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ARTICLE INFO ABSTRACT

We have used the coverages of renewable emergy input developed from satellite derived data to determine the
emergy supporting ecosystem productivity and biotic natural capital. In addition, the impact on global pro-
GIS ductivity and biotic natural capital that has resulted from human induced land cover change was evaluated. The
Renewable energy actual evapotranpiration (AET), which is the portion of rain that is used by vegetation was the most significant
Eicztsi};s;e;luglo S:;ittl:llty driver of ecosystems. However, the accumulation of biomass over time is not only affected by the available water

used, but also by solar input and negatively affected by wind. Additionally, we have estimated the value of
ecosystem function and storages. In pre-anthroponcene era, total annual emdollar value of global gross primary
production was em$ 12.3 trillion and the total emdollar value of biotic natural capital which includes below and
above ground biomass as well as the soil carbon was em$ 578.5 trillion. However, total losses of biotic natural
capital from land cover change since the anthropocene began equal to em$88.5 trillion or about 16% of total pre-
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anthropocene value.

1. Introduction

Recently, there has been much attention given to valuing ecosys-
tems based on their service contributions to humans under the rubric of
“ecosystem services”. In this study we discard the term ecosystem ser-
vices in favor of ecosystem functions (biological, geochemical and
physical processes that take place within an ecosystem) that global
ecosystems perform. We draw a distinction between services, a truly
anthropogenic term, (i.e. services to whom?) and functions, the natu-
rally occurring processes of ecosystems that support not only humans
but also the biosphere as a whole. By separating these two concepts,
issues of anthropocentrism are minimized.

Services are things that human value and benefit from, which can be
evaluated based on human preferences, or technological expenditures
to replace them. Ecosystem functions, on the other hand, are not easily
valued within a human value system for they have no markets and
people do not know what they are worth, violating the two basic tenets
of economic valuation, a functioning market and perfect information.
Therefore, to better estimate the value of ecosystem function, a donor-
determined value, such as Emergy, can be used. Emergy is the available
energy of one kind previously used up directly and indirectly to make a
service or product (Odum, 1996, 1988).
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1.1. Emergy Basis for Global Ecosystem

Global ecosystems are driven by a tripartite combination of re-
newable emergy that has been termed the Geobiosphere Emergy
Baseline or GEB (Brown et al., 2016; Brown and Ulgiati, 2016a;
Brown and Ulgiati, 2010) composed of solar radiation, tidal momentum
absorbed by the Earth and relic geothermal energy from within the
planet. Partitioning of the GEB between the countless physical and
ecological systems of Earth has become increasingly important, as more
and more emphasis has been placed on understanding and quantifying
global flows of renewable resources supporting humanity. At the global
scale (Figure 1) the primary emergy of the GEB is partitioned into
secondary (precipitation and wind) and tertiary (chemical and geo
potentials of runoff, ocean currents) renewable flows (Brown and
Ulgiati, 2016b)

It is the GEB that supported all life on Earth through millions of
years of planetary evolution, developing ecosystems, hydrologic sys-
tems, and atmospheric systems and the interconnections between them.
It is the amalgamation of the primary flows of the GEB with the sec-
ondary and tertiary renewable flows that provides the emergy basis for
ecosystem structure and functions. Measuring the emergy basis of
global ecosystems will provide necessary quantification for determining
global values of ecosystem structure and functions.
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Figure 1. System diagram of the geobiosphere showing the tripartite sources of the Geobiosphere Emergy Baseline (GEB) and the secondary and tertiary renewable

sources driving global ecosystems.

1.2. Emergy and Ecosystem Development

A main theoretical paradigm of energy systems theory
(Odum, 2007, 1996, 1994, 1983) is that the quantity and quality of a
system's output is directly related to the quantity of available energy of
its inputs with one caveat...if the inputs are too “energetic” output may
diminish as a result of induced stresses. From an emergy perspective,
theory suggests that with increased inputs of emergy, ecosystems
should have higher productivities and produce greater quantities of
biomass, also subject to the above-mentioned caveat. On the other
hand, productivity may be enhanced less by the total emergy input and
instead, output maybe maximized with an appropriate mix of different
emergy inputs (emergy signature') in an amalgamation of primary,
secondary and tertiary renewable sources.

We next review the literature regarding evaluations of global eco-
systems and biomes, beginning with economic evaluations and ending
with emergy evaluations of biomes.

1.3. Economic Evaluations of Global Ecosystem

The value of global ecosystems was estimated by
Costanza et al. (1997), updated in 2011 (Costanza et al., 2014), and
recently future values were modeled (Kubiszewski et al., 2017) based
on economic valuation techniques. The original paper (Costanza et al.,
1997) valued the Earth's ecosystem services at $33 trillion per year. In
2014, Costanza et al (2014) re-evaluated their earlier estimate, placing
it at $145 trillion. They then valued global ecosystem services in 2011
as $125 trillion per year, suggesting a $20 trillion decrease between
1997 and 2011. The 2011 value was used as the baseline for the future
projections by Kubiszewski et al. (2017), which resulted in projections

! Emergy signature is the characteristic distribution of quantities of emergy
among inputs to a system

between a decline of $51 trillion per year and an increase of $30 trillion
per year depending on the future scenario.

Using the global land-cover dataset and the ecosystem service va-
lues from Costanza et al. (1997), patterns of conventional GDP and the
value of non-marketed ecosystem services were spatially analyzed (1
km? resolution) by Sutton and Costanza (2002) to estimate the total
value of the ecosystem services of the lands and waters of each nation.
Several indices (gross domestic product, ecosystems services product,
subtotal ecological-economic product, % ecosystem product) were
calculated for each square kilometer of land surface and then ag-
gregated for each nation of the world. Indices were compared to the
Environmental Sustainability Index and the Ecological footprint index.

de Groot et al. (2012), using a database of value estimates from
literature sources, provided an overview of the value of 10 main Earth
biomes in monetary units. They did not attempt to sum values of biomes
to provide a global value, but did provide mean, minimum, and max-
imum values for each on a hectare basis. Mean values ranged from INT$
490 ha™! yr~! for the open ocean to INT$ 350,000 ha~* yr ! for coral
reefs.

The dynamics of seven ecosystem services were modeled globally
using a STELLA model named GUMBO (global unified metamodel of the
biosphere) across eleven biomes by Boumans et al. (2002). A range of
five future scenarios representing base case and four future scenarios.
The relative value of ecosystem services was estimated to be about 4.5
times the value of Gross World Product (GWP) in the year 2000.

