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1. CHAPTER 1  

INTRODUCTION 

Production of goods and services is inextricably tied to the environment.  As basic 

resources for modern economies are becoming more costly or less available (e.g. 

freshwater and petroleum) and impacts of productive activities have created local and 

global scale environmental change (e.g. climate change), the need to understand 

connections between the environment and economy has become more critical.  The 

delegates to the UN Conference on Environment and Development, representing over a 

100 of the world’s nations, acknowledged in the milestone Rio Declaration on 

Environment and Development, or Agenda 21, that all productive processes in 

economies are dependent upon resources from the environment and sinks to absorb 

the pollution that they generate (principle 8, UN 1992).  At the World Summit on 

Sustainable Development a decade later, it was furthered acknowledged that 

measurement systems are necessary to quantify these dependencies and pollution 

impacts for the purposes of achieving more sustainable development (chapter 3,  UN 

2005).   

Measurement of Sustainable Production and Consumption 

Measurement is the first step toward effective management and protection of the 

environment in the context of productive processes.   But the concept of measurement 

of environmental impacts of production processes has been evolving with broader 

understandings of what, how and where impacts occur and who in turn is responsible 

for those impacts.  The first generation of environmental policy in the United States 

(such as the Clean Air Act of 1970), and still the dominant from of regulation in place in 
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the United States, is primarily based on the regulation of environmental pollution “at the 

pipe”, implicitly focusing only on pollution at the point of occurrence and obligating only 

the party responsible at that point.  This style of legislation reflects the assumption that 

impacts should be measured only at the point of impact. But the ultimate purpose and 

driver of a production processes is to provide for an end product or service, and thus the 

impacts of productive processes can all be related to the intermediate or end products.  

That product or service is demanded by a consumer, and that consumer shares 

responsibility for the environmental impacts that occur along the production chain.  

Shared producer and consumer responsibility was recognized in the Rio Declaration 

and reinforced at in international action plans such as the Marrakesh Process launched 

at the World Summit on Sustainable Development (UN DESA 2008), and is now 

becoming further integrated at national, regional and local scales, especially through 

voluntary public and private initiatives (e.g. Environmental Management Systems, 

Extended Producer Responsibility policies, corporate greenhouse gas accounting 

standards).  It then becomes clear that measurement tools are needed that relate these 

broader impacts to products or services in a way that accounts for impacts along the full 

production chain such that management can involve both producer and consumer, and 

so that no impacts associated with production processes are left out. 

Life Cycle Assessment as a Measurement Tool 

Life Cycle Assessment (LCA) is an established and standardized framework for 

assessing impacts of production processes and for relating full life-cycle impacts to a 

final product (ISO 2006a).  LCA is being used globally for product systems for product 

design, management, and communication of environmental performance (UNEP 2007), 

as well as to guide environmental product policy (European Commission 2003). 
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LCA is an appropriate framework for measuring impacts of products because it 

uses a full life cycle perspective, from “cradle-to-grave” thus omitting no product stages 

during which significant impacts might occur, including all production and consumption 

stages.  This begins with assessing the goal and scope of a product system and 

continues with an inventory of inputs and emissions by product stage relevant to 

estimation of impacts which is used to estimate relevant environmental impacts with 

impact characterization factors developed from impact models.  Impacts are all related 

to a unit of the product serving a particular functional purpose, called a functional unit.  

These impacts typically measure use of environmental sources (resource use 

indicators) or stressors on environmental sinks (impact indicators).  Impact indicators 

depict impacts at varying points in the chain of causality from the release of an emission 

to its ultimate impact (end-point) on primary areas of concern (human health, natural 

environment, resources, manmade environment), depending upon how evolved the 

science is for modeling impacts along this chain (Bare et al. 2006).   

LCA is arguably the strongest framework for measuring environmental impacts of 

production activities for the complex, global supply chains typical of modern products.  

Ness and colleagues (2007) categorized measures of sustainability based on their focus 

and their temporal aspects.  In contrast with techniques such as environmental impacts 

assessment, which is focused on future activity and is highly-location specific, LCA is 

primarily focused on current systems (though can be used for design purposes) and is 

not limited in focus to one particular site.  In contrast with sustainability indices (e.g. 

environmental pressure indicators) which are often retrospective indicators of larger 

systems, LCA is more product specific.  LCA also originates from industrial ecology and 
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engineering, and its quantification by particular unit processes make LCA results more 

relevant for product management.  In comparison with other systems-oriented 

approaches such as embodied energy or emergy analysis, LCA is multi-criteria, which 

provides a broader view of products and makes it less likely that important impacts are 

overlooked (Ulgiati et al. 2006).    

Research Problems in Life Cycle Assessment 

The bold intention to use LCA to relate a product to all the damages (or benefits) 

that occur to the environment over the life cycle of its production, use and disposal 

depend upon detailed inventories of complex life cycles and accurate models to 

estimate damages.  LCA adapts understandings and models from many other fields to 

accurately identify and model impacts and thus is only advanced as the science and its 

application within this fields.  LCAs are often limited by incomplete or inappropriate data 

and absence of relevant impact models.   Two focal areas of LCA that specifically need 

to be addressed to better measure sustainable production and consumption in a 

manner applicable to global supply chains are 1) resource-use indicators and 2) LCA of 

non-OECD product systems.  These problems and a proposed plan for addressing them 

are described in the following three sections. 

Life Cycle Impact Assessment (LCIA) Indicators for Resource Use 

As described above, indicators in LCA may be broadly split into resource use and 

impact indicators.  Resource use indicators may be based on the use of a particular 

energy source or material (e.g. fossil energy use or freshwater use) or may be an 

aggregate measure.  Futhermore they may focus on relating that use to ultimate 

availability (e.g. mineral resource depletion) or simply just report usage.  Relating 

different indicators of resource use together may require use of subjective weighting 
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criteria when there is not a physical basis for relating the resources (Guinée 2002).  But 

the impact of using different resources may be related together without the need for 

subjective judgment if resources can be characterized on a common physical basis with 

a common unit, which is instructive for synthesizing the effects of resource use.   

Various authors have argued for the need to incorporate a unified measure of resource 

use into LCA to limit resource consumption associated with productive processes 

(Finnveden 2005; Seager and Theis 2002; Stewart and Weidema 2005).   

Single-unit measures of resource use has been developed extensively outside of 

the LCA framework, although not all of these methods have been applied as indicators 

in LCA.  Common biophysical units may be units of mass, land area, or energy.  Life 

cycle based methods using  mass include extensions of material flow analysis (MFA) 

and closely related methods including ecological rucksack and material inputs per unit 

service (MIPS) (Brunner and Rechburger 2003; Schmidt-Bleek 1994)  In essence, these 

methods associate a material intensity (g material/g product) to all inputs to a product 

over the production cycle.  They have been applied predominantly in studies of 

dematerialization of economies (Bartelmus 2003; Matthews et al. 2000; NAS 1999) and 

have not been formally integrated as an impact method in life cycle assessment.  The 

major weakness of using MFA derived units of mass as a common resource use 

indicator for a product is the absence of differentiation of the quality of different resource 

types, as well as the difference in the usage of materials that may render them useless 

or may not affect their ability to be used in future production processes or by the 

environment. These weaknesses are pointed out by Van Der Voet et al. (2004).   
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Area-based measures of resource use either measure solely direct and indirect 

occupation and transformation of land or also equivalence factors to relate different land 

use types and symbolic land uses together to measure a broader concept of land 

requirements (e.g. ecological footprint).  Measures of occupation and transformation of 

land use are commonly employed in LCA (Guinée 2002).  A measure that combines all 

types of land use in a single unit based on their biological capacity is the ecological 

footprint (Wackernagel et al. 2002).  Ecological footprint has been more recently 

integrated as a resource-use measure in the largest commercial LCA database 

(Frischknecht and Jungbluth 2007).  Indicators of land occupation suffer from numerous 

shortcomings. Neither direct land use nor the ecological footprint measure below-

ground resource use (non-renewable), and neither incorporate the use of hydrologic 

resources.  Furthermore, land-use itself it not expected to become a limiting resource in 

the future. Although the ecological footprint already shows that total direct and indirect 

use of the Earth’s biocapacity has been exceeded, which is referred to as an ecological 

deficit (Hails et al. 2008).   

Energy-based measures are potentially more comprehensive in their inclusion of 

resources than land-based and material-based measures.  Energy-based measures are 

derived from the laws of thermodynamics, the first of which states that energy is 

consumed in every transformation process.  Thus every process, both independent of 

and dependent on humans, involves the consumption of energy, which makes energy 

an ideal common unit for tracking total resource use (Odum 2007b).  Some energy-

based resource use measures have already been incorporated into LCA.  Energy 

analysis (Boustead and Hancock 1978), known as cumulative energy demand (CED) 
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analysis implemented in a life cycle framework (Frischknecht and Jungbluth 2007), 

measures the total heat energy (enthalpy) in fuel and other energy carrier consumed 

based on their heating values. CED does not include the contribution of non-energy 

sources.  Surplus energy, part of the Eco-indicator 99 methodology (Goedkoop and 

Spriensma 2001b) estimates the difference in the amount of energy required to extract 

resources now versus at a designated point in the future.  Surplus energy is also limited 

to energy sources.   

Another thermodynamically-based indicator already integrated into LCA that 

includes a broader array of resource is exergy, which may be defined as a sum of 

available energies in a material (primarily as pressure, kinetic, physical, chemical) in 

respect to their difference from reference conditions.  Raw resources have high exergy 

values until processed or transformed at which time there exergy is lost as entropy.  

These sum of transformations of all inputs into processes in an LCA can be measured 

with cumulative exergy demand, or CExD (Bösch et al. 2007b).  CExD is particularly 

valuable as a measure of the total thermodynamic efficiency of a process where the 

goal is to minimize total exergy consumption. 

None of the aforementioned energy-based methods account for the energy 

required by the environment to support and recreate the resource basis of economies; 

they only account for energy consumed in existing resources. Thus a critical first link in 

the chain of resource provision (environment to resource) is missing in how resource 

use is accounting for in product life cycles.  Tracking this first link, however, is possible 

using the emergy method to relate all resources on the basis of sunlight energy.  

Emergy is an energy accounting metric that may be defined as the total direct and 
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indirect energy used to support a system measured in a common unit of energy – 

conventionally sunlight equivalents (Odum 1996).  The origins of all resources, both 

renewable and non-renewable, can all be directly or indirectly traced back to the primary 

energy driving the biosphere, sunlight, and can thus be tracked in units of energy of this 

type.  Thus it becomes a biophysically legitimate way of combining different forms of 

resources in a common measurement unit. 

Emergy evaluation is an independently developed methodology for measuring the 

environmental performance of an ecosystem or human-dominated system, which has 

also been applied to evaluating product systems.  Emergy has been used in conjunction 

with LCA as part of a comparative or multi-criteria approach (Cherubini 2008; Pizzigallo 

et al. 2008).  Emergy has been adapted for use in economic-based input-output LCA by 

Bhakshi and collegues, who define emergy as an extension of exergy called ecological 

exergy (Hau and Bakshi 2004b) and have used it as a measure of the contribution of 

ecosystem processes to sectors of the US economy (Ukidwe and Bakshi 2004a) and to 

evaluate individual products (Baral and Bakshi 2010).  Nevertheless emergy has not 

been integrated into traditional process-LCA in such a manner that it can be used in 

conjunction with traditional life cycle inventory databases and in comparison with other 

LCA metrics.   

A measure of the ultimate limitations that the biosphere imposes upon economic 

processes must relate these processes to the energetic limits of the biosphere (Odum 

2007a).  While such a broad concept may not highlight the scarcity of particular 

resources, it does provide a sufficiently wide context through which to compare any and 

all products with our planetary resource base; in  doing so it can provide insight into 
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absolute sustainability of economic processes in the long-term.  Emergy (in sunlight 

energy equivalents) can be used to measure contribution of all forms of resources and 

environmental processes to a product and report them with a common unit relates each 

resource back to the energy consumed in its  origin, and as such is an optimal 

numeraire for measuring total resource use per unit of the product.  Further clarifying 

the rationale for integrating emergy into LCA a measure of total resource use and as 

demonstrating the means of integrating emergy into a complex process-LCA typical of 

high volume products is a primary objective of this dissertation.   

An implicit requirement for integrating emergy or any other impact metric into LCA 

is to quantify the uncertainty in the impact model.  It has been recognized among the 

LCA community that the data and models used to represent complex product life cycles 

potentially have a significant amount of variation and uncertainty (Fava et al. 1994).  

Reporting average scores for products can at times be misleading to the degree of 

accuracy occurring.  Better estimation of uncertainty in these scores is a current priority 

in the LCA field (Reap et al. 2008). 

Uncertainty characterization should include uncertainty in model parameters, 

uncertainty to represent variation among different geographic, technological or other 

production scenarios that may be unknown, and uncertainty built into the actual impact 

models themselves (Lloyd and Ries 2007).  When emergy is incorporated into LCA as 

an impact model, this should therefore include the additional model uncertainty that is 

added when unit emergy values (UEVs) are used to relate inputs to processes to the 

emergy that was used to make them. 
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In the practice of emergy evaluation, emergy results are not typically presented 

with uncertainty ranges.  The originator of the emergy concept, H.T. Odum, believed 

that an emergy result was accurate within an order of magnitude (Brown 2009).  The 

lack of a more clearly defined and systematic manner of characterizing the accuracy of 

emergy results has been a criticism of emergy work for decades (Rydburg 2010).  A 

couple notable first attempts at characterizing uncertainty in specific UEVs were 

performed by Campbell (2001) and Cohen (2001). Campbell estimated the uncertainty 

in the transformity of global rainfall and river chemical potential based on differences in 

estimated global water flows. Cohen (2001) used a stochastic simulation technique to 

generate confidence envelopes for UEVs of various soil parameters.  Both of these 

approaches were first-order attempts for estimating ranges of specific emergy values, 

but did not fully characterize this uncertainty or propose methods of propagating this 

uncertainty for use in future evaluations.   A model for estimating uncertainty in emergy 

results would be useful for estimating ranges in emergy results within emergy and 

beyond for the estimation of the additional uncertainty related to emergy models in life 

cycle results that use  emergy as a unit of measurement. 

Applications of LCA for non-OECD country exports 

LCA studies have predominantly been conducted on product systems located in 

the United States, EU countries, Canada, Japan, and Australia and other member of the 

Organization for Economic and Co-operation and Development (OECD) (Thiesen et al. 

2007).  As a result there has been a geographic-bias in the development of all aspects 

of LCA, including product system inventories, selection of impact categories, and LCA 

impact models.  This bias has resulted in two primary deficiencies in LCA:  (1) 

production in non-OECD countries is less well characterized and has a lesser capacity 
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to use life cycle management; and (2) consumption in OECD countries of non-OECD 

origin products are generally less well characterized than production within OECD 

countries.  Unless this gap in life cycle management capacity is closed, increasing 

environmental demands on producers could marginalize non-OECD country producers 

with lesser capacity (Sonnemann and de Leeuw 2006).   Expanding the scope of LCA to 

incorporate more global analysis including for products from non-OECDs is now a 

priority in the current phase of the UNEP-SETAC Life Cycle Initiative (UNEP Life Cycle 

Initiative 2007). 

Export of products to OECD countries plays a significant role in the economy of 

many non-OECD countries.  For those in Latin America and Africa, these exports are 

largely from the primary sectors, which include fuels, agricultural products, and minerals 

(Zhang et al. 2010).  Mineral and agricultural sectors are both responsible for many 

direct environmental impacts that are site-specific, because they generally require 

significant transformation of the land and emissions occur often in a diffuse manner in 

an open environment at the site.  As a result, both mineral and agricultural 

environmental impacts are less easily characterized than impacts from more enclosed 

processes with less direct interaction with the local environment (more concentrated 

and controlled emissions). 

Characterization of diffuse emissions and related impacts in mining and 

agriculture often use models that account for the local environmental factors that 

influence emissions and their potency at production sites (spatial and temporal 

specificity).  There have been calls for greater regionalization of impact methods in both 

the mining (Yellishetty et al. 2009)  and agricultural sectors (Gaillard and Nemecek 
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2009).  In agricultural systems, regional factors effect emissions and their impacts 

included emissions such as fertilizer derivatives and pesticides and impact emissions 

including eutrophication, acidification, and global warming.  Local factors also effect 

emissions that have just recently begun  to be characterized in LCA, including water 

loss (Pfister et al. 2009).  Improvements in regional characterization can have dramatic 

effects on LCA outcomes.   

Not all relevant environmental impacts from agricultural systems have been 

characterized in LCA.  Two that the UNEP taskforce has identified as extremely 

relevant, particularly in non-OECD countries, are biodiversity impacts and soil erosion 

(Jolliet et al. 2003b).  Models to estimate impacts from biodiversity are very much in 

their infancy, while some have been proposed (e.g. Maia de Souza et al. 2009; Schenck 

and Vickerman 2001).  Erosion is the most significant cause of land degradation 

globally (Gobin et al. 2003).  Soil erosion has not frequently been characterized in LCA, 

but universal methods for estimating soil erosion based on geographic, climatic, soil and 

management factors do exist.  The most commonly applied measure of soil erosion is 

probably the Universal Soil Loss Equation (USLE) and its more recent developments, 

the Revised Universal Soil Loss Equation (RUSLE) and most recently, RUSLE2 (Foster 

et al. 2008).  Soil erosion has in a rarely been used in LCA , and has not been 

customized for use in LCA of non-OECD countries, many of which have humid tropical 

environments, where because of heavy rainfall erosion risks can be much greater (Lal 

1983). 

Without a strong demand on the part of buyers or regulation imposed by 

governments, there is not a strong incentive to use LCA in non-OECD countries 



 

23 

(Sonnemann and de Leeuw 2006).  However, because of the emerging life cycle 

perspective in countries where non-OECD exports are consumed, many of which are 

OECD countries, the demand for use of LCA to measure environmental performance 

may come from the consumers.  Yet, there needs to be a standardized mechanism 

through which the LCA results can be conveyed to the consumers in a way that they 

can use this information to inform decision making.  One solution is to present this LCA-

based environmental performance information in the form of a product label.  A Type III 

environmental label or environmental product declaration (EPD), as defined by ISO 

14025, is designed for this purpose (ISO 2006b). EPDs are designed to convey 

information on product function and production of the product, and relate this 

information to environmental performance in a manner that one product can be 

compared with another product in the same category.  Product category rules (PCRs) 

have to be specified so that results presented in EPDs are comparable.  The ISO 14025 

standard recommends that PCRs be based on at least one background assessment of 

a product, so that the product life cycle can be characterized and relevant impacts 

determined.  This aspect of PCRs present a challenge for product systems in 

developing countries,  because often little life cycle data and or LCA analysis of these 

systems exist.  Another potential barrier to use of EPDs that applies not only to non-

OECD countries was identified by Christiansen et al. (2006) and regards  the 

interpretation of EPDs.  These authors note that LCA data presented in EPDs are often 

not readily meaningful without reference to the relative performance of other products in 

the category.  This shortcoming of EPDs is another important issue to address to make 

LCA more relevant for non-OECD product systems. 
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Research Overview 

Three independent studies addressing the research problems described comprise 

this dissertation.  The first study proposes a means to integrate emergy as a life cycle 

assessment indicator to provide a measure of long-term sustainability in LCA.  This 

study uses the case of the Yanacocha gold mine in northern Peru.  A detailed process-

based life cycle assessment is carried out to track the emergy in all direct and indirect 

inputs to the mining process, including in the ore itself.  Methods of associating emergy 

values with inventory data and calculating results with emergy in LCA are described.  

