balance equations, even when data only include a few of the many energy transformation processes in a
network. The new procedures in this paper facilitate Murray Patterson’s method of computing energy
quality relanonships from sets of energy trunsformation relationships. We find that Patterson’s terms:
“quality equivalent unit™ and “quality coefficient™ represent the same properties of energy networks as
emergy and transformity. 1t 1s not true that emergy evaluationsare only feed-forward calculations. Emergy
evaluanions typically include inputs from higher quality (larger scale)as well as from lower quality (smaller
scale). This paper provides additional ways for calculating transformity and a convenient program to aid
application with commercial sofiware. The program in this paper makes il easy to convert an energy
systems diagram that has energy values on its pathways into a sct of transformities in a few minutes.
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APPENDIX

A Mon-trivial Least Squares Solution of a Homogeneous System
and Proof of the Eigenvalue-Eigenvector method

Dennis Collins

Overview ofthe method: Some systems analysts have derived systems of homogeneous equations
in which the number of processes corresponds to the number m of equations, and the number of commodities
corresponds to the number n of variables, The least squares approximation of an m x n system of Mx =10
of homogenenus equations subject to the constraint x* x = | is obtained through solving the cigenvalue
equation MT Mx = Ax. According to the eigenvalue-ermor formula, the error of selecting a given unit
eigenvector as a solution is gqual to the eigenvalue comresponding to the given eigenvector, so that the
minimum error can be found by taking the eigenvector commesponding to minimum eigenvalue. The least
squares method relieves the analyst of the need to match m with n.

First consider that the squared 2-norm error due to selecting a given vector x as the solution of
Mx=0isxT MT Mx. Ifthis quantity is minimized with the constraint x ' % = 1 according to the method
of Lagrange multipliers, it is necessary to solve the normal equations dL/dXi=0fori= 1.2...n where

L=x"M"Mx-4(xTx-1)is the Lagrangian function, together with the unit vector constraint,
Calling the symmetric matrix M"M = A, the above equations reduce to

n

ZZ ﬁijxj-Z?uxi=ﬂ

=1
fori=1,2,...nor the eigenvalue equation Ax = Ax together with the unit vector constraint. According to

“Elementary Linear Algebra™ (Prindle Weber Schmidt, 1986) p. 332 by W. Keith Nicholson, the symmetric
matrix A has an orthonormal set of eigenvectors.

Next suppose A has two eigenvalues A1 and A2 with 41 <32. Let x| and x5 be corresponding
eigenvectors, nommalized to 1. Then

“f'v'lxll[z‘— xtTMT MXI =KIT.|‘!'LXI = XIT?LI 31'.1 - ?l.l {.?..2 =X2T?'.2 X:

= ngAxZ - IIMXZ“Z,

Stated otherwise (the eigenvalue-error formula), the squared error due to the first eigenvector x
is equal to the eigenvalue A1 and less than the squared error due to the second eigenvector x3. Since the
norm is always greater than or equal to 0, the above result also shows that the A's (defined from A =MT
M) are greater than or equal to 0.

Finally, the least squares residue (error) is obtained by taking an eigenvector x with the least
eigenvalue (necessarily, greater than or equal to 0). The paper *“Working with Projective Space,” by the
author (1998) explains how to select a unique eigenvector if the eigenspace comresponding to the minimum
eigenvalue has dimension greater than one.

In the above equations, it is important to realize that m may be much larger than n, so that the
system Mx = (t may have no non-trivial exact solution. Also, the solution does not depend on sclection of
a “numeraire,” but may reflect “quantum learning” if an eigenvector is selected whose eigenvalue is not
minimum, In terms of leaming theory, the search for x may be considered to be a search for a vector that
is nearest to being orthogonal to all the previous rows of M.

If the rows of M are normalized first, say p = DM where D is a diagonal matrix whose ith
diagonal entry is 1/d; where d; is the norm of the ith row of M, then the same analysis as above holds for

-278-



-

Chapier 22. Calenlating Transformities with an Eilgenvector Method

the new matnix p (in the terminology of the author’s 1998 paper “An approximate [ east Squares Method
in a Projective-type Space,” p. 5}, although the eigenvectors of p* p may be a (and in general will be)
different from the cigenvectors of MT M itself. Thus, the above analysis shows that the exact least-
s%uares error (on the unit sphere) can be obtained by finding the minimum eigenvalue and cigenvector of
I} s

P
Although the author has still found no reference to the above facts, many others may have

discovered them in other settings.

The next two pages work out the exact solution of the Patterson example (cf. *An Approximate
Least Squares Method in a Projective-type Space™). The exact least squares error (squared) is found to be
0,029 versus 0,045 for Patterson’s method (based on nomalized answers); however Patterson’s result 15
still considerably betier than the squared error (0.815) of the next-to-least eigenvector, and some part of
the extra error may be due to round-off.

Again it must be mentioned that there is a “How to gamble if vou must”-aspect about getting the
exact minimum residue (error) for the system Mx = 0, since it seems more mathematical to normalize the
equations (1., the rows of M) first and work on the unit sphere, as was done in a previous paper (“An
approximate Least Squares Method ina Projective-type space.” 1998). However, the above results show
the approximation method of that paper gives exact answers for the row-normalized case. Further, the
normalization constant (actually the reciprocal) could be considered as a weight factor w; for the i-th
equation, as is sometimes done in least squarcs theory, thereby bringing the Mx = 0 case under the
weight-function umbrella.
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