On the other hand, Alexander et al. (1998) investigated several
approaches for valuing global ecosystem services. Instead of using
willingness-to-pay (WTP) or other value transfer methods, the global
ecosystem was assumed to be owned by a monopolist who was charging
the population for the services. Their estimates indicated that global
ecosystem services are worth between 44% and 88% of the global GDP.

Patterson (2002) used “Ecological pricing theory” applied to the
valuation of biosphere processes and services in 1994 and obtained a
total value of primary ecological services to be nearly $US 25 trillion.
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Ecological prices measure value of nature in terms of the biophysical
interdependencies in the system, ultimately quantifying how much
value is contributed to an ecological commodity (e.g. plant biomass) by
another commodity (in this case solar energy) in the system.

1.5. Emergy Evaluations of Global Ecosystems

While there many papers that use the emergy method to assess the
value of ecosystem services of small -scale systems, we restrict our re-
view here to those that are large in scale such as global systems or
biomes.

Brown and Ulgiati (1999) estimated the emergy value of the Earth's
natural capital (environmental resources) including freshwater, soil
organic matter, and plant and animal biomass totaling 575 E+25 sej
(or $5.3 E+ 15, based on 1998 dollars). Water and soil organic matter
were responsible for 51% and 40% of the total emergy value, respec-
tively.

Using economic values of ecosystem services from Sutton and
Costanza (2002), Coscieme et al. (2014) derived emergy money ratios
for ecosystem services for countries calculating values that varied be-
tween 2.02 E+11sej$~ ' and 6.82 E+11 sej $ ~*, values equal to 1 to 2
orders of magnitude lower than the emergy money ratio of the country
when non-renewable emergy is included. They suggested that this dif-
ference means that ecosystems can provide services at much lower costs
than the economy can.

Lu et al. (2017) computed the donor value of the subtropical forests
in southeast China by using emergy analysis and compared it with the
receiver value estimated by monetary value to estimate the efficiency of
different types of ecosystem. Their result revealed that forests and
plantations had 2 orders of magnitude higher efficiency than the cur-
rent Chinese economic system in providing service, showing the im-
portance of afforestation.

Rugani et al. (2014) estimated the solar energy demand (SED; an-
nual emergy used) in Luxembourg from 1995 to 2009. The SED of
Luxembourg was 23 times larger on average than all of the free energy,
raw materials and natural cycles associated with the territorial system
of Luxembourg.

Choi (2010) has estimated the emergy values of terrestrial plants
using annual emergy input, NPP, and phytomass. Transformity of an-
nual increment of phytomass was computed by dividing the emergy
input by the dry mass of annual NPP. To compute the emergy of bio-
mass storage, Choi multiplied standing stock by the transformity of
NPP, not recognizing that the transformity of NPP is not an appropriate
transformity for biomass, which is an accumulation of annual NPP over
the biomass turnover time.

Recently Yang et al. (2020) conducted an emergy-based ecosystem
service valuation of China's grasslands by spatially analyzing the
emergy values of provisioning, regulating, cultural and supporting
services of China's grasslands. Zhang et al. (2019) evaluated the eco-
system services of tidal wetlands, fresh water wetlands and agricultural
systems of Chongming Island in Eastern China using emergy.
Yang et al. (2019) used emergy to evaluate ecosystem services of
aquatic systems of China. Xu et al. (2020) evaluated the changes in
ecosystem services in Northwestern China before and after the con-
version of a desert shrub system to a plantation system based on emergy
analysis. Sun et al. (2018) estimated marine ecosystem services values
in 11 coastal provinces and cities of China from 2005 to 2014, and then
analyzed the changes in services values across the different regions and
across time.

In 2012, Campbell and Brown, using the emergy approach, esti-
mated the value of ecosystem service provided by the National Forests
managed by the US Forest Service (USFS) to be “"$197 billion (em-
dollars) in 2005 and its natural capital to be "$24.3 trillion
(Campbell and Brown, 2012). They used the ecosystem service cate-
gories suggested in Millennium Ecosystems Assessment (2005), which
categorizes ecosystem services into 4 main categories of provisioning
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services, regulating services, supporting services, and cultural services.

Campbell and Tilley (2014), computed biophysical quantities for
the yearly provision of ecosystem services from a typical hectare of
forest in Maryland and converted them to emergy by multiplying by the
solar equivalent exergy (SEE)” required per biophysical unit of exergy.

The quantity of ecosystem services was assessed for the national
economy and national ecosystem mosaic of Brazil, in historical series
(1981-2011) (Giannetti et al., 2017), showing that the contributions
from renewable sources have fallen from about 75% of the total
economy in 1981 to about 20% in 2011.

Almeida et al. (2018) assessed the ecosystems service of urban parks
by accounting climate regulation (evapotranspiration and CO, seques-
tration), water regulation (water retention in soil), and supporting
service (net primary production). They considered evapotranspiration
and CO, sequestration as a co-product while considering climate reg-
ulation and water regulation as a split. Emergy of ecosystem service in
regions of China have been done by several authors (Dong et al., 2012,
2014; Ma et al., 2015; Sun et al., 2018; Wang et al., 2019). These
studies selected a few services from the ecosystem service categories
suggested in Millennium Ecosystems Assessment (2005) and summed
the emergy value of each service estimated by multiplying the products
(e.g. energy of evapotranspired water, energy of biomass in net primary
production) with its unit emergy values (UEVs) from other studies.

1.6. Summary of Global Evaluations

All in all, while emergy has been applied to evaluation of numerous
ecosystems and regions, only one attempt has previously been made to
evaluate global ecosystems using emergy (Brown and Ulgiati, 1999). In
that study the emergy of global natural capital was estimated on the
basis of assessments of total mass of soil organic matter, fresh surface
and ground water and animal and plant biomass. That study did not
evaluate the spatial distribution of natural capital, only relying on
global estimates of mass.

Several studies have been completed using a variety of economic
methods to estimate the value of global ecosystem services to humans,
including at least one spatial analysis. These studies did not evaluate
ecosystem functions per se, but rather ecosystem services. This is not a
criticism of economic valuation, only to say that they did not evaluate
ecosystem functions. In general, few previous studies, whether eco-
nomic or emergy evaluations, have valued functions, instead they have
focused on services.

To our knowledge, there have been no economic evaluations of
global natural capital, even though at least one of the global papers
(Costanza et al., 1997) included the term in its title.

In this study we answer the following questions using emergy and
GIS data sets

1 What is the emergy supporting global ecosystems (biomes)?

2 What is the emergy of global ecosystem biomass and soil carbon?

3 Do ecosystems maximize total emergy, or is maximum productivity
and biomass the result of the interplay of the suite of renewable
emergy sources?