Comparisons of emergy results are made with a commonly used measure of life cycle 

energy requirement, or cumulative energy demand.  Following presentation of these 

results, their potential value in the regional context and the broader value of emergy 

results for LCA are discussed, along with remaining questions and problems with this 

integration.   

The problem of statistically describing the confidence of emergy results leads 

directly into the research needs addressed in the second study: estimating the 

uncertainty of emergy values.  In this study, sources of uncertainty in emergy are 

explored and the likely forms of probability distributions of different types of emergy 

calculations are suggested.  The description of the sources and forms of uncertainty 

lead to the proposal for a model for describing uncertainty in emergy, and two 

alternative procedures for estimating confidence intervals of emergy values are 

described.  This study proceeds with an evaluation of the accuracy of the proposed 

model and a proposes a means of integrating confidence intervals into the tables 

commonly used to present emergy results. 
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The third study shifts to addressing the problems associated with broad 

characterization and application of life cycle assessment for poorly characterized or 

data-poor product categories in regions where existing regionalized emissions and 

impacts models are not appropriate.  A multi-criteria process-LCA is conducted of fresh 

pineapple for export in Costa Rica (not previously characterized with LCA), based on 

data from a representative sample of pineapple producers.  Existing universally-

applicable emissions and inventory models are customized to better characterize 

environmental impacts. An original method for characterizing soil erosion is addressed.  

Variation and uncertainty in inputs and emissions among the participating producers are 

used to estimate the range of environmental performance in the sector for each impact 

category.  This LCA is furthermore designed to contribute to creating the rules for an 

environmental product declaration in a manner applicable for uncharacterized product 

categories. 
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2. CHAPTER 2  

EMERGY AS AN IMPACT ASSESSMENT METHOD FOR LIFE CYCLE ASSESSMENT 
PRESENTED IN A GOLD MINING CASE STUDY 

Introduction 

LCA is an established and widely-utilized approach to evaluating environmental 

burdens associated with production activities. Emergy synthesis has been used for 

similar ends, although in an emergy synthesis one tracks a single, all encompassing 

environmental aspect, a measure of embodied energy (Odum 1996). While each is a 

developed methodology of environmental accounting, they are not mutually exclusive. 

Emergy in the LCA Context 

LCA is a flexible framework that continues to grow to integrate new and revised 

indicators of impact, as determined by their relevance to the LCA purpose and the 

scientific validity of the indicator sets (ISO 2006d).  Other thermodynamically-based 

methods, such as exergy, have been integrated into LCA (Ayres et al. 1998; Bösch et 

al. 2007a).  Emergy synthesis offers original information about the relationship between 

a product or process and the environment, not captured by existing LCA indicators, 

particularly relevant to resource use and long-term sustainability, which could be 

valuable for LCA. However there are differences in the conventions, systems 

boundaries and allocation rules between emergy and LCA, which require adjustments 

from the conventional application of emergy, to achieve a consistent integration. 

From the perspective of the LCA practitioner, the first questions regarding use of 

emergy would be those of its utility. Why would one select emergy, in lieu of or in 

addition to other indicators of environmental impact? For what purposes defined for an 

LCA study would emergy be an appropriate metric? Assuming the inclusion of emergy 
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as an indicator, what would be necessary for its integration into the LCA framework?  

This paper briefly describes the utility of emergy, and through a case study evaluation of 

a gold mining operation at Yanacocha, Peru, presents one example of how emergy can 

be used in an LCA framework. Finally, the theoretical and technical challenges posed 

by integration are discussed. 

In reference to the first question, these four key points provide a theoretical 

justification for the use of emergy in LCA: 

1. Emergy offers the most extensive measure of energy requirements. System 

boundaries in a cradle to gate LCA typically begin with an initial unit process in 

which a raw material is acquired (e.g. extraction), and would include raw materials 

entering into that process, but would not include any information on the 

environmental processes1 creating those raw materials. Emergy traces energy 

inputs back further into the life cycle than any other thermodynamic method, 

summing life cycle energy inputs using the common denominator of the solar energy 

directly and indirectly driving all biosphere processes (Figure 1).2 Other 

thermodynamic methods including exergy do not include energy requirements 

underlying environmental processes (Ukidwe and Bakshi 2004b). 

                                            
 

1 All references to ‘environmental processes’ and ‘environmental flows’ in this paper refer to solar, 
geologic, and hydrologic flows that sustain both ecosystems and human-dominated systems.  This is the 
essence of what is meant here by ‘environmental contribution’. 
2 For example, growing corn requires the solar energy necessary to support photosynthesis of the corn 
plant. This includes all the solar energy falling on the corn field, not just the amount the corn used to fix 
CO2. Furthermore growing corn requires fossil inputs among others, all of which were originally created 
with solar energy, and thus which are included in emergy analysis. 
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2. Emergy approximates the work of the environment to replace what is used. 

When a resource is consumed in a production process, more energy is required to 

regenerate or replenish that resource. The emergy of a resource is this energy 

required to make it including work of the environment, and assuming equivalent 

conditions; this is the energy that is takes to replenish it. Sustainability ultimately 

requires that inputs and outputs to the biosphere or its subsystems balance out 

(Gallopin 2003).  As the only measure that relates products to energy inputs into the 

biosphere required to create them, emergy relates consumption to ultimate limits in 

the biosphere, by quantifying the additional work it would require from nature to 

replace the consumed resources.   

3. Emergy presents a unified measure of resource use. Comparing the impacts of 

use of biotic vs. abiotic resources, or renewable vs. non-renewable resources, 

typically necessitates some sort of weighting scheme for comparison.3  Because 

there is less agreement upon characterization of biotic resources, these may not be 

included despite their potential relevance (Guinée 2002). Using emergy, abiotic and 

biotic resources are both included and measured with the same units.  As follows 

from its nature as a unified indicator, one which characterizes inputs with a single 

methodology to relate them with one unit (emergy uses sejs, or solar emjoules, 

which are sunlight-equivalent joules), no weighting scheme is necessary to join 

different forms of resources (e.g. renewable and non-renewable; fuels and minerals) 

to interpret the results.     

                                            
3 In the IMPACT 2002+, and Eco-indicator 99 methodologies, use of non-renewable resources is included 
in the damage categories of resources but renewable resources are omitted (Goedkoop and Spriensma 
2001a; Jolliet et al. 2003a) 
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The choice of measures of impact in an LCA follow from the goal and scope of the 

study (ISO 2006d).  Emergy analyses have been used for a multitude of  LCA-related 

purposes, including to measure cumulative energy consumption (Federici et al. 2008), 

to compare environmental performance of process alternatives (La Rosa et al. 2008), to 

create indices for measuring sustainability (Brown and Ulgiati 1997), to quantify the 

resource base of ecosystems (Tilley 2003), to measure environmental carrying capacity 

(Cuadra and Björklund 2007) and for non-market based valuation (Odum and Odum 

2000).  The incorporation of emergy in LCA could potentially enhance the ability of LCA 

studies to achieve these same  and other purposes. 

 

 
Figure 2-1.  Proposed boundary expansion of LCA with emergy. Driving energies 

include sunlight, rain, wind, deep heat, tidal flow, etc.  

This was not the first study to attempt to combine emergy and life cycle 

assessment. Earlier studies focused on contrasting the two approaches (Pizzigallo et al. 

2008) or extending emergy to include disposal and recycling processes (Brown and 

Buranakarn 2003).  The most comprehensive approaches probably include the Eco-

LCA and SUMMA models.  Although referred to as ecological cumulative exergy 

consumption (ECEC) rather than emergy due some slight modifications to emergy 
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algebra, the Eco-LCA model is an EIO-LCA model which uses emergy as an impact 

indicator (Urban and Bakshi 2009).  The SUMMA model is a multi-criterion analysis tool 

which uses emergy as one measure of “upstream” impact which it combines with other 

measures of downstream impact (Ulgiati et al. 2006). A similar multi-criteria approach 

using MFA, embodied energy, exergy and emergy is used by Cherubini et al. (Cherubini 

et al. 2008). 

 In contrast with these previous studies, this study uses a more conventional 

process LCA approach through using an common industry software (SimaPro) and 

attempts to integrate emergy as an indicator within that framework as specified by the 

ISO 14040/44 standards,  which results in adjustments to the conventional emergy 

methodology.  This is also the first study to use emergy in a detailed process LCA 

where flows are tracked at a unit process level.  Results from the study, addressed in 

the discussion, reveal insights for which emergy is suggested to be a useful metric for 

LCA. 

A Case Study of Emergy in an LCA of Gold-Silver Bullion Production 

Metals and their related mining and metallurgical processes have been a frequent 

subject of LCA and other studies using approaches from industrial ecology (e.g. 

Yellishetty et al. 2009 and Dubriel 2005), which is reflective of the critical dependence of 

society upon metals, as well as an acknowledgement of the potential environmental 

consequences of their life cycles.  While these studies have addressed both 

downstream and upstream impacts, including resource consumption, none have used 

tools capable of connecting the product system to the environmental processes 

providing for the raw resources they require (especially because they are largely 

nonrenewable). An LCA is presented here of a gold-silver mining operation that uses 
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emergy to quantify the dependence on environmental flows.  In this case study, the 

primary purpose could be succinctly stated as follows: 

To quantify the total environmental contribution underlying production of gold-silver bullion at the Yanacocha 

mine in Peru.4 

Total environmental contribution includes the total work required by the environment 

(biosphere) and the human-dominated systems it supports (technosphere) to provide for 

that product.  As impacts in LCA are categorized as resource-related (referring to 

upstream impacts) or pollution-related (referring to downstream impacts) (Bare et al. 

2003), environmental contribution would be categorized with the former. 

The scope of this study, following from this goal, extends from the formation of the 

gold deposit (representing the work of the environment) to the production of the semi-

refined doré, a bar of mixed gold and silver.5  Emergy is chosen as the measure of  

environmental contribution, to be tracked over this ‘cradle to gate’ study, and to be the 

basis of the indicator of impact of mining. Energy is commonly used in LCA to track the 

total energy supplied to drive processes in an industrial life cycle.  Yet the interest here 

is in how much work was done in both environmental systems and human-dominated 

systems to provide for it (point 2), which is not measured by just considering available 

energy used by energy carriers (e.g. cumulative energy demand) or by summing all 

available energy (exergy) in all the inputs (point 1).  Additionally the energy from the 

                                            
4 The Yanacocha mine is one of the largest gold mines (in terms of production) in the world. The mine 
produced 3.3275 million ounces in 2005 (Buenaventura Mining Company Inc. 2006). This represented 
more than 40% of Peruvian production (Peruvian Ministry of Energy and Mines 2006) and approximately 
3.8% of the world’s gold supply in 2005, assuming 100% recovery of gold from doré and using the total of 
2467 tonnes reported  by the World Gold Council (2006). 
5 The system and inventory are described in detail in the appendix ‘Life Cycle Inventory of Gold Mined at 
Yanacocha, Peru – Description’. 

http://www.cep.ees.ufl.edu/gold_inventory.doc
http://www.cep.ees.ufl.edu/gold_inventory.doc
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environment to provide for non-energy resources (materials) is part of the environmental 

contribution (point 2), so all need to be tracked. However, in order to directly compare 

the environmental contribution underlying each resource input together with the others 

contributing to a unit process of mining operation, the contribution should be tracked 

with a single indicator, for which emergy serves as this indicator here (point 3). 

Using emergy allows for the introduction of more specific questions which, when 

used in an LCA context, are answerable where they are traditionally not in an emergy 

evaluation, which lumps all inputs into a single system process.  The ability to track unit 

processes from the biosphere together with unit processes in the technosphere enables 

one to ask: 

Is there more environmental contribution underlying the formation of the gold or 

the combined mining processes? 

as well the more familiar (to LCA) comparisons of inputs and unit processes in the 

product system: 

Which unit process(es) are the most intensive in terms of environmental 

contribution?  Which inputs are responsible for this? 

To address long-term sustainability, the activity surrounding this life cycle can be 

put in context of available resources; more specifically: 

How does this relate to the availability of energy driving environmental processes 

in this region? 

LCA results should be presented with accompanying uncertainty quantified to the 

extent feasible (ISO 2006c). To fit in the LCA framework, emergy results also need to 
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be presented with uncertainty estimations to explain the accuracy with which 

environmental contribution can be predicted. 

Gold and silver are co-products, which may be mined separately and which have 

independent end-uses, so comparison of this life cycle data with alternative production 

routes or for end-use requires allocating environmental contribution between them, as 

well as between mercury, which is naturally associated with the ore body, separated 

during the refining stage and sold as a by-product. 

This LCA is not comparative, because no other alternative solutions for providing 

the gold are being evaluated.  Nevertheless with a universal measure of impact that 

does not require normalization or weighting (point 4), results can be compared with 

alternative product systems for which emergy evaluation has been done, if the 

boundaries and allocation rules for these alternative products are comparable, or put in 

the context of other relevant emergy flows, such as those supporting ecosystems or 

economic systems in the same region. 

Methodology 

The functional unit chosen for the study is 1 g of doré (gold-silver bullion) at the 

mine gate, consisting of 43.4% gold and 56.6% silver.  For comparison with other gold, 

silver, and mercury products, results are also reported in relation to 1 g of gold, 1 g of 

silver, and 1 g of mercury. The inventory for these products was based on the average 

of annual production in 2005, the most recent year for which all necessary data were 

available.  Annual production was reported by one of the mine partners (Buenaventura 
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Mining Company Inc. 2006).  The total production for this year was approximately 

9.40E+046 kg of gold and 1.23E+05 kg of silver combined as gold-silver bullion, or doré. 

A process-based inventory was completed in accordance with the ISO 14040 

series standards (ISO 2006a, 2006b) and included direct inputs from the environment 

(elementary flows), capital and nondurable goods, fuels, electricity, and transportation, 

along with inputs not traditionally or commonly accounted for, including the geologic 

contribution to mineral formation.  Nine unit processes representing process stages 

were defined, and inputs were tracked by unit process (Figure 2-2). These were divided 

into background processes (deposit formation, exploration, and mine infrastructure), 

production processes (extraction, leaching, and processing), and auxiliary processes 

(water treatment, sediment control, and reclamation). A description of the inventory 

calculations and results is in the supplemental material. 

                                            
6 “xE+y” is the form of scientific notation used throughout this document to represent “x times 10 to the y 
power”. 
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Figure 2-2. Gold production system at Yanacocha with modeled flows and unit 

processes. FF = fossil fuels, HM = heavy machinery, I = infrastructure, C = 
chemicals, W= precipitation and pumped water, E = electricity, AWR = acid 
water runoff, PWW = process wastewater. 

Emergy and Energy Calculations 

All inputs were converted into emergy values either via original emergy 

calculations or by using previously calculated unit emergy values which relate input 

flows in the inventory to emergy values (Odum 1996).  An inventory cutoff for inputs 

consisting of 99% of the emergy for the process was declared, to be as comprehensive 

as possible without including all minor inputs.  As the emergy of some inputs was not 

readily estimated prior to the inventory collection, these inputs were by default included 

and, even if determined to contribute less than 1% of the total emergy, were kept in the 

inventory.  
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The geologic emergy of gold, silver, and mercury (representing the work of the 

environment in the placement of mineable deposits) were estimated using the method 

of Cohen et al. (2008), who proposed a new universal model for estimating emergy in 

elemental metals in the ground, based on an enrichment ratio of the element, which can 

be described in the form: 

UEVi = ERi * 1.68E+09 sej/g  (1) 
 

where UEV is the unit emergy value (sej/g) for this element in the ground, ER is 

the enrichment ratio, and i denotes a particular element.  The ER can be estimated with 

the following equation: 

ERi = OGCi/CCi (2) 
 

where OGC is the ore grade cutoff of element i, which is the current minimal 

mineable concentration, and CC is the crustal background concentration of that 

element.  This model assumes that ores with greater concentrations of metals require 

greater geologic work to form, without attempting to mechanistically model the diverse 

and random geological processes at work, conferring a general advantage of consistent 

and comparable emergy estimations for all mined metals.  This universal method 

provides average UEVs for a particular metal in the ground, but was adapted here using 

the specific concentrations of gold, silver, and mercury at Yanacocha in place of the 

OGC for those elements. 

 Original emergy calculations were necessary for a number of mining inputs, 

including mine vehicles, chemicals, mine infrastructure, and transportation. When 

available, data on these inputs was adapted from a commercial life cycle inventory 

database, Ecoinvent v2.0 (Ecoinvent Centre 2007), and copied into a new process. 



 

37 
 

Inputs for these processes were replaced by processes carrying UEVs calculated from 

previously published emergy analyses. When the processes were adapted from 

Ecoinvent, emissions, infrastructure, and transportation data were not included, the 

latter of which was decided to be inappropriate for the mine location and calculated 

independently or estimated to be insignificant. For chemicals not available in Ecoinvent, 

synthesis processes were based on stochiometry found in literature references, and 

primary material inputs as well as energy sources were included.  Emergy in overseas 

shipping and transportation within Peru of inputs was estimated for all materials 

comprising 99% of the total mass of inputs to the process.  

  The global baseline (estimate of emergy driving a planet and basis of all emergy 

estimates) of 15.83E+24 sej/yr was used for all original UEV calculations (Odum et al. 

2000) and for updates of all existing UEVs calculated in other studies. When available, 

existing UEVs were incorporated without labor or services, to be consistent with the 

Ecoinvent data used which do not include labor inputs to processes. For comparison 

with emergy values, primary energy was estimated by summing the total energy content 

of fossil fuels and electricity consumed on site using energy values from the Cumulative 

Energy Demand characterization method as implemented in SimaPro (Frischknecht and 

Jungbluth 2007). 

Uncertainty Modeling 

Uncertainty was present at the inventory level (e.g. inputs to mining) and for the 

unit emergy values (the UEVs) used to convert that data into emergy. Uncertainty data 

for both direct inputs and UEV values (existing and original) were included in the life 

cycle model.  Quantities of direct inputs to one of the nine unit processes were assigned 

a range of uncertainty based upon the same model defined for the Ecoinvent database 
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(Frischknecht et al. 2007). This model assumes data fit a log-normal distribution. Using 

this model, the geometric variance, was estimated for each input. Calculations of 

uncertainty ranges for the UEVs for inputs to the process were estimated based on a 

UEV uncertainty model (Ingwersen 2010).  This model produces 95% confidence 

intervals for UEVs also based on a lognormal distribution, and is described in the form 

of the geometric mean (median) times/divided by the geometric variance, abbreviated in 

the following form: 

μgeo (x÷) σ2
geo  (3) 

where μgeo is the geometric mean or median and σ2
geo is the geometric variance. The 

bounds of the 95% confidence interval are defined such that the lower bound is equal to 

the median divided by the geometric variance, and the upper bound is the median 

multiplied by the geometric variance.  Original uncertainty estimations based on the 

analytical method (Ingwersen 2010) were performed for gold and silver in the ground. 

Allocation  

Two allocation approaches were adopted: the co-product rule often used in 

emergy analysis and a by-product economic allocation rule used when applicable in 

LCA. The co-product rule assumes that each product, in these case gold silver, and 

mercury, each require the total emergy of the mining processes for their production, and 

therefore the total mining emergy is allocated to each.  Economic allocation is one 

method in LCA in which an environmental impact is divided among multiple products.  

Economic allocation was selected here in preference to allocation by mass because it 

most closely reflects the motivations of co-product metal producers (Weidema and 

Norris 2002).  In this case, revenue from production was used to allocate environmental 

contribution, by determining the market value of the gold contained in the doré as a 
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percent of the total value of doré and mercury production. The resulting percentage was 

used as the percentage of total mining emergy allocated to gold. The same method was 

applied for silver and mercury.  In both cases, geologic emergy was allocated to each 

product separately, since the model used for estimating geologic emergy in the products 

was element-specific. 

Data Management and Tools 

All inventory data was stored in SimaPro 7.1 life cycle analysis software (PRé 

Consultants 2008a). A new process was created for each input. Emergy was entered as 

a ‘substance’ in the substance library, and a new unit ‘sej’ was defined in the unit library 

and given the equivalent of 1 Joule.7 This unit was assigned to the emergy substance.  

When existing UEVs were relied on (e.g. for refined oil), a ‘system’ process was 

created, for which emergy was the only input. A quantity of emergy in sejs was assigned 

to the output that corresponded with the unit emergy value (sej/g, sej/J, etc.).  For inputs 

for which UEV values did not exist or were not appropriate, ‘unit’ processes were 

created that consisted of one or more system processes or other unit processes.8  A 

new impact method was defined to sum life cycle emergy of all inputs to a process.  To 

characterize total uncertainty (both input and UEV uncertainty) in the emergy of the 

mining products, Monte Carlo simulations of 1,000 iterations were run in SimaPro for 

estimates of confidence intervals of emergy in the products using both emergy co-

product and economic allocation rules.  

                                            
7 For purposed of functionality in SimaPro – the integrity of the emergy algebra was not affected. 
8 ‘Unit’ processes as defined here correspond to the SimaPro definition, not to the unit processes defined 
earlier as one of the nine phases of mining. 
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Results 

Environmental Contribution to Gold, Silver, and Mercury in the Ground 

The enrichment ratio of gold was estimated as 218.8:1, based on a reported gold 

concentration of 0.87 ppm (Buenaventura Mining Company Inc. 2006) and a crustal 

background concentration of 4 ppb (Butterman and Amey 2005), which using Eq. 1 

resulted in an unit emergy value for gold in the ground of 3.65E+11 sej/g.  The silver 

concentration at the mine was not reported, but was estimated based on the silver in the 

product and a calculated recovery rate of gold (81.52%) to be 1.13 ppm.  Using the 

background concentration of 0.075 ppm (Butterman and Hilliard 2004), the enrichment 

ratio of silver was estimated as 15.1:1, which resulted in an estimate of the UEV of 

silver in the ground at Yanacocha to be 1.54E+10 sej/g.  The emergy of mercury in the 

ground was estimated to be 1.71E11 sej/g based on concentration at the mine of 8.6 

ppm (Stratus Consulting 2003) and a crustal background concentration of .085 ppm 

(Ehrlich and Newman 2008).  The total emergy in the amount of gold extracted and 

transformed into doré in 2005, just including the geologic contribution to gold in the 

ground, was 8.55E+18 (x÷) 10.7 sej (median times or divided by the geometric variance, 

as in Eq. 3).  

Environmental Contribution to Doré 

Table 2-1 shows the results of the total emergy in the mining products including for 

the doré, the gold and silver separately, and the mercury by-product. The total emergy 

in the all life cycle stages contributing to 1 g of doré was approximately 6.8E+12 sej, 

with an approximate confidence interval of 6.2E+12 (x÷) 2.0.  Considering estimated 

uncertainty both in the inventory data and in the unit emergy values, the emergy in doré 

could with 95% confidence be predicted to be as low as 4.4 E+12 sej/g and as high as 
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1.3E+13 sej/g, representing an approximate range of a factor of two around the median 

value. 

As a portion of the contribution to the total emergy in the doré, the geologic 

emergy in deposit formation contributes approximately 3% (Figure 2-3), but could be as 

high as 7% if the highest value in the range is used. The largest contributors to the total 

emergy of the doré include chemicals (42%) followed by fossil fuels (32%), and 

electricity (14%).  Capital goods (mine infrastructure and heavy equipment) contribute  

5%.  

 Table 2-1.  Summary of emergy in mine products based on two allocation rules. All 
units are in sej/g. 

 

Relative emergy contribution of inputs is not well associated with input mass 

because of differences in the unit emergy values of inputs to the process. Chemicals 

used in the process illustrate this difference.  A minor input by mass used in the 

Product 
Geologic 
Emergy 

Mining 
Emergy 

Mining 
Allocation 
% 

Total 
Emergy  

95% Confidence 
Interval 

Emergy based on co-product allocation 
Doré 1.7E+11 6.6E+12 100% 6.8E+12 4.4E+12 - 1.3E+13 
Gold in doré 3.7E+11 1.5E+13 100% 1.6E+13 1.0E+13 - 2.7E+13 
Silver in doré 2.5E+10 1.2E+13 100% 1.2E+13 7.5E+12 - 2.2E+13 
Mercury 1.7E+11 2.4E+13 100% 2.4E+13 1.6E+13 - 4.5E+13 
Emergy based on economic allocation1 
Doré 1.7E+11 6.6E+12 99.90% 6.8E+12 4.4E+12 - 1.3E+13 
Gold in doré 3.7E+11 1.5E+13 97.31% 1.5E+13 9.9E+12 - 2.5E+13 
Silver in doré 2.5E+10 3.0E+11 2.61% 3.3E+11 2.2E+11 - 5.4E+11 
Mercury 1.7E+11 2.0E+10 0.08% 1.9E+11 1.8E+11 - 2.1E+11 
1  Based on 2005 Au and Ag price received of $12.69/g and $0.26/g (Buenaventura 2006); Hg market 
price of $0.02/g (Metalprices.com) 
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processing stage, lead acetate, contributed more emergy than did lime, whose mass 

input was 267 times greater. 

Chemicals
42%

Fossil Fuels
32%

Electricity
14%

Infrastructure
4%

Explosives
4%

Gold ore, geologic
3% Heavy equipment

1%

Figure 2-3.  Environmental contribution (emergy) to doré by input type. 

 Emergy by Unit Process 

Breaking down the life cycle of a product into unit processes is not typically done 

in emergy analysis, but is a common step of interpretation in a life cycle assessment.  

Analyzing process contribution can help target where in the life cycle environmental 

burdens are greatest.  Figure 2-4 shows the breakdown of emergy and primary energy 

by mining unit process.  
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Figure 2-4. Emergy and primary energy in 1 g of doré by unit process.  Primary energy 

is depicted on a second axis which is adjusted so that emergy and primary 
energy in extraction appear the same so relative contribution of each to 
processes can be depicted.   

 
The largest environmental contribution comes from the extraction process.  

Extraction emergy is dominated by diesel fuel consumed by mine vehicles.  The other 

production processes are chemically-intensive processes. Together the production 

processes represent 67% of the total emergy.  Controlling for pollution to air, water and 

soil, which is the objective of the auxiliary processes, contribute about 30% of the total 

emergy.  Background processes contribute little (<4%) to the emergy in the doré. 

Figure 2-4 reveals differences in the absolute and relative contributions to 

processes as indicated by emergy and primary energy. First, the emergy for each 

process is six orders of magnitude greater than the primary energy in each process.  

Additionally the contributions of the non-extraction processes are relatively greater 

when measured in emergy than when measured with primary energy. Primary energy 
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reveals no use of energy in the deposit formation process, and relatively less energy in 

processes that are more chemically and materially intensive.  

Allocation and Emergy Uncertainty 

  

 Table 2-1 presents the differences in the gold, silver, and mercury UEVs 

according to the two different allocation rules used.  Because of its high value, under the 

economic allocation rule the gold product is allocated 97.3% of the emergy, which 

results in a similar UEV to that calculated under the co-product scheme, where it is 

allocated 100%. The big difference appears in the calculations of the UEVs for silver 

and mercury (3E+11 and 1.9E11 sej/g  ), since they are allocated small portions of the 

total emergy (2.61% and 0.08%) This reduces the silver UEV to 2.8% of the co-product 

value, and reduces the mercury UEV to only 0.8% of the co-product value. 
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Figure 2-5.  Monte Carlo analysis of 1 g of doré, showing the tails and center of the 95% CI, along with the mean (dashed 

line).   
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Uncertainties in process inputs ranged based on uncertainty in the inventory data, 

but primarily due to the uncertainty of the UEVs.9  The inputs with greatest range of 

UEV values are the minerals and inorganic chemicals which are mineral based (see 

ranges in Table 2 of supplement 1).  In comparison, uncertainty σ2
geo values were 

between 1 and 1.5 for most inputs in the inventory.  Figure 2-5 shows the results of the 

Monte Carlo analysis of the emergy in 1 g of doré, illustrating the resulting uncertainty 

range for the doré product.  The distribution is right-skewed and resembles a log-normal 

distribution.  Overall the combined uncertainties in the inputs lead to less uncertainty in 

the doré (a factor of 2) than some of the major inputs (e.g. gold in the ground with a 

factor of 10). 

Discussion 

Usefulness of Emergy Results  

A significant finding of this LCA is that the environmental contribution to the mining 

process, dominated by fuels and chemicals, was estimated to be greater than that to the 

formation of the gold itself.  This result holds despite the large uncertainty associated 

with quantification of the environmental contribution to gold in the ground.  The 

production of doré can also be interpreted to be process with a net emergy loss, with an 

emergy yield ratio (EYR) of close to 1, since the emergy expended in making the 

product (represented here by the mining processes) is greater than the emergy 

embodied in the raw resource.10 This is unfavorable in comparison with fossil energy 

sources and other primary sector products which generally have emergy yield ratios of 
                                            
9 Uncertainties for UEVs are shown in the first supplement.  The inventory uncertainty can be found in the 
inventory description in the second supplement. 
10 The EYR may be defined as the total emergy in a product  divided by the emergy in purchased inputs 
from outside the product system (Brown and Ulgiati 1997). 
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greater than 2 (Brown et al. 2009), but this provides no insight into the utility of the 

resource in society, which is much different in function and lifetime than these other 

products.   

While primary energy would indicate that the energy in mining is heavily 

dominated by fuel consumption during extraction, using emergy as in indicator shows 

that the other more chemically- and capital-intensive processes weigh more 

significantly, and therefore that reducing total environmental contribution to the process 

would demand a broader look at the other processes and inputs.  This is consistent with 

the trends in the results that Franzese et al. (2009) found in their comparison of gross 

energy and emergy in biomass. 

Quantifying resource use in emergy units permits putting processes in the context 

of the flows of available renewable resources.  Emergy used in a process can be seen 

as the liquidation of stocks of accumulated renewable energy in all the inputs to that 

process. The limit of sustainability, in emergy terms, is such that total emergy used by 

society be less than or equal to the emergy driving the biosphere during the same 

period of time.  Thus the liquidation of the stock of emergy should not be greater than 

the flows of emergy.  In this case, the amount of emergy in the doré (the stock) 

produced by the mine in one year is equivalent to approximately one third of the emergy 

in sunlight falling on the nation of Peru in one year, and one third of one percent of the 

emergy in all the renewable resources available annually to Peru (Sweeney et al. 

2009).11  While this does not represent a trade off for the current period (since the stock 

of emergy in the doré was largely accumulated in a prior time-period) it puts the total 
                                            
11 Sunlight on Peru = 5E+21 J = 5E+21 sej (Sweeney et al. 2009); since 1 sej = 1 J sunlight. 1.66E+21 
sej in doré /5E+21 sej in average sunlight on Peru = 0.3. 
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resource use in the process and the available flows of resources on the same scale, 

which is a step towards quantifying the sustainability of production.  The Peruvian 

economy is driven on average by 35% percent renewable resources, but the mining 

process at Yanacocha itself is only approximately 3.5% renewable on a life cycle 

emergy basis.12  This result should not come as a surprise since mining and other 

resource extraction activities are largely using non-renewable energy sources to extract 

non-renewable resources. 

The emergy in 1 g of doré is on the order of E+12-13 sej/g.  The eventual ‘London 

good’ gold sold on the international market, which will be produced by further refining 

the doré, will have a minimum emergy on the order of E+13 sej/g.  This is hundreds of 

times greater than that reported for products from other economic sectors, such as 

biomass-based products, chemicals, and plastics, which have UEVs consistent with the 

global emergy base used here on the order of E+8-E+11 sej/g (Odum 1996), reflecting 

the high environmental contribution underlying gold products, which is consistent with 

the high market value of gold.  

Emergy in LCA: Challenges 

The boundary, allocation and other accounting differences between emergy and 

LCA were dealt with here in a progressive manner.  The system boundary was 

expanded beyond traditional LCA to included flows of energy underlying the creation of 

resources used as inputs to the foreground and background processes..  The inventory 

to the gold mining process involved a hybridization of background data from previous 

emergy analyses as well data from an LCI database.  Numerous challenges remain for 

                                            
12 This includes only the portion of direct electricity use from hydropower.  Energy sources for all other 
inputs are assumed to be non-renewable. 
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a theoretically and procedurally consistent integration of emergy and LCA and are 

discussed here. 

Challenges of using emergy with LCI databases and software 

This study revealed some of the complexities and potential inconsistencies of 

integrating emergy into LCA, particularly to be able to use emergy along with other LCIA 

indicators and to be consistent in use of accounting rules.  The technical integration of 

emergy for the characterization of some of the processes (e.g. inventories for processes 

occurring off-site) implemented here in SimaPro had the shortcoming of not being able 

to comparatively measure other environmental aspects from background processes in 

the life cycle.  For some of these inputs for which emergy evaluations already existed 

(e.g. for stainless steel used in mine infrastructure and vehicles) emergy was the only 

input to the item, which made computation of other full life cycle indicators for resources 

use (e.g. cumulative exergy demand) impossible.  A better method of integrating 

emergy into a Life Cycle Inventory would be to associate emergy with substances, and 

then to allow the software to track the emergy through all the processes, rather than 

creating processes that store unit emergy values. Such a method would permit more 

accurate cross-comparison of emergy with other impact indicators. 

Emergy evaluation conventionally incorporates the emergy embodied in human 

labor and services (Odum 1996). Adding labor as an input may be present in some 

forms in traditional LCA, such as in worker transportation (O'Brien et al. 2006), but 

energy in labor has largely been left out and its inclusion represents a potential addition 

to LCA from the emergy field.  However, inclusion of labor, as in a typical emergy 

evaluation, is not included in processes in existing LCI databases including Ecoinvent 

2.0.  For this reason labor was not included here. ‘Services’ is the conventional means 
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by which the labor of background processes is included in an emergy analysis.  

‘Services’ is the emergy in the dollars paid for process inputs, estimated using a 

emergy:money ratio to represent the average emergy behind a unit of money, and 

represents labor in background processes based on the assumption that money paid for 

goods and services eventually goes back to pay for the cost of human labor, since 

money never returns to the natural resources themselves (Odum 1996).  Unit emergy 

values are often reported as “with labor and services” or “without labor and services”.  

For consistent incorporation of emergy in labor in an LCA, labor would also need to be 

incorporated into the background processes drawn from LCI databases.  Unless  

background processes can be “retro-fitted” with labor estimations, unit emergy values 

used for LCA should be those “without labor and services.” This will however result in 

the omission of an input which is considered to be integral to holistic accounting in 

emergy theory, since all technosphere products rely on human input. 

Reconciling rules for allocation is another necessary step for inclusion of emergy 

in LCA. In the LCA context, the emergy co-product allocation would be inconsistent and 

non-additive, because the emergy in the products would be double-counted when they 

become inputs in the same system (which can be as large as the global economy). 

Thus results based on this allocation rule should be recalculated using an allocation rule 

that divides up emergy  before being used with existing LCIA calculation routines, to 

avoid the potential double-counting of emergy.13  Allocation rules or alternatives to 

allocation typically used in LCA can easily be applied to allocate emergy among by-

                                            
13 Emergy practioners also point out that emergy of co-products cannot be double-counted when they are 
inputs to the same system.  See p. 1967 of (Sciubba and Ulgiati 2005).  However in LCA all impacts have 
to be split according to one of the methods described in ISO 14044. 
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products and co-products, as was demonstrated here, but if existing UEVs for co-

products are incorporated they will have to be recalculated with the chosen allocation 

rule before incorporation. 

Allocation is not just an issue among co-products but also an issue related to end-

of-life of many of the materials used.  While many of the inputs to doré were 

transformed in such a way that they were completely consumed (e.g. the refined oil is 

combusted), others, particularly the gold itself, was not consumed in such as manner.  

Gold is a material that can theoretically be infinitely recycled and is not generally 

consumed in its common uses (e.g. jewelry).  In emergy evaluation of recycled 

products, the amount of emergy that goes into the formation of the resource would be 

retained (i.e. deposit formation) for the materials each time its recycled (Brown and 

Buranakarn 2003).  In contrast, it has been traditional practice for systems with open 

loop recycling, (like the metals industry) to split the total environmental impact between 

the number of distinct uses of a material (Gloria 2009). If this approach were used it 

would require splitting the emergy of resource formation as well as the emergy of mining 

among the anticipated number of lifetime uses of the gold product.  But allocation in 

systems with recycle loops is an unresolved issue in LCA especially for products such a 

metals and minerals and the problem is not limited to the context of integrating emergy 

into LCA (Yellishetty et al. 2009). 