What is the impact on global productivity (GPP) and biotic natural
capital (BNC) that has resulted from human induced land cover change?
Combined these questions are intended to facilitate a better un-
derstanding of some very fundamental questions, assertions and sup-
positions of emergy theory. The first question above relates to a fun-
damental question ...” how to evaluate ecosystems and their

2 Solar equivalent exergy is computed as an equivalence between solar energy
and the other exergy sources comprising the GEB (tidal and geothermal) re-
cognizing that these independent sources driving the geobiosphere are not
transformations of solar energy as was discussed by Brown et al. (2016)
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properties?” We suggest that evaluation using emergy leads one to
distinctly separate ecosystem services from ecosystem functions. In
order to answer what is the emergy of ecosystem functions we must
answer the first question above, what is the emergy supporting global
ecosystem productivity? According to emergy accounting procedures, the
emergy of productivity is equal to the emergy driving the system, thus
by evaluating the emergy driving the global biomes, we have identified
the emergy of all functions of these biomes.

The second question above, relates to the assertion that the value of
a stored product is the emergy required to produce it. Thus, evaluating
the driving emergy (Question 1) is essential to answering this question,
along with the knowledge of the turnover time of the stored product. As
a consequence, the most valuable stored resource is not always the
result of the largest driving energy but can be the largest because of a
longer generation time. With this quantitative understanding of donor
value, comparisons can be made, and policies directed to better serve
global sustainability objectives.

The third question relates to a supposition that the structure and
productivity of systems is directly proportional to the emergy driving
the system (i.e. the more emergy the more productive, the more emergy
the larger structure can be supported). Numerous researchers have
suggested that systems may not respond to total emergy, but instead
produce maximum production and structure from the interplay of suite
of input energies (Brown et al., 2006; Ulgiati and Brown, 2009;
Ulgiati et al, 2011;) with this data set we are better positioned to
confirm that supposition, but unfortunately it leads to still another
quandary. If systems produce maximum productivity or biomass that is
a function of the emergy signature rather than the quantity of driving
emergy, then evaluating ecosystem functions based on the driving
emergy in a static accounting may not be appropriate. Instead, it may
be that dynamic evaluations must be conducted rather than static ones
that assume steady-state conditions (but this is a topic for another
paper).

The fourth question relates to an overall concern regarding human
sustainability on planet Earth. How far down the path of unstainable
development have we gone? Tracking anthropogenic alteration in a
quantitative manner can provide benchmarks of human destruction of
planetary ecosystems (or progress, if we begin to regenerate natural
systems). Tracking both biomass and productivity losses provide
needed benchmarks that offer information on the flows and storages of
ecosystems with which appropriate sustainable policy can be generated.

2. Methods

In this study we used GIS and the emergy analysis method to
compute values of global ecosystem functions (EF) and biotic natural
capital (BNC)®. Emergy values of annual EF of global biomes were
computed by using the renewable emergy coverages developed in
Lee and Brown (2019) and a global biome boundary coverage
(Olson et al., 2001) at 10 arc minute resolution. The emergy values of
BNC were computed using biomass estimates of major biomes
(Gibbs, 2006) and a soil carbon coverage produced by the Oak Ridge
National Laboratory, USA (Ruesch and Gibbs, 2008).

The most recent global emergy baseline (GEB), 12.0 E+24 sej yr ™!
(Brown et al., 2016), was used as the basis from which all unit emergy
values were computed.

2.1. Biome Categorization

Shown in Figure 2 is the biome and habitat classification scheme
used in this study. Olson et al. (2001) delineated 14 biomes, as well as

3We use the term biotic natural capital to refer to above and below ground
biomass and soil organic matter (as carbon) of ecosystems to distinguish them
from other natural capital such as minerals, fossil fuels, water, etc.
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lakes, and ice/rocky areas, and ocean. We added estuaries and rivers to
their biome coverage yielding a total of 19 distinct habitats. The
boundary data of estuaries was derived from The Sea Around Us Project
(Alder, 2003). The river habitat, based on stream order higher than six
(Vanote et al., 1980), was developed using the flow accumulation
routine in ArcGIS, and assigning any 10 arc minute cell with stream
order greater than 6 as river habitat.

2.2. Estimating Driving Emergy of Biomes and Habitats

Emergy of biomes was evaluated by “clipping” global renewable
emergy coverages (Lee and Brown, 2019) with a global biome coverage.
In all, there were 9 renewable emergy coverages, solar, geothermal,
tidal, wind, rain chemical potential, actual evapotranspiration (AET),
runoff chemical potential, runoff geopotential, and water chemical
potential. The water chemical potential coverage was computed as the
sum of AET and runoff chemical potential.

A final coverage of renewable emergy inputs was produced by ap-
plying the max renewable algorithm from Brown and Ulgiati (2016a)
on a biome basis as follows:

Ryax =Max ((DS, T, G), W, P, Rg, Hy0q )

The max renewable algorithm was used to minimize double
counting of renewable sources. The computation was done in the fol-
lowing order. First each of the 9 renewable emergy inputs was summed
on a cell-by-cell basis within each biome, yielding a total renewable
emergy for each input within each biome. Then the max renewable
algorithm was computed at the biome level based on the totals of each
input, yielding the maximum renewable input (MaxR) for each biome.

Once annual MaxR inputs for each biome were derived from the
coverages of renewable emergy inputs biome aerial empower intensity
(AEI) was computed by dividing by the area of each biome.
Additionally, the annual MaxR was used to compute the input to biome
GPP and biomass.

2.3. Estimating GPP of Biomes and Habitats

NASA's Land Processes Distributed Active Archive Center (LP
DAAC) developed the Terra/MODIS NPP and GPP product (MOD17A3),
which provides yearly average global NPP and GPP in 30 arc second
resolution (Zhao et al., 2005). Total annual global GPP was used as the
total work performed by global biomes. A coverage of average global
GPP for the year 2001-2003 is provided in the Supplemental Material
(Figure S-2). Since these data included areas of land that were occupied
by human dominated uses it was necessary to evaluate pre-anthro-
pocene GPP by removing all cells that were within agricultural and
urban classifications. Using the anthropogenic biome data (Ellis, 2015;
Ellis et al., 2010; Ellis and Ramankutty, 2008), all cells that were oc-
cupied by their land cover classifications that were primarily urban
built up and agricultural (details are provided in Supplemental Mate-
rial) were removed. The remaining cells were then clipped with the
biome coverage and an average GPP per unit area was computed by
summing the GPP of all cells and dividing by the area of those cells.

The concept of Anthropocene has evolved since it was first proposed
(Crutzen, 2002). However, this study uses the European industrial re-
solution as a turning point between pre-anthropocene and Anthro-
pocene (Brondizio et al., 2016).

Since the GPP data from NASA only contained the data for terres-
trial biomes, it was necessary to add data for land cover classes not
included by the NASA data. Terrestrial biome data was augmented with
GPP data from Whittaker and Likens (1975) for river (0.25 kg C
m~2yr 1), lake (0.25 kg C m ™~ 2yr 1), estuary (1.5 kg C m~?yr 1), and
ocean (0.13 kg Cm ™ 2yr™ 1),
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Figure 2. Map of Terrestrial Ecosystem Of the World (TEOW), (Olson et al. 2001)

2.4. Estimating Biotic Natural Capital (BNC) of Biomes and Habitats

We considered two aspects of BNC, biomass (sum of above and
below ground) and soil carbon. First, we compute BNC for the Earth
during the pre-anthropocene, and second, we subtract areas of urban
and agriculture (Ellis, 2015) to compute the change as of 2010.
Methods and data sources for biomass and soil carbon are given next.

2.4.1. Biomass

Whittaker and Likens (1975) provided one of the first comprehen-
sive estimates of global biomass followed by Olson et al. (1985) who
developed a database of carbon in live vegetation (above and below
ground) in major world ecosystems. Gibbs (2006) updated Olson's da-
tabase using more contemporary land cover conditions of the Global
Land Cover Database (GLC2000) based on VEGA 2000 dataset from
SPOT 4 satellite. In this study we used Gibbs (2006) data combined
with data from both Whittaker and Likens (1975) and
Olson et al. (1985) to develop the biomass data listed in the final
column of Table 1 to yield a global coverage of above and below ground
biomass (kg C m™~?) for each 10 arc minute cell of the biomes (Figure S-
3, Supplemental Material).

2.4.2. Soil carbon

Soil carbon (Figure S-4, Supplemental Material). was derived from
The International Geosphere-Biosphere Program Data and Information
System (IGBP-DIS) coverage at a resolution of 5 arc minute. (Global Soil
Data Task Group, 2000). The data were clipped using the global biome
coverage to yield total soil carbon for each biome.

2.5. Emergy of Biotic Natural Capital

Emergy value of biotic natural capital of each biome was computed
from the biome's annual emergy input and turn over time of the soil and

biomass compartments.

2.5.1. Biomass

The annual emergy input for each 10 arc minute cell was derived
from the emergy coverages as outlined above. Turnover time of biome
biomass was estimated using a autocatalytic simulation model
(Odum and Odum, 2000) and emergy input (Lee and Brown, 2019). The
Supplemental Material provides details of the simulation model. Total
emergy of biomass was computed as the product of annual emergy
input and turnover time.

2.5.2. Soil carbon

The International Geosphere-Biosphere Program Data and
Information System (IGBP-DIS) provided 5 arc minute resolution global
surface data for soil-carbon density (kg C m™2). Turnover time of soil
carbon was derived from literature estimates (Raich and
Schlesinger, 1992).

The emergy of soil carbon of each biome was computed by multi-
plying the emergy input by soil carbon turnover time.

2.6. Analyzing Relation Between GPP and Biomass to Driving Emergy

To answer the question pertaining to the relation between emergy
and productivity and standing stock, the relations were tested using
simple linear regression, multiple regression, and classification and
regression trees (CART). First, scatter plots of the data were developed
which showed that AET and MaxR had the greatest promise to predict
GPP and biomass. Then simple linear regressions of AET vs biomass,
AET vs GPP, MaxR vs Biomass and MaxR vs GPP were conducted. To
test if additional forms of driving emergy might help to explain some of
the error in the simple regressions, multiple regressions on GPP and
biomass were conducted using all the input emergy forms (AET, solar,
rain, wind, geothermal, and MaxR). Finally, Classification & Regression
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Table 1
Global biomass estimates from literature and final values used in this study
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Biome Type Biomass (g C m™?)
Whittaker and Likens, (1975) Olson et al. (1985) Gibbs, (2006) This study
Tropical & Subtropical Moist Broadleaf Forest 22,500 12,000 12,000 12,000
Tropical & Subtropical Dry Broadleaf Forest 17,500 6,000 6,000 6,000
Tropical & Subtropical Coniferous Forest 17,500 13,000 12,000 12,000
Temperate Broadleaf & Mixed Forest 15,000 9,000 9,000 9,000
Temperate Conifer Forest 17,500 13,000 13,000 13,000
Boreal Forests/Taiga 10,000 6,000 7,000 7,000
Tropical & Subtropical Grassland, Savanna & Shrubland 2,000 900 900 900
Temperate Grassland, Savanna & Shrubland 800 900 900 900
Flooded Grassland & Savanna 7,500 2,000 - 2,000
Montane Grassland & Shrubland 800 900 900 900
Tundra 300 500 - 500
Mediterranean Forest, Woodland & Scrub 3,000 3,000 - 3,000
Desert & Xeric Shrubland 350 300 - 300
Mangroves - - 12,000 12,000
River 10 - - 10
Lake 10 - - 10
Rock & Ice 10 - - 10
Estuary 500 - - 500
Ocean 3 - - 3
Table 2
Renewable emergy inputs of world biomes
Biome Type Solar Geothermal Tidal Wind  AET Chem. Runoff Chem. Water Chem. Pot. Runoff Geo. MaxR >
Pot Pot. * Pot
(10%! sej yr™1)
Terrestrial Biomes
Tropical & Subtropical Moist Broadleaf Forests 147.8 131.3 17.5 599.6  2670.0 73.5 2743.5 171.6 2743.5
Tropical & Subtropical Dry Broadleaf Forest 24.6 22.1 1.7 130.8 278.1 0.2 278.3 2.5 278.3
Tropical & Subtropical Coniferous Forest 6.2 6.1 0.0 37.5 61.7 0.0 61.7 0.0 61.7
Temperate Broadleaf & Mixed Forest 73.7 78.6 27.7 643.6  853.1 8.7 861.8 12.1 861.8
Temperate Conifer Forest 25.5 32.9 1.9 177.8 2399 0.4 240.4 0.7 240.4
Boreal Forests/Taiga 67.9 85.3 6.8 536.5 594.9 13.7 608.6 24.7 608.6
Tropical & Subtropical Grasslands, Savannas & 178.5 128.0 7.9 906.1 1604.6 39.7 1644.2 56.4 1644.2
Shrubland