Energy in environmental support not conventionally included in emergy 
evaluation 

While more thorough than other resource use indicators in consideration of energy 

use from the environment, not all the energy required by the environment to support the 

doré product is included here.  Geologic emergy in the clay and gravel used as a base 
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layer for roads and the leach pads is not included, under the assumption that these 

materials are not consumed in the process.  Additionally, there are waste flows from the 

mine, some of which, such as those potentially emanating from the process sludge and 

residuals on the leach pads, may occur over a long period of time following mine 

closure. These and contemporary emissions to air, water, and soil require energy to 

absorb, but these are not quantified here, as they are not typically quantified in emergy 

analysis. Other measures to quantify damage in this waste, though they may not be 

numerically consistent with the analysis here, could fill in the information gap, although 

unless they are consistent with emergy units and methods, they will not allow for a 

single measure of impact. Traditional measures of impact used in LCA, such as global 

warming potential and freshwater aquatic ecotoxicity potential (Guinée 2002), could 

serve this purpose. More investigation needs to be done to relate emergy with other 

environmental impact metrics within the LCA framework. The outcome of emergy and 

other LCA metrics may not warrant the same management action, esp. those LCA 

metrics that measure waste flows, as they are measures of effects on environmental 

sinks instead of use of sources. 

Uncertainty in unit emergy values 

Emergy from geologic processes in scarce minerals is characterized by a high 

degree of uncertainty (around a factor of 10) relative to other products largely due to the 

differences in different models used to estimate emergy in minerals (Ingwersen 2010).  

However there is limited analysis of uncertainty in emergy values .The largely 

unquantified uncertainty associated with UEV values needs to be addressed so that use 

of emergy in LCA attributes appropriate uncertainty not just to inventory data, but also to 

previous UEVs.  The uncertainty of UEVs contributing 90% of the emergy was 
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characterized in this paper using a method proposed in Ingwersen (2010).  Using a 

model to estimate UEV uncertainty to couple with inventory uncertainty will help to 

better quantify uncertainty in LCA studies that use emergy, which will permit statistically-

robust comparison of emergy in products that serve the same function (e.g. comparative 

LCA). 

Emergy and Other Resource Use Indicators 

As integrated into LCA in this analysis, emergy is suggested as one measure of 

resource use, defined as environmental contribution.  Although primary energy use was 

the only other resource use metric that was quantitatively compared with emergy in this 

study, it would be useful to see how emergy compares with other implemented and 

proposed indicators of resource use in LCA, namely indicators of abiotic resource 

depletion, direct material input and cumulative energy demand and cumulative exergy 

demand. 

Indicators of resource depletion are commonly used in LCA to represent how 

much of a particular resource is consumed in reference to its availability.14  These are 

resource specific indicators and depend upon information on total reserves of various 

resources, which is not readily available.  Emergy is not often applied to assess 

reserves and it is not resource-specific.   Use of emergy as proposed here is therefore 

not closely comparable with indicators of resource depletion, which in cases of resource 

scarcity, convey very useful information on informing material selection. 

Direct material input has been used as an indicator, particularly in the mining 

sector (see Giljum 2004).  However it has also been argued to be of limited utility, 

                                            
14 Resource depletion indicators are build into the most common LCIA methodologies including TRACI 
and Eco-indicator 99 (Bare et al. 2003;  Goodkoep and Springsma 2001). 
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primarily because it doesn’t account for quality differences among resources and also 

includes resources that are not transformed or consumed in processes (like 

overburden) (Gossling-Reisemann 2008b).  Emergy does take into account resource 

quality based on a principle that more embodied energy in creating a resource 

represents higher quality (Odum 1988).  

Of the resource use indicators, emergy is seen by some as closely related with 

exergy (Bastianoni et al. 2007; Hau and Bakshi 2004b).  This is in fact only the case 

when conventional exergy analysis is expanded to include available energy in inputs 

from driving energies in the environment  (Figure 2-1). Otherwise the boundaries for 

exergy consumption are like those in conventional LCA, and still do not account for the 

energy driving environmental processes. Cumulative exergy consumption or a similar 

metric, entropy production (Gossling-Reisemann 2008a), are useful measures of 

efficient use of the available energy embodied in resources, and thus relative measures 

of thermodynamic efficiency of systems, or ultimate measures of the depletion of a the 

utility of resources in the process of providing a product or service (Bösch et al. 2007a).  

Because of the similarity between exergy and emergy, one might expect redundant 

results by using both exergy-based indicators and emergy-based indicators. However, a 

brief comparison of the result of applying the Cumulative Exergy Demand (CExD) 

indicator to a product from the Ecoinvent database ‘Gold, from combined gold-silver 

production, at refinery/PE U’15 to the emergy results here show some significant 

differences in the sources of exergy contribution in comparison with emergy 

contribution. Approximately 72% of the exergy in this product comes from electricity 
                                            
15 A detailed comparison between an inventory of this product with the inventory of Gold at Yanacocha is 
presented in the discussion of Supplement 2.  
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production and 22% from the gold ore in the ground. In comparison with the results from 

this study (Figure 2-2), emergy shows a much higher relative role of the fuels and 

chemicals used in the process16.  This can be largely explained by the differences in the 

information that emergy and exergy provide.  Exergy and entropy production more 

precisely measure embodied energy consumption whereas emergy is a measure of 

energy throughput and could be better described as measuring use than consumption 

(Gossling-Reisemann 2008b).  Also exergy describes the available energy in 

substances (including the chemical energy in minerals), which is not the same as the 

amount of energy used directly and indirectly in their creation in the environment.  In 

summary, the use of emergy provides unique information regarding resource use that 

does not make other resource use indicators like exergy irrelevant, but rather can 

augment the understanding of resource use by tailoring their use to address questions 

at different scales (Ulgiati et al. 2006).  However, emergy is the only one of these 

measures that relates resources used in product life cycles back the process in the 

environment necessary to replace those resources, and hence the best potential 

measure of the long-term environmental sustainability of production.  

 

                                            
16 This implementation of CExD in SimaPro is incomplete and does not provide characterization factors 
for many of the chemicals used in the refining processes. The relative exergy contribution of chemicals to 
total exergy in gold would likely be higher if this were the case.  
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3. CHAPTER 317  

UNCERTAINTY CHARACTERIZATION FOR EMERGY VALUES 

Introduction 

Emergy, a measure of energy used in making a product extending back to the 

work of nature in generating the raw resources used (Odum 1996), arises from general 

systems theory and has been applied to ecosystems as well as to human-dominated 

systems to address scientific questions at many levels, from the understanding 

ecosystem dynamics (Brown et al. 2006) to studies of modern urban metabolism and 

sustainability (Zhang et al. 2009). Emergy, or one any the many indicators derived from 

it (Brown and Ulgiati 1997), is not an empirical property of an object, but an estimation 

of embodied energy based on a relevant collection of empirical data from the systems 

underlying an object, as well as rules and theoretical assumptions, and therefore cannot 

be directly measured. In the process of emergy evaluation, especially due to its 

extensive and ambitious scope, the emergy in a object is estimated in the presence of 

numerical uncertainty, which arises in all steps and from all sources used in the 

evaluation process.   

 The proximate motivation for development of this model was for use of emergy 

as an indicator within a life cycle assessment (LCA) to provide information regarding the 

energy appropriated from the environment during the life cycle of a product.  The 

advantages of using emergy in an LCA framework are delineated and demonstrated 

through an example of a gold mining (Ingwersen accepted).  The incorporation of 

                                            
17 Reprint with permission from the publisher of Ingwersen, W. W. 2010. Uncertainty characterization for 
emergy values. Ecological Modelling 221(3): 445-452. 
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uncertainty in LCA results is commonplace and futhermore prerequisite to using results 

to make comparative assertions that are disclosed to the public (ISO 2006c). 

 But the utility of uncertainty values for emergy is not only restricted to emergy 

used along with other environmental assessment methodologies; uncertainty 

characterization of emergy values has been of increasing interest and in some cases 

begun to be described by emergy practitioners (Bastianoni et al. 2009) for use in 

traditional emergy evaluations.  Herein lies the ultimate motivation for this manuscript, 

which is to provide an initial framework for characterization of uncertainty of unit emergy 

values (UEVs), or inventory unit-to-emergy conversions, which can be applied or 

improved upon to characterize UEVs for any application, whether they be original 

emergy calculations or drawn upon from previous evaluations. 

Sources of uncertainty in UEVs 

 Uncertainty in UEVs may exist on numerous levels.  Classification of uncertainty 

is helpful for identification of these sources of uncertainty, and for formal description of 

uncertainty in a replicable fashion.  The classification scheme defined by the US EPA 

defines three uncertainty types: parameter, scenario, and model uncertainty (Lloyd and 

Reis, 2007). This scheme is co-opted here to represent the uncertainty types associated 

with UEVs.  These uncertainty types are defined in Table 3-1 using the example of the 

UEV for lead in the ground.  

 There are additional elements of uncertainty in the adoption of UEVs from 

previous analyses. These occur due to the following: 

Incorporation of UEVs from sources without documented methods 
Errors in use of significant figures 
Inclusion of UEVs with different inventory items (e.g. with or without labor & services) 
Calculation errors in the evaluation 
Conflicts in global baseline underlying UEVs, which may be propagated unwittingly  
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Use of a UEV for an inappropriate product or process 
 
These bulleted errors are due to random calculation error, human error, and 

methodological discrepancy, which is not well-suited to formal characterization, and can 

be better addressed with more transparent and uniform methodology and critical review.  

But uncertainty and variability in parameters, models, and scenarios can theoretically be 

quantified. 

Table 3-1. Elements of uncertainty in the UEV of lead in the ground. 
Uncertainty 
Type 

Definition Example Explanation 

Parameter Uncertainty in a 
parameter used in the  
model 

Flux of continental 
crust = .0024 cm/yr 

Global average 
number. A more 
recent number is 
.003cm/yr  (Scholl and 
von Huene, 2004) 
 

Model Uncertainty regarding 
which model used to 
make estimations is 
appropriate 

See model for minerals 
in Table 2 

Variation exists 
between this model 
and others proposed 
for minerals  
 

Scenario Uncertainty regarding 
the fit of model 
parameters to a given 
geographical, temporal, 
or technological context  

Variation in enrichment 
ratio based on deposit 
type 

Assumption that the 
emergy in all minerals 
of a given form is 
equal  

    
 

Models for describing uncertainty in lognormal distributions 

 Different components of uncertainty in a model must be combined to estimate 

total uncertainty in the result.  These component uncertainties may originate from 

uncertainty in model parameters. In multiple parameter models, such as emergy formula 

models, each parameter has its own characteristic uncertainty.  Uncertainty in 

environmental variables is often assumed to be normal, although Limpert et al. (2001) 

presents evidence that lognormal distributions are more versatile in application and may 



 

59 

be more appropriate for parameters in many environmental disciplines. This distribution 

is increasingly used to characterize data on process inputs used in life cycle 

assessments (Frischknecht et al. 2007; Huijbregts et al. 2003b). 

 A spread of lognormal variable can be described by a factor that relates the 

median value to the tails of its distribution.  Slob (1994) defines this value as the 

dispersion factor, k, but it is also known as the geometric variance, σ2
geo: 

σ2
geo of a  =      (1) 

ωa = 1 +       (2) 

where σ2
geo for variable a is a function of  ωa (Eq. (1)),18 which a simple transformation of 

the coefficient of variation (Eq. (2)), 19 where σa is the sample standard deviation of 

variable a and μa  is the sample mean. This can be applied to positive, normal variables 

with certain advantages, because parameters for describing lognormal distributions 

result in positive confidence intervals, and the lognormal distribution approximates the 

normal distribution with low dispersion factor values. 

 The geometric variance, σ2
geo, (k ≈ σ2

geo) is a symmetrical measure of the spread 

between the median, also known as the geometric mean, μgeo,, and the tails of the 

95.5% (henceforth 95%) confidence interval (Eq. (3)). 

  

CI95 =  μgeo  (x÷) σgeo
2       (3) 

The symbol ‘(x÷)’ represents ‘times or divided by’.  The geometric mean for 

variable a may be defined as in the following expression (Eq. (4)): 
                                            
18 Eq. (1) adapted from Slob (1994). 
19 Eqs. (2)-(4) adapted from Limpert et al. (2001). 
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μgeo =        (4) 

 The confidence interval describes the uncertainty surrounding a lognormal 

variable, but not for a formula model that is a combination of multiplication or division of 

each of these variables.  The uncertainty of each model parameter has to be 

propagated to estimate a total parameter uncertainty. This can be done with Eq. (5): 

σ2
geo of model =      (5) 

where a, b …z are references to parameters of a multiplicative model y of the form  

 y =  .  Note that parameter uncertainties are not simply summed together, 

which would overestimate uncertainty.  This solution (Eq. (5)) is valid under the 

assumption that each model parameter is independent and lognormally distributed. 

 Describing the confidence interval requires the median, or geometric mean, as 

well as the geometric variance. The geometric mean of a model can be estimated first 

by estimating the model CV (Eq. (6)) and then with a variation of Eq. (4) (Eq. (7)).20 

CVmodel =      (6) 

 

μgeo of model =       (7) 

Models for uncertainty in UEVs 

 Numerous methods exist for computing unit emergy values21, but for uncertainty 

estimation, it is import to distinguish between them according to a fundamental 

                                            
20 Eqs. 5-7  adapted from Slob (1994) 
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difference in the way UEVs are calculated: the formula vs. the table-form model.  The 

formula model is used for estimation of emergy in raw materials, such as minerals, fossil 

fuels and water sources (the UEV in Table 1 is of this form). The traditional table-form 

evaluation procedure- is typically used for ecosystem products and products of human 

activities. Formula models are generally multiplicative models using estimates of 

various biophysical flows and storages in the biosphere as parameters.  In order to 

quantify variability within a formula model, such as an emergy calculation, the result 

distribution needs to be known or at least predicted.  Model parameters are generally 

positive values multiplied to generate the UEVs.  Such multiplicative formulas have 

been shown to lead to results approximating a log-normal distribution (Hill and Holst 

2001; Limpert et al. 2001). Therefore it would be logical to assume that UEVs calculated 

in this manner are distributed lognormally.   

 The model geometric mean and variance (Eqs. (5) and (7)), used in conjunction, 

offer an analytical solution for estimating uncertainty for formula-type unit emergy 

values, with some built in assumptions, foremost being that the model parameters have 

a common lognormal distribution.  For models with parameters of mixed and unknown 

distributions and large coefficients a variation, a common method for estimating 

uncertainty is to simulate a model distribution using a stochastic method such as Monte 

Carlo, and estimate uncertainty based on the model distribution’s confidence interval 

(Rai and Krewski 1998). A notable drawback of a stochastic simulation method is that 

the results obtained have some variability in themselves, which, however, can be 

reduced by increasing the number of iterations. 

                                                                                                                                             
21 See (Odum 1996) for procedure for calculating UEVs, which are also known as transformities when the 
denominator is an energy unit, or specific emergy when the denominator is a mass unit. 
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 Table-form UEV calculations would be more accurately described as sum 

products, where UEVs of inputs contributing to the total emergy in an item of interest 

are multiplied by the quantities of each input to get emergies in those inputs, and the 

emergy in each input is then added together to get the total emergy in the item of 

interest. This hybrid form operation is not readily amenable to an analytical solution (Rai 

and Krewski 1998).  In the absence of a readily-available analytical model for this type 

of UEV, a Monte Carlo model may be adopted  for modeling UEV uncertainty for table-

form calculations. 

Figure 3-1 provides an conceptual overview of the proposed uncertainty model.  

The analytical solution is used to model all quantifiable sources of uncertainty 

(parameter, model, and scenario) while the Monte Carlo model is used only to estimate 

total parameter uncertainty. 
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Figure 3-1.  Conceptual approach to modeling uncertainty.  The parameter uncertainty 

consists of uncertainty and variability in the parameters used to estimate the 
UEV; the scenario uncertainty consists of the uncertainty arising from use of 
parameter values for different geographic or technological scenarios; the 
model uncertainty from different models.  Only the proposed analytical 
solution incorporates scenario and model uncertainty to estimate total 
uncertainty. 

Modeling procedure and analysis 

 First the geometric variance and medians of five formula-type UEVs are 

estimated with the analytical solution to describe the type of variability and distribution of 

some commonly used UEVs, breaking down the uncertainty into the three classes 

described.  Parameter uncertainty for these same UEVs is then also estimated with the 

stochastic model, along with two table-form UEVs.  The modeling results are cross 

compared. As the distribution of UEVs has not previously been described, the resulting 

distributions from the stochastic model are tested to see how closely they fit traditional 
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lognormal and normal distributions, as well as a hybrid of the two.  In the process of this 

analysis a means of reporting UEV uncertainty for future incorporation and interpretation 

of uncertainty is described. 

 Uncertainty was estimated for five formula-type UEVs: lead, iron, oil, 

groundwater, and labor. These UEVs were chosen because they represent categories 

of inputs from the biosphere (labor excepted) –  scarce and abundant minerals, 

petroleum, water, and human input –  that form the basis of many product life cycles. 

 Models for calculating each UEV are presented in Table 3-2 along with their 

sources.  Parameter uncertainty was estimated as follows: ranges of values or multiple 

values from distinct sources when available were taken from the literature for each 

model parameter. The mean and sample standard deviation for each model parameter 

was calculated. With this value, the uncertainty factor, ω, corresponding to each 

parameter was calculated with Eq. (2).  The UEV parameter uncertainty was then 

estimated for the combined parameter uncertainty factors with Eq. (4). 