Temperate Grasslands, Savannas & Shrubland 64.8 62.2 4.3 350.7 419.4 3.2 422.6 79.6 422.6
Flooded Grasslands & Savanna 8.1 6.5 0.3 54.6 70.9 2.7 73.6 2.5 73.6
Montane Grasslands & Shrubland 42.8 37.7 0.0 233.9 211.4 0.2 211.5 4.1 233.9
Tundra 45.7 82.2 35.2 732.2 205.2 1.8 207.0 5.1 732.2
Mediterranean Forests, Woodlands & Scrub 24.7 25.7 0.2 130.6 136.1 0.1 136.2 2.4 136.2
Deserts & Xeric Shrubland 241.5 198.8 4.9 884.8 4449 11.0 456.0 11.2 884.8
Mangroves 2.4 2.3 5.1 11.7 30.0 0.0 30.0 26.7 30.0
River 23.2 20.4 0.1 100.6  213.7 122.7 336.3 1123.0 1123.0
Lake 6.6 5.7 0.0 7.6 50.8 1.7 52.5 1.5 52.5
Rock & Ice 56.9 83.2 1.7 974.9 26.0 0.1 26.1 0.1 974.9
Marine Biomes
Estuary 2.2 2.5 5.5 11.1 18.5 3576.4 3595.0 2147.4 3595.0
Ocean 2686.8 3653.0 3474.7 5475.5 12.6 2.0 14.6 186.6 9814.5

& . Water chemical potential is the sum of chemical potential emergy of AET and runoff.
> . MaxR is the maximum renewable emergy input based on the max emergy algorithm (Brown and Ulgiati, 2016)

Trees (CART) were constructed using the driving emergy sources (solar,
geothermal, wind, rain and AET) as drivers of GPP and biomass of
biomes to create models that predict GPP and biomass.

During the analysis of the relation between driving emergy and GPP
and biomass we observed that there appeared to be differences in the
variance between the same biomes on different continents. Ultimately,
the idea was that instead of classifying the geobiosphere into 16
biomes, a more fine-grained approach might be warranted. As a result,
the global coverages were reclassified into biomes by continent and
then a t-test of the differences in mean values of AET and MaxR be-
tween the same biomes on different continents was conducted (see
Supplemental Material) under the null hypothesis that the means were
the same.

2.7. Estimating the Global Impacts of Land Cover Change

To estimate the changes in GPP and biotic natural capital that has
resulted from human induced land cover change, we used the coverage
of anthropogenic biomes (Ellis, 2015; Ellis et al., 2010; Ellis and
Ramankutty, 2008). The change in above and below ground biomass
was computed by subtracting all areas occupied by urban, settlements,
and villages, croplands and populated rangelands. To estimate the
change in GPP we used the most recent data from the Terra/MODIS
NPP and GPP product (Zhao et al., 2005), and compared these data to
the constructed GPP coverage as outlined above. The difference be-
tween the two coverages represents the net effect on global GPP. We
report the data on a biome by biome basis.

To estimate the changes in GPP and biotic natural capital that have
resulted from human induced land cover change, we used the coverage
of anthropogenic biomes (Ellis, 2015). The change in above and below
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Figure 3. Emergy signatures of global biomes expressed as aerial empower intensity (AEI). Note Y-axis is NOT the same scale for all biomes. (data are from Lee and

Brown, 2019)

ground biomass was computed by subtracting all areas occupied by
urban, settlements, and villages, croplands and populated rangelands.
To estimate the change in GPP we used the most recent data from the
Terra/MODIS NPP and GPP product (Zhao et al., 2005), and compared
these data to the constructed GPP coverage as outlined above. The
difference between the two coverages represents the net effect on global
GPP. We report the data on a biome by biome basis.

To compute the change in biomass the following assumptions were
made. First, it was assumed that 100% of above and belowground
biomass was removed from forested lands that were occupied by an-
thropogenic land cover. Second, 50% of above and belowground bio-
mass was removed from grassland and scrub biomes that were occupied
by anthropogenic land cover. The change in soil carbon was estimated

based on the data and analysis of Sanderman et al. (2017) where they
found that 133 PgC have been lost due to soil erosion across nearly all
biomes. The total loss of carbon (133 PgC) was proportioned between
each of the biomes based on the percent change of land cover within
each biome.

Finally, the emdollar value of the losses was estimated by con-
verting biomass and soil carbon to emergy (see above for the method of
computing emergy of BNC) and then dividing by a global emergy dollar
ratio of 2.0 E+12 sej/$. The purpose of this study is to estimate the
emergy value of ecosystem functions, however, to make it easier to
sense the magnitude of these values, we also present the results as
emdollars using the average global conversion factor (Emergy Money
Ratio).
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Figure 4. MaxR (maximum renewable empower) of major terrestrial biomes. Note the vertical axis on each graph is not the same scale.
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Table 5
Biome soil carbon

Table 3
Aerial Empower Intensity (AEI) of world biomes
Biome Type Area MaxR AEI ™
(10° ha)  Biome ™ (10" sej ha™!
(10%* sej yr H
yr™H

Terrestrial Biomes

Tropical & Subtropical Moist 1.9 2743.5 1437.5
Broadleaf Forest

Tropical & Subtropical Dry Broadleaf 0.3 278.3 962.3
Forest

Tropical & Subtropical Coniferous 0.1 61.7 880.1
Forest

Temperate Broadleaf & Mixed Forest 1.2 861.8 690.4

Temperate Conifer Forest 0.4 240.4 598.1

Boreal Forests/Taiga 1.5 608.6 411.9

Tropical & Subtropical Grasslands, 2.0 1644.2 835.5
Savannas & Shrubland

Temperate Grasslands, Savannas & 1.0 422.6 431.8
Shrubland

Flooded Grasslands & Savannas 0.1 73.6 753.9

Montane Grasslands & Shrubland 0.5 233.9 453.7

Tundra 1.2 732.2 634.5

Mediterranean Forests, Woodlands & 0.3 136.2 431.9
Scrub

Deserts & Xeric Shrubland 2.7 884.8 325.7

Mangroves 0.03 30.0 1011.3

River 0.3 1123.0 3597.3

Lake 0.1 52.5 527.6

Rock & Ice 1.1 974.9 880.7

Marine Biomes

Estuary 0.30 3595.0 11906.6

Ocean 36.3 9814.5 270.4

& . From Table 2
> Equal to MaxR divided by area

Table 4

Gross Primary Production and biomass of world biomes

Biome Soil Carbon ™
10'° gC kgC m™2

Tropical & Subtropical Moist Broadleaf Forests 223.8 11.7
Tropical & Subtropical Dry Broadleaf Forest 31.6 10.9
Tropical & Subtropical Coniferous Forest 9.2 13.1
Temperate Broadleaf & Mixed Forests 161.7 13
Temperate Conifer Forests 54.6 13.6
Boreal Forests/Taiga 347.9 23.5
Trop. & Subtropical Grasslands, Savannas & Shrublands 166.2 8.4
Temperate Grasslands, Savannas & Shrublands 110.5 11.3
Flooded Grasslands & Savannas 12.3 12.6
Montane Grasslands & Shrublands 51.5 10
Tundra 150.4 13
Mediterranean Forests, Woodlands & Scrub 30.1 9.6
Deserts & Xeric Shrublands 152.0 5.6
Mangroves 5.9 19.9
Total 1507.8

@ . soil carbon data from Global Soil Data Task Group (2000)
3. Results
3.1. Empower of Global Biomes

Given in Table 2 are the renewable inputs to global biomes. Starred
(*) values in the table are the MaxR values for each system. The
dominant emergy sources for a majority of the biomes is water chemical
potential (sum of AET and runoff chemical potential). Wind is the lar-
gest input in montane grasslands & shrublands, tundra, deserts & xeric
shrublands, and rock & ice biomes. Rivers are dominated by runoff
geopotential.

Figure 3 shows graphs of emergy signatures for the global biomes
(ocean is not included). Wind and rain dominate the renewable inputs
in almost all biomes. Rivers are the exception, where runoff geopo-
tential is the dominant input. Of interest is the three largest inputs to
estuaries, rainfall, runoff chemical and geopotential emergy, as might

Biome Type Area * Total Biome GPP “  Total Biome Biomass ™ Biome GPP “ per unit area  Biome Biomass ¢ per unit area
(10°ha) (10° gCyr™hH (10 g0) (10° gCha~'yr™ 1) (10° gCha™1)
Terrestrial Biomes
Tropical & Subtropical Moist Broadleaf Forest 1.9 48.5 229.0 25.4 120.0
Tropical & Subtropical Dry Broadleaf Forest 0.3 5.8 17.4 20.2 60.2
Tropical & Subtropical Coniferous Forest 0.1 0.9 8.4 13.1 119.7
Temperate Broadleaf & Mixed Forest 1.2 15.9 112.3 12.7 90.0
Temperate Conifer Forest 0.4 3.5 52.2 8.6 129.9
Boreal Forests/Taiga 1.5 8.6 103.4 5.8 70.0
Tropical & Subtrop. Grass & Shrubland, & Savanna 2.0 22.3 17.7 11.3 9.0
Temperate Grassland, Savanna & Shrubland 1.0 3.7 8.8 3.8 9.0
Flooded Grassland & Savanna 0.1 1.1 2.0 11.1 20.5
Montane Grassland & Shrubland 0.5 1.1 4.6 2.1 8.9
Tundra 1.2 2.6 5.8 2.2 5.0
Mediterranean Forest, Woodland & Scrub 0.3 2.2 9.5 7.1 30.1
Desert & Xeric Shrubland 2.7 3.3 8.2 1.2 3.0
Mangrove 0.0 0.5 3.6 15.5 120.2
Rivers 0.3 1.96 0.03 6.3 0.1
Lakes 0.1 0.81 0.01 8.1 0.1
Rock & Ice 1.1 0.02 0.1 0.02 0.1
Terrestrial Total 14.7 122.7 583.0 8.4 39.78
Estuary and Ocean
Estuary 0.03 0.5 0.2 15.0 5.0
Ocean 36.3 47.1 1.1 1.3 0.03
Global Total 51.0 170.2 584.3 3.3 11.5

m

o

. Data from Table 1.

. Data were computed from satellite derived coverages (Zhao et al., 2005)
. Computed by multiplying biome biomass (column 6) by area (column 2)
. Computed by dividing total biome GPP (column 3) by area (column 2).
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Figure 5. Terrestrial Biome GPP (a) and biomass. Biomes are as follows: 1. Tropical & Subtropical Moist Broadleaf Forests,2. Tropical & Subtropical Dry Broadleaf
Forest, 3. Tropical & Subtropical Coniferous Forest, 4. Temperate Broadleaf & Mixed Forests, 5. Temperate Conifer Forests, 6. Boreal Forests/Taiga, 7. Tropical &
Subtropical Grasslands. Savannas & Shrublands, 8. Temperate Grasslands. Savannas & Shrublands, 9. Flooded Grasslands & Savannas, 10. Montane Grasslands &
Shrublands, 11. Tundra, 12. Mediterranean Forests. Woodlands & Scrub, 13. Deserts & Xeric Shrublands, 14. Mangroves, 55. River, 98. Lake, 99. Rock & Ice

be expected.

After analysis of the global data revealed differences in empower
driving biomes on different continents, we analyzed MaxR for biomes
by continent (a global coverage of the continental boundaries is given
in Figure S-8, Supplemental Material). Figure 4 summarizes the con-
tinental MaxR data for each of the biomes. The data indicated some
interesting outcomes; specifically note that the oceanic continent
(composed primarily of Australia) has the largest difference from the
global mean data and the largest standard deviation for most biomes
except for the desert and shrubland biome. This may be due to the fact
that more than half of the Australian landcover consists of desert and
shrubland while other biomes are in small sizes and fragmented which
is likely to result in larger standard deviation.

3.2. Aerial Empower Intensity of Global Biomes

Summarized in Table 3 is the aerial empower intensity (AEI) of the
global biomes computed by dividing the biome empower by the area of
each biome. Estuaries have the highest AEI of all biomes, followed by
rivers and then tropical & subtropical moist forests. Estuaries possess an
AEI that is over 8x the AEI of tropical & subtropical moist forests, the

10

result of the very large input of chemical potential energy of terrestrial
runoff. Not surprising is the fact that rivers have a large AEI, due to the
geopotential energy of runoff that is concentrated within the river
systems of the globe.

3.3. Biome GPP and Biotic Natural Capital

Table 4 and Figure 5 summarize pre-anthropocene GPP and biomass
for global biomes. Of the total terrestrial GPP (122.7 PgC yr_l) the
largest single contribution is from tropical and subtropical moist forests
(48.5 PgC yr 1) followed by tropical and subtropical grass, schrublands
& savannas (22.5 PgC yr~'). The computed global GPP of 122.7 PgC
yr~! was within 2% of the total (125 PgC yr~!) suggested by Zhang
et al., (2017). When expressed on an areal basis the most productive
biomes were the tropical and subtropical moist and dry forests (25.4
MgC ha™! yr~! and 20.3 MgC ha™! yr™?! respectively), followed by
mangroves (15.5 MgC ha™' yr™!) and tropical and subtropical con-
iferous forests (13.1 MgC ha™' yr™ ).