Table 3-2. Unit emergy value models used for parameter uncertainty calculations. 
Category Model Source 
Minerals UEVmineral = Enrichment Ratio * Land Cycle UEV, sej/g Cohen et al. 2008 

Enrichment Ratio = (ore grade cutoff, %)/(crustal 
concentration, ppm)/(1E6)a " 
Land Cycle, sej/g = (Emergy base, 15.83 E24 sej/yr) / 
 (crustal turnover, cm/yr)(density of crust, g/cm3) (crustal 
area, cm2) 
 

Odum 1996 

Petroleum UEVOil, sej/J = (1.68b * emergy of kerogen, sej/J)(C content, 
%)/((Conversion of kerogen to petroleum, fraction)*(Enthalpy 
of petroleum, 4.19E4 J/g)) 

Bastianoni et al. 
2000 

UEVcarbon in kerogen, sej/g = (emergy of C in phytoplankton, 
sej/g)/conversion to kerogen, fraction 

" 

UEVCarbon in phytoplankton, sej/g = (phytoplanton UEV, 
sej/J)*(Phytoplankton Gibbs Energy, 1.78E4 J/g)/ 
(phytoplanton fraction C) 
 

" 

Groundwater UEVgroundwater, sej/g =  (Emergy base, 15.83E24 Buenfil 2001 
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sej/yr)/(Annual flux, g/yr)  
 Annual flux, g/yr =  ((Precip on land, mm/yr)/(1E6 

mm/km))*(Land area, km2)*(infiltration rate, %)*(1E12 
L/km3)(1000 g/L) 
 

" 

Labor Total annual emergy use model. 
UEVlabor, sej/J = ((Emergy use)c/(Population)*(Per capita 
calorie intake, kcal/day)(365 days/yr)(4184 J/kcal)) 

Odum 1996 

a Omitted when concentration is reported in % 
 b Included for conversion from global emergy baseline of 9.44E24 to 

15.83E24 sej/yr 
 c Emegy use for global estimate was 1.61E26 sej/yr, or a total emergy use of the world's nations 

(Cohen et al. 2008) 
 

 Model and/or scenario uncertainty was incorporated by estimation of separate 

uncertainty factors for these types of uncertainty.  When multiple models existed for a 

UEV, the average and sample standard deviation of the UEVs produced by different 

models  were calculated.  Model uncertainty was estimated for lead, iron, petroleum and 

water.  When models exist for UEVs which are specific to a set of conditions but for 

which those conditions are unknown in the adoption of a UEV, scenario uncertainty can 

be included.  For instance if labor is an input in a process, but the country in which the 

labor takes place is undefined, there is scenario uncertainty which includes the 

variability of the emergy in the labor depending on which country it comes from.  Two 

scenario uncertainties were estimated for labor UEVs (one for US labor and one for 

world labor) for purposes of example. Parameter along with either model or scenario 

uncertainty were combined for an estimate of total uncertainty by combining the 

uncertainty factors for each parameter and for scenario and/or model uncertainty 

according to Eq. (5). This can be summarized as: 

total uncertainty = parameter uncertainty + model uncertainty + scenario uncertainty (8) 
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 In order to compare the consistency of the analytical solution for the median and 

geometric variance with the  confidence interval generated by the simulation, stochastic 

simulation models for the lead, iron, water, and labor UEV calculations were run.  A 

Monte Carlo simulation was scripted in R 2.6.2 statistical software © (R Development 

Core Team 2008) to calculate each UEV 100 times using a randomly selected set of 

parameters. Randomized parameters were created with a random function using the 

sample standard deviation and means of each parameter. The parameters were 

assumed to be log-normally distributed. 

The mean and standard deviations of the log-form of each parameter were used to 

create variables with a lognormal distribution, for which the following equations (Eqs. (9) 

and (10)) were used (Atchinson and Brown, 1957): 

σlogUEV =             (9) 

μlogUEV = ln (UEV) – O.5(σlogUEV)      (10) 

 The resulting set of UEV approximations (100) provide a distribution from which 

the left and right sides of the confidence interval can be estimated by the 2.5 and 97.5 

percentile values, respectively.  In order to get a representative sample, this procedure 

was executed 100 times thus generating 100 distributions (for a total of 10 000 UEV 

values). From each distribution, the mean, median, and standard deviation values were 

reported, and these values were averaged across the 100 distributions to arrive at 

average values for each UEV. From the average mean and standard deviation, the σ2
geo 

value for that UEV was estimated according to Eq. (1). 

 The stochastic simulation did not incorporate the model and scenario uncertainty 

components, which could only be estimated by way of the analytical solution.  The 
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stochastic simulation recalculates the UEV by varying the parameters, but does not 

incorporate uncertainty from use of alternative models or on account of parameters from 

other scenarios.  Thus to compare the stochastic and analytically-derived results from 

parameter uncertainty, the calculated parameter σ2
geo (Eq. (5)) may be compared with 

the  σ2
geo value obtained from the simulation distributions. 

 Uncertainty was also estimated for two UEVs calculated with the table-form 

model -- electricity from oil and sulfuric acid made from secondary sulfur.  The emergy 

tables used to estimate these two UEVs were simplified to include only items that 

contributed in total to 99% of the emergy in these items.22  Uncertainty was estimated 

solely with the Monte Carlo simulation routine used for the formula UEVs, with the 

following change:uncertainty data in the form of σ2
geo values for both inventory values 

(e.g. secondary sulfur in g in Table 4) and their respective UEVs (e.g. UEV for 

secondary sulfur in sej/g) were used in conjunction with their means to create random 

lognormal variables for use in the simulation.  Estimation of the natural log-form of the 

standard deviation for these variables for generating lognormal random values was 

slightly different than for the formula UEV case, because it used the σ2
geo value instead 

of the sample standard deviation (Eq. (11)). 

σlogUEV =             (11) 

The uncertainty factors in the Ecoinvent Unit Processes library for geometric 

variance were used for the σ2
geo values for the inventory data (Ecoinvent Centre 2007).  

For the UEVs of the inventory items, the deterministic mean and the geometric variance 

of the UEV for the same item calculated with the formula model were used when 

                                            
22 The table for electricity from oil was adapted from Brown and Ulgiati (2002) 
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appropriate as the mean and σ2
geo value, respectively.  This choice was based on the 

assumption that the inventory items (e.g. water to make sulfuric acid) had the same 

UEV as those calculated with formula UEV models (e.g. groundwater). 

 The 95% confidence interval of the simulation distributions for formula and the 

table-form UEVs  were compared with the confidence intervals predicted by a perfect 

log-normal distribution (μ geo (x÷) σ2
geo), those predicted by a normal-lognormal hybrid 

distribution using the arithmetic mean as the center parameter (μ (x÷) σ2
geo), and those 

predicted by a normal distribution (μ ± 1.96σ).  Eqs. (1) – (3) were used to estimate the 

μgeo  and σ2
geo from the μ and σ derived from the sample distribution. The percent 

difference between the predicted and model distribution tails was calculated to measure 

the how accurately the predicted distributions represented the model distribution. 

Results 

 The details of the uncertainty calculations for lead are shown in Table 3-3. For 

lead, parameter and model uncertainty were estimated. The σ2
geo values (approximately 

the upper tail of the distribution divided by the median) for the five parameters range 

from 1.03 to 2.25.  The total parameter uncertainty (σ2
geo) is larger than the largest 

individual parameter σ2
geo value, but less than the sum of these parameter σ2

geo values. 

The total  uncertainty for lead, consisting of the combined model and parameter 

uncertainty (without scenario uncertainty) is dominated by the model uncertainty, which 

has a large σ2
geo value due to large differences in previously published estimates used 

for the UEV of lead.  The 95% confidence interval for the lead UEV using this analytical 

form of estimation would vary across three orders of magnitude, from 4.38E+11 sej/g to 

5.38E+13 sej/g. However, if the UEV model used to estimate the mean was the only 
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acceptable model, the interval would shrink to 1.87E+12 – 1.26E+13, indicating 

considerably less uncertainty. 

Table 3-3.  Analytical uncertainty estimation for lead UEV, in ground. 
No. Parameters μ σ σ2

geo 

1 crustal concentration (ppm) 1.50E+01 1.41 1.20 
2 ore grade (fraction) 0.06 0.03 2.25 
3 crustal turnover (cm/yr) 2.88E-03 6.77E-04 1.58 
4 density of crust (g/cm3) 2.72 0.04 1.03 
5 crustal area (cm2) 1.48E+18 2.1E+16 1.03 

 
Models 

   6 Alternate Model UEVs 4.52E+11 7.25E+11 9.12 

 
Summary 

   
 

Unit emergy value, μ (sej/g) 5.46E+12 
  

 

Parameter Uncertainty Range (No. 1-5), μgeo (sej/g)  (x÷)  
σ2

geo 
4.85E+12 (x÷) 2.59 

  Total Uncertainty Range (No. 1-6), μgeo (sej/g)  (x÷)  σ2
geo 2.57E+12 (x÷) 11.09 

Sources 
   1 Odum (1996); Thornton and Brush (2001) 
   2 Gabby (2007) 
   3 Odum (1996); Scholl and von Huene (2004) 
   4 Australian Museum (2007); Odum (1996) 
   5 UNSTAT (2006); Taylor and McLennan (1985); Odum (1996) 

 6 ER method and Abundance-Price Methods (Cohen et al. 2008) 
  

 The geometric variance calculations from the analytical solution for the formula 

UEVs (lead, iron, crude oil, groundwater, and labor) showed a wide range of values 

presented in Table 3-5. Geometric variance values were dominated by model or 

scenario variances in the cases of the minerals and labor.  The total parameter 

uncertainty ranged from 1.08 for labor to 3.59 for crude oil, whereas model uncertainty 

was as high as 9.12 for lead. 

The confidence intervals estimated from the analytical and stochastic methods 

were of similar breadth (for all five formula UEVs), although they were not identical – the 

intervals from the analytical solution were all shifted slightly to the left. 
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The Monte Carlo simulation of the UEVs produced largely right-skewed 

distributions, as indicated by the means for UEVs  (see column 3 of Table 5) being less 

than the medians.  Without exception the means of the simulated UEV distributions 

were less than the medians. 

 The table-form UEV calculation for sulfuric acid appears in Table 3-4. The 

geometric variance values for the inputs of secondary sulfur and diesel are those 

calculated for oil in the ground23; the UEV for diesel is that calculated for oil; the UEV for 

electricity from oil was calculated from an emergy table and the geometric variance is 

the σ2
geo value from the Monte Carlo simulation; and the UEV and geometric variance 

for water are those calculated above for groundwater.  The Monte Carlo simulation 

resulted in a median of 6.51E7 and a σ2
geo value of 1.75, which, in comparison with the 

formula UEVs, indicates less of a spread in the distribution for this UEV.  The other 

table-form UEV, electricity, also had a σ2
geo value less than that of its major input, crude 

oil, suggesting a pattern of less breadth in the confidence intervals of table-form UEVs 

than those of their most variable input. 

Table 3-4.  Emergy summary with uncertainty of 1 kg of sulfuric acid.a 

        
Relative 

Data    
Relative 

UEV  Solar 

  
Data 

 
Uncertainty UEV Uncertainty Emergy 

No Item (units) Unit σ2
geo (sej/unit) σ2

geo (sej) 

1 
Secondary 
sulfur 2.14E+02 g 1.32 5.20E+09 3.59 1.11E+12 

2 Diesel 3.41E+03 J 1.34 1.21E+05 3.59 4.13E+08 
3 Electricity 6.30E+04 J 1.34 3.71E+05 2.77 2.34E+10 
4 Water 2.41E+05 J 1.23 1.90E+05 1.95 4.57E+10 

 
Product 

      5 Sulfuric acid 1.00E+03 g 
 

1.18E+09 3.31 1.18E+12 

                                            
23 Assuming the geometric variance is the same because they share similar UEV models, which is an 
assumption mentioned later in the discussion. 



 

71 

        bCI95 = 8.10E+08 (x÷) 3.31    
Notes:  

      1. UEV for secondary sulfur and diesel from Hopper (2008). Uses k-value for oil since secondary 
sulfur is a petroleum by-product. 

4. UEV in sej/J = (UEV for global groundwater, 9.36E5 sej/g)/(4.94 J/g) 
  Footnotes: 

      a Inventory data from Ecoinvent 2.0 (Ecoinvent Centre 2007) 
b Example of incorporation of a confidence interval into an emergy table assuming a lognormal 
distribution. 

 

 Table 3-6 summarizes the results of the Monte Carlo simulations for all UEVs 

when the parameter distributions were assumed lognormal, and compares the resulting 

confidence intervals against those that would be predicted by lognormal, hybrid, and 

normal distributions.   A number of notable differences are present between these 

results and those of the calculated uncertainty values for formula UEVs in Table 3-5.  

The UEV means from the simulation are higher in all cases than the deterministic 

means presented in Table 3-5, but the simulation median values are lower than the 

deterministic means. The σ2
geo values from the simulation, which were calculated 

according to Eq. (1) from the average mean and standard deviations of the Monte Carlo 

distributions,  are not identical to the parameter geometric variance values from Table 

3-5; however, the Monte Carlo σ2
geo values were always ± 5% of the analytically 

calculated geometric variances.   

The lognormal confidence interval was the best fit for the simulated UEV 

distributions: error of the lognormal approximation of either the lower or upper tail was 

never larger than 5%. However this distribution tended to consistently overestimate the 

confidence interval.24  The hybrid distribution tended to predict a distribution shifted to 

                                            
24 This could be in part be explained by the fact that the equation (3) is more precisely for a 95.5% 
confidence, rather than a 95.0%, confidence interval (Limpert et al. 2001). 
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the right of the model with increased error, and the normal distribution often predicted a 

lower tail many orders of magnitude less than the model value.  The smaller the 

standard deviation relative to the mean (reflected by the σ2
geo value), the better all 

predicted distributions fit the model interval.  In the case of the two table-form UEVs, 

electricity from oil and sulfuric acid, the lognormal confidence interval tended to 

underpredict the model lower tail more severely (suggesting that the tail is closer to the 

mean), but was still the best fit when considering the combined error in both tails. The 

left tail of these model UEV distributions was more constricted, and in these cases the 

quotient of the model mean and σ2
geo value, reflected by the hybrid model, was a closer 

approximate of the lower tail.  
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Table 3-5.  UEV uncertainty estimated from the analytical solution. 

Item 
UEV 
Den. 

 
UEV 

(sej/Den.) 
Parameter 

μgeo 
Parameter 

σ2
geo 

Model 
and/or 

Scenario1 
σ2

geo 
Total 
μgeo 

Total 
σ2

geo 

Lower 
UEV using 
parameter 
uncertainty 

Upper 
UEV using 
parameter 
uncertainty 

Lower 
UEV using 

total 
uncertainty 

Upper 
UEV using 

total 
uncertainty 

Lead g 5.46E+12 4.85E+12 2.59 9.12 2.57E+12 11.09 1.87E+12 1.26E+13 4.38E+11 5.38E+13 
Iron g 1.06E+10 1.15E+10 2.00 6.66 7.18E+09 7.53 5.73E+09 2.29E+10 1.52E+09 8.63E+10 
Crude oil J 1.21E+05 9.78E+04 3.59 1.04 9.77E+04 3.59 2.72E+04 3.51E+05 2.72E+04 3.51E+05 

Groundwater g 9.36E+05 8.90E+05 1.86 1.28 8.83E+05 1.95 4.78E+05 1.66E+06 4.56E+05 1.74E+06 

Labor J 6.74E+06 6.73E+06 1.08 11.43 3.11E+06 11.44 6.26E+06 7.24E+06 5.89E+05 7.70E+07 
1 All values represent model uncertainty, except for labor for which this is scenario uncertainty  
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Table 3-6. UEV Monte Carlo results and comparison of model CI's with lognormal, hybrid, and normal confidence 
intervals. 1 

Item 

  Monte Carlo Results  Model 95% CI Predicted 95% CIs 

  
 

      Lognormal CI Hybrid CI Normal CI 

UEV 
Type2 μgeo σ2

geo Lower Upper 
Lower 
error 

Upper 
error 

Lower 
error 

Upper 
error 

Lower 
error 

Upper 
error 

Lead F 5.19E+12 2.73 1.93E+12 1.38E+13 -1.5% 2.6% 12% 17% -123% -11% 

Iron " 1.30E+10 1.99 6.62E+09 2.53E+10 -1.8% 2.3% 4.5% 8.8% -40% -6.6% 

Crude oil " 1.57E+05 3.55 4.66E+04 5.44E+05 -4.5% 2.9% 18% 27% -273% -14% 
Ground 
H2O " 9.40E+05 1.92 5.06E+05 1.77E+06 -2.9% 2.4% 2.6% 8.3% -35% -5.8% 

Labor " 6.91E+06 1.08 6.45E+06 7.40E+06 -0.32% 0.35% -0.25% 0.42% -0.57% 0.12% 
Electricity 
from oil T 2.81E+05 2.77 1.16E+05 7.68E+05 -12% 2.4% 0.85% 17.3% -126% -11% 
Sulfuric 
Acid T 8.10E+08 3.31 2.72E+08 2.67E+09 -10% 0.50% 31% 47% -179% -96% 

 
1 Confidence intervals defined as follows: Lognormal = μgeo (x÷) k; hybrid = μ (x÷) k; normal = μ ± 1.96σ. 
 2 F = formula UEV; T = table-form UEV.  UEVs are in sej/g for lead, iron, groundwater, and sulfuric acid, and sej/J for crude oil, labor, and electricity from oil. 

.
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Discussion and Conclusions 

 To fully characterize uncertainty for UEVs, the sources of uncertainty need to be 

identified and quantified.  The classification scheme introduced by the EPA provides a 

useful framework which helps in identification of quantifiable aspects of uncertainty. 

However in practice, describing the uncertainty in parameters, scenarios and models 

requires significant effort and must draw from previous applications of various models 

and across various scenarios.  In this manuscript, the data sufficient to characterize 

these three types of uncertainty for each UEV was not readily available, and as a result 

in no cases has a total parameter uncertainty been estimated that includes all 

parameter, model, and scenario uncertainty for lack of either multiple models or 

modeled scenarios from which to include that component of uncertainty.  Unless one or 

more of these types of uncertainty can be categorically determined to be absent for a 

UEV, the uncertainty measures presented here underestimate the total uncertainty in 

these UEVs. 

 Acknowledging this underestimate, how much uncertainty are in unit emergy 

values?  Parameters for describing the uncertainty ranges inherit in 7 UEVs have been 

presented and analyzed here. Informally, emergy practitioners may have assumed an 

implicit error range of “an order of magnitude”, but this analysis reveals such a general 

rule of thumb is inappropriate.  As quantified here the UEVs may vary with either less or 

more than one order of magnitude, but this is UEV specific.  However, when UEVs have 

as their basis the same underlying models, if the parameters specific to one or more of 

UEVs have a similar spread, then the UEV uncertainty should be similar.  Thus, as was 

demonstrated here, uncertainty values for a UEV may be co-opted from an UEV 

calculated with the same model (eg. minerals in the ground) with reasonable confidence 
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if original estimation is infeasible. Adoption of geometric variances from UEVs 

calculated with the same model would provide an advantage as a reasonable estimation 

of uncertainty rather than a vague or undefined measure.  

Quantifying model uncertainty may have implications regarding the certainty of 

comparative evaluations.  Figure 3-2 shows the UEVs estimated for different types of 

electricity in Brown and Ulgiati (2002) –  all fall within the range of confidence interyal of 

the UEV for oil, estimated from the mean UEV reported by the authors and the 

geometric variance calculated for this electricity type in this paper (2.77), using 

equations 5 and 6 to estimate the median and equation 3 to estimate the tails.  Although 

it appears that from this analysis the UEVs of electricity sources would be statistically 

similar, this ignores the fact that many of the same UEVs are used in the inputs to these 

electricity processes.  Hypothetically, if the same UEVs are used as inputs to processes 

being compared, relative comparisons can still be made, all of the variance due to the 

UEVs of inputs is covariance. This represents a problem of applying this uncertainty 

model to rank UEVs where there is strong covariance, which is not addressed here. 

 
Figure 3-2.  Published UEVs for electricity by source (diamonds on axis) from Brown 

and Ulgiati (2002), superimposed upon a modeled range of the oil UEV, using 
the geometric variance for electricity from oil (σ2

geo = 2.77) calculated in this 
paper. 
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Comparing the analytical and stochastic solutions 

 Multiple advantages of proceeding with an analytical solution have been listed in 

the risk analysis literature.  These include the ability to partition uncertainty among its 

contributing factors and identify factors contributing to the greatest uncertainty in a 

model (Rai and Krewski 1998) as well as the greater simplicity of calculation (Slob 

1994).  Further advantages suggested here in the context of UEVs are the ability to 

include other sources of uncertainty which cannot be quantified in a simple Monte Carlo 

analysis, and the ability to replicate the values for geometric variance.   

 However, because table-form UEVs are the most common form of emergy 

evaluation, and the stochastic simulation method is the only method presented which is 

functional for this form of unit emergy calculations, the stochastic method is likely to be 

more useful to emergy practitioners.  

 Model and scenario uncertainty components, which were not quantified in the 

Monte Carlo simulation, can be particularly significant in emergy, due to the fact that 

emergy values for a product are often used across a wide breadth of scenarios, 

computed with alternative models, and adopted in subsequent evaluations by other 

authors without knowledge of the context in which the original UEVs were calculated.  

The most desirable solution to these problems with uncertainty would be: first for model 

uncertainty, to agree on the use of consistent models for a UEV type to eliminate the 

discrepancy that occurs between competing models; for scenario uncertainty, to make 

UEVs more scenario specific whenever possible to eliminate scenario uncertainty.  

Where elimination of this model and scenario uncertainty is not possible, an alternative 

would be to develop a more complex version of stochastic model that would include 

estimation of model and scenario uncertainty in addition to parameter uncertainty. 
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 Following from what is predicted mathematically, this study confirmed that 

formula UEVs as multiplicative products fit a lognormal distribution better than a normal 

distribution. Table-form UEVs, while they are sumproducts, also tended to be better 

described by lognormal distributions than normal distributions, although the two UEVs 

simulated both fits this distribution to a lesser degree than the formula UEVs.  Using the 

deterministic mean as the center parameter for a multiplicative confidence interval, 

represented by the hybrid approach, may be a tendency of emergy practioners for 

simplified description of confidence intervals, but was shown here to result in more error 

than using the median, except for the estimate of the lower tail of the confidence interval 

for table-form UEVs.  

Conclusions 

 Ultimately the accuracy of UEV uncertainty measures depend upon the 

representativeness of the statistics describing the model parameters.  In this case a 

broad but not exhaustive attempt was made to describe uncertainty and variability in the 

model factors for the UEVs evaluated.  For this reason, this author recommends 

sources of uncertainty be further investigated and more thoroughly quantified before 

they are propagated for use in future studies.  The responsibility should rest with 

authors to diligently seek out and to summarize the uncertainty in parameters they 

adopt, and to perpetuate that uncertainty with the UEV uncertainty both to present the 

uncertainty of their own work and so that it can be adopted by those that use this UEV 

in the future. 

 By describing uncertainty associated with emergy estimates, emergy is more 

likely to become adopted as a measure of cumulative resource use or for other purpose 

in LCA.  Description of uncertainty in parameters and across models and scenarios will 



 

79 

increase transparency in emergy calculations, thus answering one of the critiques which 

has hindered wider adoption (Hau and Bakshi 2004a).  Uncertainty descriptors, namely 

the geometric variance, can be used along with inventory uncertainty data to calculate 

uncertainty in estimates of total emergy in complex life cycles. It can be further be used 

to compare different life cycle scenarios with greater statistical confidence.  Pairing 

UEVs with uncertainty data and identifying sources of uncertainty will also help  emergy 

practitioners understand and report the statistical confidence of their calculated emergy 

values and to prioritize reduction of uncertainty as a means to improve the accuracy of 

emergy values. 
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4. CHAPTER 4  

LIFE CYCLE ASSESSMENT FOR FRESH PINEAPPLE FROM COSTA RICA – 
SCOPING, IMPACT MODELING AND FARM LEVEL ASSESSMENT  

Introduction 

Although tropical fruits and their derivative food products make up a substantial 

and increasing portion of the fruit consumption in the temperate countries of Europe and 

North America25, little life cycle data or published life cycle assessments (LCA) of these 

products are available.  At the same time, large areas and substantial resources in 

tropical countries are dedicated to growing tropical fruits, such as banana, pineapple, 

and mango, primarily for export (FAO 2009).  Associated local and global environmental 

impacts need to be accounted for and better managed both locally and globally as these 

fruits continue to grow as a proportion of temperate-climate diets.  One way to 

encourage better environmental management could be through LCA-based Type III 

environmental product declarations (EPDs), so that quantitative environmental 

information can be used to help producers make better management choices and help 

buyers and consumers make informed environmental choices that take into account the 

full product life cycle (Schenck 2009).   

Objectives 

The primary objective of this study was to conduct a background LCA of fresh 

pineapple production in Costa Rica to be used as a guide for creating a product 

category rule (PCR) for fresh pineapple, as specified by ISO 14025 (6.7.1 ISO 2006b).  

The development of a PCR is a mandatory step toward the process of creating an EPD.  

                                            
25 Pineapple import growth (by weight) was 248% from 1996-2006 in the EU and North America while 
only 56% for grapes, 33% for bananas, 27% for apples, and 14% for oranges in the same period (FAO 
2009). 
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A goal of any product category rule is to enable comparative assertions of 

environmental performance between products of the same category.  To create a PCR, 

a background LCA can be used as a reference for establishing the environmental 

impact categories and indicators for reporting, methods for conducting inventories and 

estimating impacts, and calculation parameters for these inventories and impact 

models.  Although the objective is to create a PCR for fresh pineapple, this LCA is 

scoped bearing in mind the functional use of the product, to provide nutrition through 

fruit consumption, and thus is created with the wider intention of providing life cycle data 

relevant to a wider range of environmental impacts of concern in fruit-product supply 

chains.  Impacts are estimated with methods that are as globally-valid and adaptable as 

possible, to permit comparable analysis with other fruit-group food products.  The LCA 

should have sufficient coverage to represent the range of climatic, field, management, 

and production levels so that ranges of potential impacts can be bounded with a 

statistical confidence.  Furthermore comparisons of environmental performance are 

made between fresh pineapple and other fruits through the farm scale to provide an 

initial analysis of how fresh pineapple from Costa Rica compares to production of other 

fruits consumed raw or used as the basis of processed food products. 

A secondary objective is to provide a model for other such background LCAs of 

agricultural products, particularly for those that have yet to be performed in countries 

and environments where assumptions made in emission and impacts models may not 

hold and that hence require regional adaptation of these models for more accurate 

impact assessment. 
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The fresh pineapple system in Costa Rica 

Costa Rica is the largest provider of fresh pineapple to the EU and the US.  

Approximately 85% of pineapples imported to the U.S. in 2005  were produced in Costa 

Rica; in the EU 71% of fresh pineapple imports came from Costa Rica (FAO 2009). 

Pineapple export has overtaken coffee to become Costa Rica’s second largest 

agriculture export (to bananas) in terms of international exchange.  This production has 

resulted in a rapid expansion of pineapple plantations in the Limon (Atlantic region), 

Alajuela (North region), Heredia (North region), and Puntarenas (Pacific region) 

provinces (Bach 2008).  There are a number of environmental and health-related 

concerns surrounding this recent expansion and the modern production process.  Public 

concerns include soil erosion, pesticide contamination of natural areas and water 

supplies, lowering of water tables, worker exposure to agrochemicals, and impacts of 

organic wastes, among others (Sandoval 2009).  

Pineapples are primarily grown in three regions, hereafter referred to as the North, 

Atlantic, and Pacific regions, on ultisols but also on other well-drained mineral soil 

orders.  Pineapples for the fresh export market in Costa Rica are a highly technical, 

non-traditional cash crop.  The high level of technicality has resulted in a high degree of 

uniformity in production systems to meet international standards (e.g. GLOBALGAP) 

and produce competitive yields and fruit quality.  The variety grown almost universally 

for export is the MD2, or “golden”.  A good description of the production process in 

Costa Rica can be found in Gomez et al. (2007).  Fields are prepared with adequate 

drainage and raised beds.  Seed materials are most often suckers (shoots from existing 

plants) harvested within farms.  Once established pineapples require regular fertilization 

primarily through foliar application of fertilizers. Nematicides, herbicides and insecticides 
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are used to reduce pests and competition.  Once mature (about 150 days on average) 

plants are often “forced” to begin fruiting, usually by application of ethylene gas. Fruits 

are ready for harvest in another six months, from where they are manually harvested 

and transported to packing facilities.  When plants are not left to produce a second 

harvest, they are chopped and the field is prepared again for another planting. 

Methods 

System boundaries and functional units 

The LCA boundaries are the farm stage though transport to the packing facility 

including all upstream processes.  
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Figure 4-1 shows how this LCA integrates into a farm-to-shelf production chain. 
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Figure 4-1.  Fresh pineapple production unit processes and boundaries for the LCA.  

The first unit process is the focus of this paper. 
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The primary functional unit (FU) is 1 kg of fruit delivered to the packing facility.  For 

comparison with other fruit products at the farm level, one serving of fruit at the packing 

facility is used, because it is a more relevant unit for comparison because of its 

functional equivalency.  The USDA defines a serving of fruit as 1 cup of fresh fruit, 

which for pineapple is 165 g (USDA 2009).  In order to estimate the number of servings 

that can be obtained for 1 kg of pineapple the following equation is used: 

Servings/kg fresh weight fruit = (edible fraction of fruit)/(kg fruit/serving) [12] 

For pineapple this results in 3.09 servings/kg fresh fruit.  Life cycle inputs for all inputs of 

agrochemicals and machinery and related emissions are included.  Permanent farm 

infrastructure (buildings and road) was judged to be environmentally insignificant and 

excluded from the study. 

Data collection 

A public call for producer participation in this LCA followed from a workshop 

organized in San Jose, Costa Rica in July 2009 for pineapple producers, government 

officials, LCA experts, and other potential stakeholders to present the concept of LCA-

based EPDs (Ingwersen et al. 2009).  Participation in the LCA was anonymous to 

encourage sharing of production data and evaluating environmental performance 

without revealing any private producer data.  Farms representing all three primary 

producing regions of the country, with management schemes including conventional 

and organic, and with sizes ranging from 1 to >1000 hectares were directly solicited in 

order to seek a representative sample.  Following agreement to participate, each 

producer was sent a standardized questionnaire requesting data on historical farm area,  

production inputs including fuels, fertilizers, pesticides, water use, agricultural 

machinery models and use, yield, harvest schedule, distance and means of transport to 
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the packing facility.  Data collection was supervised through in-person meetings with 

producer contacts to assure common understanding of the questions for data collection.  

Data were later verified through comparison of data items across the entire participant 

pool to assure that input data were  reasonably suited to pineapple production 

requirements.  To acquire site-specific data for inventory emissions models, farms were 

visited and data on soils, topography, and operations were collected. 

Because of the discontinuity between the non-annual production cycle and annual 

data collected from producers, all annual production input data had to be adjusted with 

the following equation. 

Input, x/kg pineapple = (Annual input, x/yr)/(Farm area, ha)/(Harvest 

kg/ha/harvest)(harvests/yr) [13] 

Because of the same reasons mentioned above, yield data were collected on a per 

harvest basis. 

Data on all production inputs were matched with the appropriate processes in the 

Ecoinvent v2.0 database (Ecoinvent Centre 2007) for inclusion in the inventory and 

entered into SimaPro software (PRé Consultants 2008b) after being converted into 

EcoSpold XML format for validation.  For pesticides reported, mass of the active 

ingredient applied was determined and used as the mass of the pesticide input from 

Ecoinvent of the same class (Nemecek and Kagi 2007).  New processes were created 

for inputs without appropriate equivalents in the Ecoinvent database by assembling their 

active ingredients under a new process. N-P-K fertilizers were estimated by combining 

single or double fertilizers in quantities to match the N-P-K weight ratios of the actual 

fertilizers, as recommended by the Ecoinvent designers (Nemecek and Kagi 2007).   
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Emissions and Impact Models 

Emissions and impact models were chosen based on the following criteria: 

1. Universal midpoint models are used for global impacts (e.g., climate 

change) 

2. Regionalization of universally-applicable endpoint models are used for local 

impacts of concern when available (e.g., USETox) 

When appropriate characterization factors are not yet available, the measured impacts 

are reported as the quantity of relevant emissions. 

Recent work in the environmental evaluation of the food sector has focused 

heavily on carbon footprinting, in conjunction with the development of product-level 

carbon footprinting standards (Sinden 2008). Acknowledging the growing importance of 

this effort, rules for carbon accounting in this LCA are set as synchronously as possible 

with the PAS 2050 standard.  Land transformation from forest is a potentially significant 

contributor to carbon release surrounding agricultural products, especially in tropical 

regions (Ebeling and Yasue 2008).  Carbon loss from land transformation in kg C/ha 

was estimated only when conversion from primary or secondary forest was reported.  

Loss was estimated by identifying the historical Holdridge life zones that occupied the 

land the farm currently occupies (Holdridge 1967) and summing the carbon in living 

biomass (Helmer and Brown 2000) with the estimated soil carbon (IPCC 2007) and 

dividing this carbon loss over 20 years.   Emissions to air resulting from on-farm fuel 

combustion were estimated based on the same fuel-specific coefficients and equations 

used for agricultural data in the Ecoinvent database (Nemecek and Kagi 2007). 

Estimating other emissions from farm stage processes required customization of 

emissions models capable of capturing, to the extent possible, the crop and field-
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specific variables that affect these emission rates.  Models capable of parameterization 

with site-specific inputs were used to estimate emissions of eroded soil, consumed 

water, nitrogen and phosphorus in fertilizers, and active-ingredients of pesticides.  

Emissions of nitrogen and phosphorus compounds to air and water are functions of 

crop- and field-specific factors.  Pathways considered here for N include uptake, 

ammonia, dinitrogen oxide, and nitrous oxide formation and volatilization, and nitrate 

leaching and runoff .  Modeled pathways for P include uptake, phosphate runoff, and 

loss of P bound to sediments from erosion.   Uptake quantities were based on the 

average N and P concentration in pineapple leaf tissue. Equations and references used 

in estimating N and P emission can be found in the Appendix.  

The PestLCI model (Birkveda and Hauschild 2006) was customized with site-

specific climate and soil data to quantify the fate of pesticides applied in the field to air 

and water.  Because drainage is present on the majority of pineapple farms, drainage 

was assumed to be 100% effective in the model and thus all emissions to soil that are 

either lost via direct runoff after application or after lost after leaching through the soil 

column were characterized as an emission to surface water. Pesticides not present in 

the default PestLCI model provided by the authors were added into the database so that 

fate of all pesticides applied to the field could be characterized.  Characterization was 

farm-specific but application dates were unknown and thus the annual average of 

climate data was used.  The plant type “2”, citrus, was chosen from the two plant types 

available, because the thick cuticle most resembles that of pineapple (Malézieux et al. 

2003).  Assumed canopy cover was 75% at time of application.  All other default 

settings in PestLCI were maintained. 
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For estimating consumed water, the FAO CROPWAT model (Swennenhuis 2009) 

was parameterized with site-specific climatic and soil data, and plant-specific 

parameters.  Actual water use from the “irrigation schedule option” was the quantity of 

water reported.  Irrigation water was added through the irrigation schedule for farms that 

use irrigation.  Farm specific climate data were taken from the FAO LocClim database 

based on the geographic coordinates of the farms, and coupled with farm data on 

irrigation practices from the questionnaires.  Other general model assumptions and 

plant-specific parameters can be found in the appendix. 

Soil erosion was estimated for each farm using the most recent ARS version of the 

RUSLE2 model (Foster et al. 2008), and customizing it for site-specific conditions.  

RUSLE2 models rain-based erosion on overland flow paths.  Not included in this model 

are wind-based erosion and rain-based erosion from ditches or other concentrated flow 

areas, which are less significant sources of erosion on Costa Rican pineapple farms.  

Climate data required for the model were interpolated with the FAO Locclim database 

from the nearest 12 weather stations,  including temperature, monthly rainfall, and 

number of days with rain per month (FAO 2010).  R-values (rainfall intensity factors) 

were adopted from maps created in an implementation of the USLE model for the 

country of Costa Rica (Rubin and Hyman 2000).  To parameterize the model, the 

following measurements were taken in representative areas of each participating farm: 

the percent slope and effective length of the slope were measured for each unique 

slope in the farm segment using a clinometer and metric tape.  A unique slope 

consisted of a slope ± 2-3 % different from other slopes based on visual assessment or 

with unique drainage or contouring (e.g., bed direction) elements.  In each area of the 
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farm with a unique soil profile, the profile was described and samples were collected for  

soil texture analysis (Burt 2009). Slope and soil data collected in the field were used 

along with farm specific management data including production schedules and other 

general data on pineapple morphology. One model was run for each unique 

combination of soil, % slope, field geometry and production schedule within each farm.  

Results for each farm were then averaged based on the total farm area represented by 

those conditions.  Erosion occurring during initial conversion of the land from previous 

land use was not estimated.  All general assumptions and parameters selected for the 

RUSLE2 model are reported in the appendix (Error! Reference source not found.). 

Sensitivity analyses of the adaptations of the PestLCI, RUSLE2, FAO CROPWAT 

models were conducted by selecting environmental and management scenarios 

reported or assumed to exist based on expert knowledge of the sector.  Analyses were 

performed using the production-weighted average of sample data (described below) 

and the climate variables of the North region as the default condition.  Percent changes 

from the default conditions were reported by sequentially varying model variables within 

ranges naturally present in climate, field conditions, pineapple physiology, or ranges 

reported in management and harvest schedule.   

Estimating the sector Range of Environmental Performance 

In order to meet the goal of conducting an LCA representative of production in the 

sector and maintaining the anonymity of producers participating in the study, a single 

unit process was created from the inventories of the participating farms.  This process 

was used to create a distribution of environmental impacts to characterize the sector, 

henceforth referred to as the sector range of environmental performance (RoEP).  To 

create the unit process, production-weighted average input data from the individual 
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farms were used as means, and parameterized with confidence intervals based on 

ranges existing within and among farms, or moreover likely to exist within the sector.  

For pesticide inputs and related emissions, only inputs to conventional farms were used 

in the baseline because inventory data on biological control agents and their associated 

environmental impacts were not available. 

Each of these inventory inputs was parameterized with a standard deviation based 

on the variation among the sample farms, and assumed to have a normal distribution.  

A correction of uncertainty for each input had to be made to reflect the variation in yield 

within and between farms.  A standard deviation of yield within each farm was estimated 

using the reported min, max, and mean production values. A production-weighted 

combined uncertainty of the yield was estimated with a propagation of standard 

uncertainty formula (NIST 2010) of the form:  

 CVyield = √(CV2
a* (Pa/Ptotal)2 + CV2

b* (Pb/Ptotal) 2 + …. CV2
z* (Pz/Ptotal) 2) [14] 

where CVyield is the coefficient of variation of the yield for the baseline scenario, CV2
 is 

the square of the coefficient of variation of the yield for a farm a,  and Pa/Ptotal is the 

percent of the total production of farm a from the total production of participating farms.  