Total global terrestrial biomass (Table 4) was 583.0 PgC of which
tropical and subtropical moist forests contributed the largest percentage
(about 33% or 229 PgC) followed by temperate broadleaf and mixed
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Figure 6. Scatter plots of driving emergy forms vs. GPP (gC m ™2 yr™ %)

forests (about 16% or 112.3 PgC). Expressed on an areal basis, the
largest standing stock per unit area was coniferous temperate forests
(~130 MgC ha™1) followed by Tropical & Subtropical Moist Broadleaf
Forest, Tropical & Subtropical Coniferous Forest and mangroves (all
have a standing stock of about 120 MgC ha™'.The ocean and estuary
make up an insignificant portion (about 0.2%) of total global biomass,
while contributing about 28% of global GPP.

Table 5 lists the biomes and computed soil carbon. By far the largest
stock of soil carbon is found in the boreal forests ~348 PgC, followed by
tropical and subtropical moist forests (~223 PgC) and tropical and

11

subtropical grasslands, savanna, and shrubland (~166 PgC). When
expressed on an areal basis the largest stocks are still the boreal forest
(23.5 kgC m~2), followed by mangrove forests (19.9 kgC m~2),
Temperate Conifer Forests (13.6 kgC m™~?) and Tropical & Subtropical
Coniferous Forest (13.1 kgC m~2).

3.4. The Relation Between Driving Emergy and Biome Biomass and
Productivity

Scatter plots of pre-anthropocene GPP and biomass versus a suite of
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Figure 7. Scatter plots of driving emergy forms vs. biomass (gC m™~?2)

driving emergy is shown in Figures 6 and 7. Each data point in the
graphs represents one 1 arc degree cell from the global coverage. The Y-
axis is GPP and biomass (gC m ™2 yr~ ! or gC m™?) and the X-axis is the
log of driving emergy (sej m~2 yr~'). Forms of driving emergy that
exhibited the best GPP and biomass predictive value were AET, water
chem. (chemical potential of AET plus runoff), and MaxR. AET and
water chem appears to be the stronger predictor (and very similar) of
both GPP and biomass with slightly more scatter exhibited by MaxR.
In addition to the scatter plots, a principal component analysis
(PCA) was conducted where all the driving emergy forms were

12

included. The analysis revealed the first principal component was AET
and the second was solar input (see Supplemental material).
Screening of the data helped to inform further analysis of the rela-
tions between emergy and productivity and standing stock. Figures 8
and 9 show linear regressions of the emergy of AET, rain, waterchem
and MaxR vs. GPP and biomass for terrestrial biomes. AET, rain, and
waterchem are all generally good predictors of GPP (R* ~ 0.89-90
[F <0.001]). The lower R? (R?= 0.75) of MaxR is due to several biomes
lower on the productivity scale that had wind as the dominate emergy
source (montane grasslands & shrublands, tundra, deserts & xeric
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Figure 9. Linear regressions of AET, rain, waterchem, and MaxR. Numbers correspond to: 1. Tundra, 2. Deserts & xeric scrub, 3. Montane Grasslands & Shrublands, 4.

Rock & Ice.

shrublands, and rock & ice). The regressions of AET, rain, waterchem
and MaxR vs. biomass (Figure 9) were not as good at explaining var-
iation as the GPP regressions, yielding R? of .37 and 0.28 respectively
(In all cases significance, F<0.01).

Because of the observation that there were differences in the var-
iance in GPP between the same biomes on different continents, we also
generated linear regressions of GPP by continent vs. AET and MaxR
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(Figure S-10, Supplemental material). It is apparent that there is greater
variability in the data and thus the regressions are somewhat weaker
(AET, R*> = 0.79 and MaxR, R?> = 0.65) but still significant (F <0.001).

Checking to determine if multiple emergy sources may be re-
sponsible for global productivity and that the interplay of these sources
might generate stronger predictive models, multiple linear regressions
of GPP and biomass were conducted. Tables 6 and 7 show the output
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Figurel0. 3-D scatter plot of GPP vs. AET and solar radiation.

Table 6
Results of the multiple linear regression of normalized driving emergy vs. GPP
of global biomes

Table 7
Results of the multiple linear regression of normalized driving emergy vs.
biomass of global biomes

Estimate Std. Error t value Pr(>|t)) Signif. Estimate Std. Error t value Pr(>|t]) Signif.

(Intercept) -0.037105 0.003733 -9.94 2.00E-16 ok (Intercept) -2700.72 70.83 -38.127 2.00E-16 e
AET 0.862482 0.016246 53.088 2.00E-16 ok AET 18278.3 308.28 59.291 2.00E-16 ke
Solar 0.025066 0.004857 5.16 2.52E-07 ik Solar 2540.22 92.17 27.56 2.00E-16 ok
Wind 0.040174 0.01745 2.302 0.0213 * Wind -4603.2 331.12 -13.902 2.00E-16 il
Rain 0.168996 0.025301 6.679 2.56E-11 ok Rain 3613.77 480.1 7.527 5.75E-14 e
Geothermal -0.129744 0.031422 -4.129 3.68E-05 ok Geothermal. 1056.57 596.23 1.772 0.0764

MaxR -0.192413 0.047624 -4.04 5.39E-05 ok MaxR 6934.7 903.69 7.674 1.87E-14 el

Signif. codes: “***’ 0.001 “**’ 0.01 > 0.05 ‘> 0.1 ‘* 1
Residual standard error: 290.7 on 8052 degrees of freedom
Multiple R-squared: 0.7923, Adjusted R-squared: 0.7922
F-statistic: 5120 on 6 and 8052 DF, p-value: < 2.2e-16

from the R software package showing that each of driving energy
sources explains some of the error with the exception of wind for GPP,
and solar and geothermal for biomass. As expected AET had the largest
explanatory power (p=0.001) followed by rain (p=0.001) for GPP. As
with Biomass, the largest explanatory power for biomass was AET
(p=.001) followed by rain (p=.001) and wind (p=0.001). The driving
emergy that was not significant (p=0.1) for biomass was geothermal.
The adjusted R? for both multiple regressions were 0.79 and 0.84 for

14

Signif. codes: “***” 0.001 “*** 0.01 “* 0.05 ‘> 0.1 ‘’ 1
Residual standard error: 1690 on 8052 degrees of freedom
Multiple R-squared: 0.844, Adjusted R-squared: 0.8439
F-statistic: 7261 on 6 and 8052 DF, p-value: < 2.2e-16

GPP and biomass prospectively.