The uncertainty based on variation in production inputs per hectare and uncertainty 

based on yield were then combined to estimate total uncertainty for each input, using 

the simplified form of  equation 3:  

CVmod, input,i =  √( CV2
yield + CV2

input,i,)  [15] 

where CVmod, input,i  represents the yield-modified coefficient of variation for input i.  The 

standard deviation used to parameterize a normal distribution for a given input, i was 

then estimated by multiplying CVinput,i by the sample mean value. 
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For the emissions inventory, log-normal distributions were assumed and extremes 

from sensitivity analyses of the emissions models were assumed to represent the 2.5% 

and 97.5%  values of these distributions.  The geometric variance (GVemission), or 

measure of spread of the lognormal distribution, of the modeled emission from the 

sensitivity analysis was estimated by taking the maximum positive % change from the 

tested parameter values, dividing by 100% and adding 1.26  The  variation based on the 

sensitivity analysis was combined with variation in farm yields and in the production 

input related to that emission (e.g. nitrogen fertilizers for nitrate).  A variation of equation 

4 for propagation of uncertainty for lognormal variables was used to combine 

uncertainty from sensitivity analyses with yield uncertainty using to the follow formulas: 

GVmod,emission i = exp( √( ln(GVyield) 2 + ln(GVinput, i) 2 + ln(GVemission i,) 2)  [16] 

where GVmod,emission i  is the yield-modified GV of the emission, GV2
 yield, i is again the GV 

of the yield, GV input, i
  is the GV of the respective input related to the emission, and 

GVmod,emission i is the GV of emission, i.   For emissions related to multiple inputs, the GV 

input, i
  used was the related input with the maximum coefficient of variation. GV for the 

inputs and emissions were calculated from the coefficient of variation with the formula 

(Slob 1994): 

GVx = exp(1.96√ln(1+CVx
2)) [17] 

where GVx is either the GV of yield or input and CVx is the coefficient of variation of the 

input or emission.   

An exception to a production-weighted average of emissions was made for 

modeling the emission of carbon dioxide potentially resulting from land-use change. For 

                                            
26 For example, if they max percent change from the default value from the sensitivity analysis was +60%, 
the estimated geometric variance = 1+60%/100% = 1.6.  
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estimation of carbon emissions, the PAS 2050 standard dictates that, for cases where 

an agricultural product is from an unknown location in a country, the land use 

transformation allocated to the product should be the carbon lost in conversion of the 

most carbon-rich ecosystem of the country divided by the lifetime of the crop (default =  

20 years) (Sinden 2008).  The max potential kg C/ha loss was estimated by overlaying 

the historical Holdridge life zones on current pineapple-occupied areas (Holdridge 

1967), selecting the life zone with the highest storage of above ground and below-

ground carbon (Helmer and Brown 2000), adding in estimated soil carbon (IPCC 2007), 

and dividing this carbon loss over 20 years.  The uncertainty range of carbon loss 

allocated to pineapples due to conversion from forest was then modeled with a uniform 

distribution with the min equal to 0 and the max equal to the max potential carbon loss, 

all in kg/ha. 

Monte Carlo simulations with 1000 runs were executed in SimaPro for each impact 

(described below).  The final RoEP was estimated by taking the ends of the 99% 

confidence intervals (0.5th and 99.5th percentiles) to represent the ends of the RoEP. 

LCIA Indicators 

The measures of environmental impact selected, or LCIA indicators, were chosen 

both because of their precedence in existing agricultural LCA and for their 

environmental relevance to both the geographically-specific human health and 

environmental concerns of the regions as well as larger concerns associated with the 

farm stage in production of fruit products.  Characterization was done for both farm 

stages and upstream processes for farm inputs (e.g., manufacture and transport of 

agrochemicals to the farm).  Impact categories selected were cumulative energy 

demand, potential soil erosion, potential aquatic eutrophication, water footprint and 
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stress-weighted water footprint,  human and freshwater toxicity, carbon footprint and 

land use.   

Soil erosion impact 

Soil erosion or loss is infrequently reported as an emission and lacks a suitable 

LCIA methodology to relate erosion to impacts to damage to ecosystems or human 

communities.  Soil erosion was one impact category with particular concern to experts 

from non-OECD countries and thus recommended for further development in LCAs 

studies by members of the UNEP working group on LCIA in 2003 (Jolliet et al. 2003b).   

Soil loss or potential has been reported as an inventory indicator in mass of soil lost or 

depleted per functional unit (Heuvelmans et al. 2005; Peters et al. 2010; Schenck 2007) 

and is done as such here. 

Cumulative Energy Demand 

Energy use from non-renewable resources is often considered an indicator 

appropriate for all product systems and has been shown to correlate well with other 

categories of environmental impact (Huijbregts et al. 2010).  Total energy life cycle use 

in fuels and electricity is measured using the Cumulative Energy Demand (CED) 

indicator implemented in the Ecoinvent database (Frischknecht and Jungbluth 2007). 

Only characterization of non-renewable energy from fossil sources is implemented here.  

A proposed indicator (Ingwersen in Press) based on the emergy method is potentially a 

stronger indicator of resource use for agricultural systems, but, because 

characterization factors were not available for the majority of the Ecoinvent processes 

used in the inventory it was not applied here. 



 

94 

Virtual water content and stress-weighted water footprint 

Freshwater consumption and its resulting impacts on water availability and quality 

for ecosystems and human health is a significant environmental concern, particularly in 

areas susceptible to drought or water scarcity from overuse.  Food consumption is a 

strong driver of water use globally (Chapagain and Hoekstra 2004).  Nevertheless, 

estimating freshwater consumption has only recently been developed in reference to the 

water required per unit of food output, and just in the last year been integrated into LCA 

as an LCIA method (Pfister et al. 2009).  Here, water consumption is estimated both by 

the water footprinting method (Hoekstra et al. 2009), henceforth referred to as 

volumetric water footprint to reduce confusion of terms, and further extended as a 

midpoint LCIA method called stress-weighted water footprint (SWWF), as described by 

Ridoutt and Pfister (2010). 

The volumetric water content, also known as virtual water, represents the total 

consumptive water use of green water (rainwater), blue water (water stored in surface 

and groundwater), and grey water (equivalent water use required to dilute polluted 

water to background levels).  Life cycle consumptive water use in background 

processes is not included in this study for lack of appropriate background data, which 

has been acknowledged as a shortcoming of existing LCI databases (Pfister et al. 

2009).  However, consumptive water use has thus far been shown to be heavily 

dominated by agricultural processes, and upstream process are assumed not to have a 

significant effects on the results.  The green and blue water components in the farm 

stage were estimated with the FAO CROPWAT model  as described above; grey water 

was estimated as the water required to dilute the nitrate emission from the farms to 10 

mg/L (Hoekstra et al. 2009). 



 

95 

Because the effects of water use for production are very different depending on 

the relationship of that use to regional water availability, the water stress index (WSI) is 

applied as a characterization factor to relate use to its likelihood  of depraving humans 

and ecosystems of water in the region.  A WSI for Costa Rica of 0.0163 calculated by 

Pfister et al. (2009) as part of the creation of global characterization factors and was 

applied using an equation by Ridoutt and Pfister (2010) to calculate the stress-weighted 

water footprint: 

SWWF = WSICR(WFproc,blue) [18] 

where WFproc,blue is blue water footprint in L/kg pineapple and WSICR is the unitless 

water stress index for Costa Rica.  Ridoutt and Pfister (2010) also propose calculating 

the SWWF by including the grey water.  However, the water represented by grey water 

(the water necessary for dilution) is not depriving other users of water, so it is not 

included in the SWWF here. 

Aquatic eutrophication 

Macro-nutrient excess is a threat to both terrestrial and aquatic ecosystems, 

however it is perhaps more of a threat in aquatic ecosystems.  The process of 

eutrophication in aquatic ecosystems (nutrient excess leading to sharp increase in 

primary production and subsequent increase in microbial oxygen consumption leading 

to a depletion of oxygen) is closely tied with runoff of N and P in agricultural fertilizers.   

The effects of N and P nutrient influx are system-dependent, but freshwater systems are 

generally P-limited and seawater, N-limited.  Studies in streams on the Caribbean side 

of Costa Rica have shown that P addition can have cascading ecological effects on 

stream ecosystems (Rosemond et al., 2001).  N escaping to the Pacific and Caribbean 

estuaries is assumed here to have the same effects documented in other estuarine 
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environments, such as the Gulf of Mexico (Miller et al. 2006).  As a result, quantification 

of the effects of N and P in runoff from pineapple farms is performed here with regard to 

its potential to cause eutrophication.  A variation of formula has been previously used 

(Gallego et al. 2010; Seppala et al. 2004) to create eutrophication characterization 

factors for aquatic ecosystems: 

cfe = tfe*afe*nfe  [19] 

where the characterization factor for emission e is cfe  (here in kg N/kg emission); tfe is 

the transport factor, the probability that emission e will be transported to an aquatic 

environment where it will have an effect;  afe is the bioavailability factor for a emission e; 

nfe is the nutritive factor for emission e, which is its ability to cause eutrophication 

relative to N.  Because emissions to water from farms occur directly to freshwater 

environments, and because land in Costa Rica is 100% exorheic (rainfall terminates in 

ocean), so as for areas where this is the case in the US, as in Norris (2003), tfe is set to 

1.  Most of the air currents in Costa Rica move inward toward the mountains (Daly et al. 

2007), with rainfall depositing airborne emissions back to the land so for emissions to air 

we also set tfe  to 1.  Availability factors are based on the relative proportion of readily-

available inorganic forms of nutrients to organic forms – in this case only emissions of 

inorganic nutrients are characterized, so afe is set to 1 for all emissions. The nutritive 

factors for the emissions are all based on the Redfield ratio of 116:16:1 (C:N:P) as in 

Norris (2003).  Because the ratio of N:P has been found to vary between 13-19 in 

aquatic systems, the CV applied to each nf and propagated the final cfe is 0.09. Each cfe 

is thus equivalent to the nfe since both the transport and availability factors are set to 1 

here for all characterized emissions.  The resulting values, especially for emissions to 
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air, are notably higher those in the Ecoinvent implementation of TRACI (Frischknecht 

and Jungbluth 2007), which uses the average US characterization values, because they 

account for transport losses assumed not to occur here. 

Human and freshwater ecotoxicity 

Pesticides used in pineapple farming include herbicides, insecticides, nematicides 

and soil fumigants.  Toxicity of these pesticides to humans and ecosystems is a function 

of fate in the environment, lifetime, transport, intake and effect.  Models were reviewed 

that consider the fate, incidence of contact, and effect of pesticide emissions both on 

ecosystems and human health.  Numerous models that have been used in LCA are 

available for this purpose, including USES-LCA, IMPACT 2002+, CAL-TOX, and others. 

Despite their similarities in purpose and orientation, results of these models have been 

shown to be widely divergent.  Recognition of this divergence prompted the cooperative 

development of the USEtox model (Rosenbaum et al. 2008).  USEtox was therefore 

selected to characterize toxicity here, in line with the intent of selecting models based 

on international consensus.  USEtox is, however, based on the European continent, and 

the characterization factors are based on the  climate, population, land use, and other 

data geographically representative of Europe.  Other authors have shown that 

characterization scores for pesticides in multimedia fate, transport and effect models are 

very sensitive to geographic variables (Huijbregts et al. 2003a), particularly soil erosion 

and fraction of surface water, which are very different in Costa Rica than in the 

European continent.  An evaluation of sources of uncertainty in the IMPACT model 

showed that the misrepresentation of geographic variables can potentially result in 

errors of three orders of magnitude (Pennington et al. 2005). Thus all geographic and 

demographic variables in the USEtox default model were tailored to the Costa Rican 
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environment, which is henceforth referred to as USEtox-CR.  Results are reported in 

number of disease cases for human toxicity, and potentially affected fraction of 

species/m3/day for freshwater ecotoxicity. 

Other indicators 

The IPCC global warming potential 100-year characterization factors (IPCC 2007), 

expressed in CO2-equivalents, were used as characterization factors for emissions with 

a potential to cause global warming, which sum together to create the carbon footprint.  

Occupation of land is described in m2/yr without impact characterization. 

Results 

Pineapple Sector Inventory 

Pineapple field data on geographic location, topography, management and soils 

were collected for areas in total representing approximately 200 ha and producing 

approximately 18,000 tons pineapple/harvest or 10,000 tons/yr.  Participating farms 

represented all three primary production districts (North, Atlantic, Pacific) and included 

both conventional and organic, respectively represented by approximately 88% and 

12% by total production of the sample.  Complete data on production inputs in the 

questionnaires was provided for 93% of farms surveyed based on total production 

volume. 

 The production-weight average yield among farms providing complete data was 

95 ± 36 tons/harvest with an average of 0.60 ± 0.24 harvests/yr. The average yield 

reported for the sector is 67 tons/harvest (Gómez et al. 2007).  Within farm yield 

variation between minimum and maximum yield/ha was up to 38 tons in one case, with 

an overall minimum of 48 tons/ha and a maximum of 129 tons/ha.  Inputs per kg 

pineapple by category were 0.17 ± 0.04 m2/yr of land, 0.0075 ± 0.0030 kg fuels, 0.043 ± 
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0.012 kg minerals in fertilizers, 7.8E-4 ± 1.6E-4 kg pesticides and 3.3E-4 ± 1.35E-4 kg 

machinery.  The inputs and standard deviations for 1 kg of pineapple at the packing 

facility are presented in the Appendix. 

Soil Erosion 

The estimated average soil erosion for the sampled pineapple farms varied from 

approximately 2.5 to 5 tons/ha/yr, which was approximately 0.05 to 0.10 kg soil/kg 

pineapple.  There was significant variation within individual farms with erosion estimates 

for slope profiles within farms varying from less than 1 to 40 tons/ha/yr in one case, 

which equated to a range of 0.05 to 0.82 kg eroded soil/kg pineapple; a maximum of 16 

times the minimum that was diluted by the averaging of erosion within farms. 

 For the sector range of environmental performance (RoEP), the median value 

was 0.02 kg eroded soil/kg pineapple with a lower confidence bound of 0.0005 and 

upper bound of 0.6 kg eroded soil/kg pineapple. 

The results of the sensitivity analysis show that % slope was the factor most 

strongly influencing the erosion results. An increase in % slope alone from 2.5% to 30% 

caused an increase in erosion in tons/ha/yr of 1680%.   The sensitivity of soil texture, in 

reference to percent change in erosion from the baseline (-38 to 92% of  the baseline 

from low to highest erodibility), along with degree of contouring of the rows (-53 to 0% of 

the baseline from standard to no contouring), use of plastic mulch (-78%) and use of 

double harvesting systems (-32% of the baseline) all had significant influences on the 

soil erosion at the pineapple farms.  Summary tables of the sensitivity analyses for the 

soil erosion and other emissions inventory models can be found in the appendix. 
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Cumulative Energy Demand (CED) of Pineapple 

The RoEP  for life cycle cumulative non-renewable energy demand of pineapple 

was 1.2 to 2.2 MJ/kg with a median value of 1.5 MJ/kg.  Most of this energy is used to 

make production inputs (77%), particularly fertilizers (see Figure 4-2).  Figure 4-3 shows 

a comparison with evaluations of apples (4 countries), oranges (2 countries), and 

strawberries (2 countries) using a serving of fruit27 as the unit of comparison. This and 

forthcoming comparisons are only preliminary, as the full ROeP of these other sectors, 

with the exception of orange (BR) in this case, is not fully characterized. Nevertheless, 

the median value of pineapple is higher than the values reported for apples and 

oranges, although there is likely cases in production of these fruits (based on the RoEP 

of Brazilian oranges), where a better performing pineapple has a lower CED.  This 

results differs from what is revealed in a comparison on a per kg basis, where the 

median of the RoEP for pineapple (1.5 MJ/kg) is in the middle of the RoEP of CED for 

the different apple sectors (1.2, 1.0, 1.67, and 2.4MJ/kg).    The strawberries both show 

more than double the pineapple 

                                            
27 Servings/kg for fruits used for comparison in the results are: 1 kg pineapple = 3.09 servings; 1 kg apple 
= 8.26 servings; 1 kg orange  = 4.06 servings; 1 kg mango = 4.18 servings; 1 kg cantaloupe = 2.88 
servings  (based on formula used for pineapple in methods, ((1 kg fruit)(edible fraction))/(weight of USDA 
kg/serving)).  Comparisons to Pimentel and Coltro were made by calculating the CED of analogous inputs 
from Ecoinvent for reported inputs rather that using originally reported energy totals.  See the Appendix 
for recalculations. 
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CED/serving.

 

Figure 4-2.  Contribution to CED for pineapple, at packing facility. 

 
Figure 4-3.  Non-renewable CED of one serving pineapple in comparison with 

evaluations of the farming stage of other fruits. Sources: Apple DE  and Apple 
ZA (Blanke and Burdick 2009); Apple NZ (Blanke and Burdick 2009; Canals 
2003); Apple US and Orange US (Pimentel 2009); Strawberry ES (Blanke 
and Burdick 2009; Williams et al. 2008); Strawberry UK ((Lillywhite et al. 
2007; UoH 2005; Williams et al. 2008)) 
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Carbon footprint  

The carbon footprint RoEP for pineapple at the packing facility was between 0.16 

and 1.42 kg CO2-equivalent/kg, which is equivalent to a range of 52 to 469 g per 

serving.  The majority of this carbon footprint could come from carbon loss from land 

use change, which could add up to 1.24 kg CO2-eq./kg pineapple in the case of 

conversion from tropical moist forest, which was estimated to contain 394 tons C/ha.  Of 

the sample farms, no land conversion from primary forest was reported by the 

producers, with no resulting loss of carbon from land use change, and as this is likely 

the case for many farms, an RoEP is also reported without land-use change.  Not 

including potential carbon loss from land use change, approximately half of the carbon 

footprint (49%) occurred on the farm (Figure 4-4), with 34% being contributed from N2O 

release from N-fertilizer and 15% from CO2 primarily from fuel combustion.  Fertilizer 

production (44%), followed by pesticide production (4%), fuel production (2%), and 

machinery production (1%) dominated upstream carbon footprint.  The carbon footprint 

of pineapple, assuming no land use change, translates to approximately 0.03 to 0.08 kg 

CO2-eq./serving. This is higher than reported for apples from New Zealand and the 

United Kingdom, close to that reported for strawberries from Spain but mostly lower 

than strawberries from the UK;  noting that the full RoEP for these other fruits is not 

reported (Figure 4-5). 

Virtual water content and stress-weighted footprint 
 

Lower ET rates due to the physiological adaptations of the pineapple plants, along 

with infrequent to no use of irrigation due to high and consistent annual rainfall (with the 

exception of one farm) resulted in a lower evaporative portion of the virtual water 

content (green + blue water) for pineapple in comparison with the farm stage for other 
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fruits (Figure 4-6).  For pineapple, the non-evaporative, grey water component is larger 

than the evaporative water, 

 
Figure 4-4. Contribution to carbon footprint for pineapple, at packing facility. 

 

Figure 4-5.  Carbon footprint of one serving pineapple in comparison with evaluations of 
the farming stage of other fruits.  Sources: Apple NZ (Canals 2003); Apple UK 
(Lillywhite et al. 2007); Strawberry ES (Williams et al. 2008); Strawberry UK 
(Lillywhite et al. 2007; UoH 2005; Williams et al. 2008).    

owing to the leaching of nitrate from use of N-fertilizers in pineapple cultivation.  Most of 

the uncertainty in the virtual water content can be explained by the variation in the grey 
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water footprint due to nitrate emissions; the sensitivity analysis of the CROPWAT model 

for pineapple showed little regional variation in estimated ET for pineapple fields; the 

most significant variable is the crop coefficient (relationship of crop ET to pan ET), 

which has variable estimates in the literature (Malézieux et al. 2003). 

 
Figure 4-6.  Virtual water content (VWC) for pineapple in comparison with other fruits.  

Evaporative and non-evaporative water are included for pineapple and mango 
(green + blue + grey); only evaporative water is included for apples and 
oranges (green + blue). Mango data is from Riddout et al. (2009); apple and 
orange data from Chapagain and Hoekstra (2004).  

The stress-weighted water footprint  (SWWF) of pineapple in the baseline scenario 

is negligible; the estimated confidence interval is 0.004-0.017 L/serving, because the 

water-stress index for Costa Rica is very low (0.02 on a scale of 0 to 1).  In comparison 

with mango grown in AU, with a stress-weighted water footprint on average of 74 

L/serving, the effect on water deprivation caused by pineapple is negligible.  

Aquatic Eutrophication 

The eutrophication RoEP was estimated to be between approximately 1 and 15 g 

N-eq./kg pineapple or 0.3 to 4.8 g N-eq/serving. More than 90% of potential 
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eutrophication effects were related to NO3 leached from fields (53%), phosphorus 

bound to eroded sediment, and leached phosphate (10%).  P in eroded soil was a the 

most variable of the contributors, with a cooefficient of variation of 173%, which relates 

to the high variability of erosion.  The estimated percentage of P lost to erosion of all P 

applied varied between 0 and 20% among participating farms; percent of N estimated to 

leach from fields as NO3-N varied between 10% and 34%. 

While direct comparison among evaluations of fruits using different methods of 

estimating eutrophication-related field emissions is very difficult,  preliminary 

comparisons can be made by multiplying emissions by the same TRACI 

characterization factors used in this study.  The results are shown in  

 

 
Figure 4-7.  Contribution to potential eutrophication of pineapple by emission. 
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Figure 4-8.  Preliminary comparison of potential eutrophication effects of one serving 

pineapple in comparison with evaluations of the farming stage of other fruits.  
Sources: (Canals 2003); Apple UK (Lillywhite et al. 2007); Cantaloupe CR 
(Hartley-B. and Díaz-P. 2008); Strawberry ES (Williams et al. 2008); 
Strawberry UK (Lillywhite et al. 2007). 

 Human and Ecological Toxicity 

The RoEP for human toxicity was estimated to be 1.7E-10 to 1.1E-9 disease 

cases/kg pineapple, but could be as much as 1000 times greater or less, due to the 

uncertainties inherent in the USETox model.  The RoEP for freshwater ecotoxicity was 

0.2 to 1.4 PAF in m3/day/kg pineapple, but could be as much as 100 times up greater or 

less.  

The pesticides contributing the most toward human toxicity are ethoprop, diuron, 

and diazinon, respectively applied as nematicide, herbicide, and insecticide (Figure 

4-9a).  The pesticides contributing the most to ecotoxicity are diuron, ametryne 

(herbicide), ethoprop, and paraquat (herbicide).  Toxicity characterization does not 

necessarily correspond to quantity applied in the field; half as much ethoprop is applied 

as diuron and diazinon, and less of that applied is emitted from the field (5% for 
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ethoprop vs. 26% and 27% of diuron and paraquat), but its toxicity effects when being 

transported and coming into contact with humans and freshwater ecosystems is much 

stronger on a unit basis.  Not all pesticides have demonstrated human toxicity effects 

although they do cause damage to freshwater ecosystems, including ametryne and 

bromacil. 

In contrast to the temperate environment (Denmark) in which PESTLCI was 

originally calibrated, the Costa Rican environment has higher average annual rainfall 

and solar insolation which increases the estimated runoff and abiotic degradation of 

pesticides, respectively.  The PestLCI-CR model shows a greater fraction being 

delivered to water, but a smaller fraction being delivered to air than in the default 

PestLCI model.  Total emissions of pesticides are greater overall in the default model.  

The USETox-CR characterization model for the toxicity effects of these pesticides also 

shows differences from the default European parameterization.  The USETox-CR 

characterization factors for ecotoxicity for emissions range from 1.5 to 6 times less than 

in USETox-EU; characterization factors for human toxicity for emissions are equal for 

emissions to air but 1.5 to 3 times less for emissions to water..  Despite these absolute 

difference, relative toxicities among these pesticides are modeled similarly.    
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Figure 4-9.  Relative contribution of active ingredients of pesticides used in pineapple 
production to (a) human toxicity and (b) freshwater ecotoxicity. 

Results Summary 

Table 4-1 presents a summary of the life cycle environmental performance of 

pineapple production through transport to the packing facility.  On farm processes are 

responsible for the majority of impacts (given since some impacts were only modeled at 
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the farm stage due to assumption it contributes the majority of this type of impact) with 

the exception of the cumulative energy demand and to carbon footprint; about half of 

the carbon footprint occurs upstream and half on the farm.  The uncertainty of each 

modeled impact, as measured by the coefficient of variation, varies markedly from less 

than 10% for land use, for which yield variation is the sole contributor to uncertainty, to 

human toxicity, which has a high level of uncertainty due to the large uncertainty in the 

toxicity characterization factors. 



 

110 

Table 4-1.  Summary table for impacts of 1 kg pineapple delivered to packing facility. 
    RoEP Contribution to Impact Variance of Impact 

Indicator Unit Min Max 

% 
contribution 
of farm 
stage 

Most significant 
contributor CV 

Factor most 
responsible for 
variancea 

Land occupation m2/yr 0.14 0.21 100% yield 9% yield 
Soil erosion kg eroded 

soil 
0.0005 0.6 100% farm slope 165% farm slope 

NR cumulative energy 
demand 

MJ 1.2 2.2 23% fertilizer production 25% yield 

Carbon footprint (with 
LUC) 

kg CO2-eq. 0.16 1.4 89% land use change 48% carbon loss from land-
use change 

Carbon footprint (no 
LUC) 

kg CO2-eq. 0.10 0.3 49% fertilizer production 19% yield 

Virtual water content L 124 1450 100% water for dilution of 
pollution 

21% nitrate emission 

Stress-weighted water 
footprint 

L 0.0044 0.017 100% water for application 
of fert./pest. 

21% yield 

Aquatic eutrophication kg N-eq. 0.00086 0.015 96% nitrate emission to 
water 

62% P in soil eroded 

Human toxicity disease 
cases 

1.7E-10 1.1E-09 100% Ethoprop (nematicide) 46% amount of ethoprop 
applied 

Freshwater ecotoxicity PAF/m3/day 0.2 1.4 100% Diuron (herbicide) 44% fraction of diuron 
emitted to water 

Notes        
a Based on the largest CV for related inventory item among yield, associated input, or emission model. If this was the 
emissions model, the most sensitive variable in the sensitivity analysis was used. 
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Discussion 

The data underlying the inventory represent medium to large size farms in the 

three primary geographic zones in Costa Rica. Sufficient input data from the smallest 

producers (<10 ha) was solicited but not acquired, likely due to less stringent 

bookkeeping practices and also heavier reliance upon larger producer associations for 

tasks, managements, and equipment.  The other end of the spectrum of producers, the 

largest national and multi-national companies with farms >250 ha, is neither directly 

represented.  Although solicited, none of the four largest companies agreed to provide 

primary data for this study.    

All emissions and inventory results reveal the importance of yield in impact 

estimations, confirming recent findings in agricultural LCA (Roos et al. 2010).  With 

higher yields and an equal amount of impact/area, impacts are diluted across more 

product, representing higher environmental efficiency. The average yield reported for 

the sector (67 tons/ha) falls at the 9th percentile of the yield distribution of the sample 

farms that contributing production data, indicating a bias toward more productive farms 

in the sample used to create the baseline scenario.  However, because the reported 

average sector yield falls within the confidence intervals for yield varied here, this 

national average pineapple falls within the distribution modeled. It is necessary to 

reiterate here that the objective was to model the expected range of environmental 

performance in the sector, and that the range rather than the median or mean values 

should be the focus of the results. 

The wide ranges of performance evident for all impacts categories indicate the 

importance of farm-level assessment to differentiate environmental performance of 

pineapple production among farms.  In the initial comparisons of environmental 
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performance between farm stage production of pineapple and other fruits, where such 

comparisons were possible, pineapples perform within a similar range, seemingly better 

in some categories and worse in others, but the full RoEP for the other fruits was not 

published nor calculable in most cases, limiting the ability of comparison.  The 

estimated RoEP for energy demand for pineapple showed it to be higher in energy 

demand than apples and oranges on a per serving basis, but lower than Spanish and 

British strawberries. The carbon footprint reflected a similar patterns with less of a 

relative difference between pineapples and other fruits.  Pineapple was lower in 

consumptive water use than apples, oranges and mangos, but higher than mangos in 

its gray water requirement.  Without the need for irrigation in most areas and because of 

its physiological adaptations to water stress, water use impacts were minimal in 

comparison with other fruits. The broad RoEP of eutrophication for pineapple indicates 

the relatively higher degree of uncertainty for this category, and considerable potential 

overlap in this respect with other fruits. 

Because production inputs dominate energy demand and carbon footprint, the 

relatively high-agrochemical input intensity of pineapple cultivation (FAO 2006; Su 

1968) may explain in part why these indicators are higher for pineapple in relation to 

other fruit.  Additional explanation is provided by the fact that there are less servings of 

pineapple per kg than the fruits compared here, largely because of the higher non-

edible potion of pineapple (about 50%).   

The significance of regionalized emissions and impact models 

The significance that climatic, geographic, crop, and field-specific factors have in 

emissions and impact models is supported by the differences in outcomes of the 

regionalized and the original versions of models used here.  Water loss estimates from 
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CROPWAT are dependent on water balance calculations based on climatic, soil, and 

plant conditions, and estimated will differ greatly among different climate zones and by 

crop.  The PESTLCI model  showed great variation in emissions between the default 

conditions (Denmark) and Costa Rica.  Characterization factors for pesticides differed 

by up to 70 times for toxicity factors between the default USETox and the USETox-CR 

model.  Using regionalized models will likely have significant effects on LCA outcomes, 

and should be applied with careful attention to the capacity to accurately describe 

conditions, but is essential for more accurate characterization of local and regional 

impacts. 

Although regional data was incorporated into these models, all those adapted here 

operate independently and use a unique set of field parameters.  Attempt was made to 

use consistent parameterization of these models, but there is no guarantee of 

consistency of model calculations of common parameters (e.g. runoff is estimated in 

PestLCI, CROPWAT, and RUSLE2).  Some models achieve a higher degree of 

specificity (RUSLE2) than others (CROPWAT) and thus some do not utilize all data that 

could theoretically influence results.  However, the use of freely, publically-available 

models adaptable to a wide range of conditions is of high utility for likelihood of use and 

for comparability.  The N and P fertilizers emissions model was adapted based on 

average pineapple nutrient uptake rates, but otherwise did not account for regional 

climatic conditions or soil properties.  The model presented here is an improvement 

upon solely arbitrary designation of emissions fractions of all forms of N and P (e.g. 

35% of N leaches to soil), some of which, including N leaching, has been estimated to 

vary between 10 and 80% of applied N (Miller et al. 2006), and may be sufficient for 
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relative comparison among farms, but could be replaced with a more detailed process-

based model as is used here for soil erosion, water use and pesticide emissions. These 

models could all be improved with better parameterization based on data collection on 

pineapple farms in Costa Rica for variables including pineapple biomass, nutrient 

uptake, water use, and leaf permeability to pesticides.   

Estimated environmental impacts 

All estimates of environmental impacts need to be considered in light of the 

accuracy of their characterization and of the inputs data underlying this characterization. 

Experimental quantification of soil erosion is typically marked by high variability, 

usually because erosion is strongly event-based and the difficulty of capturing a 

representative sample of eroded sediment.  Data from experimental measurement of 

soil loss in CR are no exception to this (see Table 15-1, Rubin and Hyman 2000).  In 

consequences models based on long-term climatic and management data may be 

preferable and yield more comparable results for quantification of soil erosion in LCA.  

However they should still be validated with existing data.  The RoEP of 0.02 to 32 

tons/ha soil erosion tons/ha/yr found here does confer with existing estimates of erosion 

of mineral soils under pineapple cultivation in Hawaii and Australia.  

Land use, energy use and carbon footprint were estimated with the lowest 

uncertainty, however  the latter two are both heavily dependent upon the quality of the 

input data for upstream processes.  Carbon loss through land transformation has been 

calculated to be a dominant factor in the carbon footprint of crops occupying former 

tropical forest (Fargione et al. 2008), and that could possibly occur for pineapple 

cultivation, if it replaces tropical forest.  There is, however, little evidence to suggest that 

pineapple expansion in Costa Rica has been a direct cause of deforestation since 1990 
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(Joyce 2006). Nevertheless conversion from other types of land use, including 

secondary forest and pasture, could also result in carbon loss but is not quantified here.  

As far as eutrophication and toxicity impacts are concern, which are impacts based on 

potentially long-range transport, persistence and availability in environmental media, the 

effects on ecosystems (freshwater ecotoxicity) and humans (human toxicity) should be 

read with appropriate skepticism of the capacity of generic models to make accurate 

estimations without explicit spatial data; nevertheless because these aspects (fate, 

transport, toxicity effects) are all relevant to their ultimate effect, they should be 

considered superior to just reporting quantities of pesticides released. 

Potential Impacts Not Measured 

The scope of this LCA was strictly limited to environmental impacts, and did not 

include any evaluation of social or economic impacts.  Both of these impacts can 

potentially be accounted for in LCA, with the related tools of Life Cycle Costing (LCC) 

and the newly developed Social Life Cycle Assessment (SLCA). 

Aside from loss of stored carbon, land use conversion and occupation can have 

ecosystem consequences on biodiversity across multiple scales (ME Assessment 

2005), and this should be accounted for in the LCA, and has been recommended for 

consideration and methods are under development, but none were judged to be 

sufficient to capture effects on biodiversity of pineapple production in the studied 

environment.  

Handling and application of pesticides in the field could have direct impacts on 

worker health, but no suitable methodology exists for measuring this in LCA.  However 

all farms sampled reported use of protective equipment among workers in the field to 

reduce this risk. 
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Residual organic waste on pineapple fields has been blamed for ecological 

consequences such as providing the substrate for the larval stage development of biting 

flies (Sandoval 2009), which have potential consequences for local livestock. Such 

consequences have not been addressed here. 

Conclusions and Recommendations for Farm Level LCA of Fruit Products 

The development of inventories of agricultural processes and the characterization 

of their impacts are two separate but interdependent stages of the LCA. Since fruit 

products depend on further downstream processes before reaching the final consumer, 

inventories should include sufficient information that impacts can be characterized for 

their entire farm-to-disposal life cycle stages.  Yet particular attention should be paid to 

those inventory items that need to be recorded in the farm stage because of their 

likelihood to dominant full life cycle impacts: these include water use, eutrophication, 

toxicity, and soil erosion. 

Evidence here shows that it is essential to include upstream processes to fully 

characterize energy use for farm LCA, because energy use in agricultural inputs such 

as fertilizers may dominate cumulative energy use through the life cycle stage.  

Acknowledging this importance, life cycle data on farm input production adapted from 

LCI databases with a EU-focus such as Ecoinvent used here needs to be validated for 

its application in other world regions.  Because actual farm level energy use is 

dominated by liquid fuels for farm equipment such as tractors, energy use is likely to be 

strongly correlated with other impacts during the farm stage dominated by fuel 

combustion, including greenhouse gas production, acidification, and photochemical 

oxidant production.  Emissions to air causing these impacts should be included in 

agricultural inventories for use in full life cycle studies, but for sake of brevity and 
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increased interpretability of LCA users, characterization of these impacts at the farm 

level is likely to be unnecessary because of its redundancy.  This may not be the case if 

other energy sources (e.g. biofuels or electricity) comprise a substantial proportion of 

farm stage energy use. 

Use of LCIA indicators should be based both on environmental relevancy and 

sufficient characterization models and uncertainty estimation. In this case we 

recommend use of a measure of cumulative energy consumption, such as CED.  Use of 

other broader measures of energy use, such as emergy, would present a richer picture 

of energy use that is more informative for measurement of long-term sustainability, but 

should only be used if accurately integrated into the life cycle inventory and for which 

model uncertainty is described.  Energy use also is characterized by relatively low 

model uncertainty, which increases comparability of different products. 

  Local and regional environmental impacts related to soil erosion, water stress, 

eutrophication, and ecological and human toxicity are particularly relevant for farm level 

process and require characterization adapted to the region of production.  Soil erosion 

is a particularly localized indicator requiring a large amount of field-specific information 

to accurately model. It is highly relevant for areas with sloped terrain and high rainfall.  

The direct downstream impact of soil erosion on water quality though sedimentation, 

was not quantified here but is a relevant environmental impact that deserves future 

investigation for LCA characterization.  And as demonstrated here, accurate 

quantification of  soil erosion can be particularly relevant for other impacts, including 

eutrophication, due to loss of nutrients bound to soil in erosion, and potentially for 

toxicity impacts, although the contribution of eroded sediments to those impacts was not 
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quantified here.  Farm level emissions are marked by high levels of variability, 

especially related to yields, and uncertainty due to complex and site-specific fate, 

transport, and effect processes of agricultural emissions.  We recommended that farm-

stage LCAs reported data along with sufficient range parameters to quantify uncertainty 

in input data related to those emissions, uncertainty in the emissions themselves, and if 

characterized, uncertainty in the characterization factors.  Finally, farm stage 

assessment data must be coupled with data on downstream life cycle stages before 

being fully evaluated by the end-consumer. 
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5. CHAPTER 5  

CONCLUSIONS  

Final conclusions will go here 
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