Finally, we explored in three dimensional plots of the two most
important driving emergy sources and their relation to GPP, biomass
and soil carbon (Figures 10, 11, and 12). The plots use AET and solar
energy which are from the previous analyses suggested the strongest
relations to GPP and biomass. The color plots show very well the lo-
cations of the biomes in the space defined by AET and solar radiation.
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Figure 11. 3-D scatter plot of biomass of global biomes vs. AET and solar radiation.

3.5. Emergy and Emdollar Value of Global GPP

Given in Table 8 are the emergy and emdollar value of the GPP of
global biomes in the pre-anthropocene. Total emdollar value of global
GPP was “"$ 12.3 trillion. The largest contributor was the ocean (*$
4.9 trillion) followed by estuaries (*'$ 1.8 trillion) and rain forests (*"'$
1.4 trillion). To place emdollar value of the work of ecosystems of the
biosphere in perspective, the GDP of USA in 2004 was equal to $ 12.3
trillion (USBEA, 2019). In recent years, others have evaluated global
“ecosystem services” (Costanza et al., 2014, 1997; de Groot et al., 2012)
determining that they were worth between $33 trillion and $145 tril-
lion per year.

3.6. Emergy and Emdollar Value of Biotic Natural Capital (BNC)

The emergy of pre-anthropocene BNC was evaluated using the
turnover time of the stock multiplied by the AEI of each biome. Table 9
lists the emergy and emdollar value of soil carbon and Table 10 lists the
emergy and emdollar value of biomass. Total emergy of soil carbon was
708.3 E+24 sej, equivalent to ~ "$354.2 trillion. Biomes with the
larges emergy in soil carbon were tundra (358.8 E+ 24 sej = “™$ 179.4
trillion), followed by tropical & subtropical moist broadleaf forests
(104.3 E+24 sej = *™$ 52.1 trillion).

Total emergy of biomass (including the marine biomes) was 448.6 E
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+24 sej or about 63% of the emergy of soil carbon (Table 10). The
equivalent emdollar value of biomass was “"'$ 224.3 trillion. Biomes
with the largest biomass were tropical & subtropical moist broadleaf
forests (~140 E+24 sej = “$ 70 trillion) followed by boreal forest/
taiga (61.5 E+24 sej = *™$ 30.7trillion)

Combine the total global emergy and emdollar value of biotic nat-
ural capital was 1156.9 E+ 24 sej and “"'$ 578.5 trillion. For reference
the estimated nominal gross world product (GWP) in 2017 was $80.3
trillion (CIA, 2019) or only about 14% of the emdollar value of natural
capital.

3.7. Impact of Human Induced Land Cover Change

We compared pre-anthropocene GPP with the GPP derived from
Terra/MODIS NPP and GPP product (ca. 2000; Zhao et al., 2005) to
estimate the impact of land cover change on the global productivity.

Table 11 lists estimates of land cover change and changes in GPP for
the pre-anthropocene and the year 2000, based on Zhao et al., (2005).
Land cover change has resulted in rather dramatic decreases in the area
of many biomes. Between 43% and 82% of all tropical and subtropical
ecosystems have been altered. Nearly 80% of Mediterranean forest,
woodland, and scrub ecosystems have been converted and over 60% of
tropical and flooded grassland & savanna systems. Our analysis suggests
that the tundra biome, for all intents and purposes, remains untouched,
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Figure 12. 3-D scatter plot of soil carbon of global biomes vs. AET and solar radiation.

while the boreal forest ecosystems show a decline of about 4% in cover.
Land cover area of mangrove ecosystems has declined over 50%. It is
interesting to note that estuarine areas of declined by about 42%. In all,
total cover of pre-anthropocene terrestrial biomes has declined by 38%.

It is most interesting that the models used to estimate GPP do not
agree with the land cover changes (Table 11). Gross primary production
as measured by satellite does not show nearly the same magnitudes of
decrease. In fact, while all biomes show a decrease in area (with the
exception of the tundra) some biomes show increases in GPP; some
remarkably much greater than the pre-anthropocene production
(montane grassland & shrubland, +100%; temperate grassland, sa-
vanna & shrubland, + 37%; desert & xeric shrubland, 38%). The largest
decreases in GPP were exhibited by tropical & subtropical dry broadleaf
forest (-33%) and temperate broadleaf & mixed forest (-15%). Ob-
viously when some ecosystems are replaced by irrigated and fertilized
agriculture, the “greenness” and therefore the estimates of GPP may be
considerably higher than the initial ecosystem, resulting in the fact that
many biomes show increases in GPP while their initial land cover has
been much reduced. Overall, our analysis suggests that while 43% of
the original land cover has been altered, this has resulted in only an
overall decline in GPP of 5%.

Changes in biotic natural capital (BNC) were also evaluated as the
sum of the losses of biomass and soil carbon storage. The assumption
was that 100% of standing forest biomass and 50% of biomass on
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nonforested biomes was removed on areas dominated by human uses.
Given in Table 12 are estimates of the decreases in terrestrial biomass.
Total emdollar value of terrestrial biomass loss was “"$70 trillion or
about 12% of total BNC value. The largest losses occurred in Tropical &
Subtropical Moist Broadleaf Forest (°"$30.1 trillion) and Temperate
Broadleaf & Mixed Forest (°"$18.4 trillion). No land cover changes
were observed in the tundra biome. Table 13 lists the emergy and
emdollar losses of soil carbon due to land cover change. Total losses
equal to em$18.5 trillion, the largest of which resulted from land cover
change in tropical forests (°"'$7.8 trillion) and Flooded Grassland &
Savanna (°"$2.5 trillion).

Overall the total losses of BNC from land cover change since the
anthropocene began (~310 years) equal “"$88.5 trillion or about 16%
of total pre-anthropocene value, and roughly equal to the world gross
domestic product in 2017 ($80.3 trillion, (CIA, 2019)).

4. Discussion

This study explored four questions related to global ecosystems and
their driving emergy designed to elicit a better understanding of some
very fundamental questions, assertions and suppositions of emergy

theory. The questions were as follows:

1 What is the emergy supporting global ecosystem productivity?
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Table 8
Emergy and emdollar value of biome GPP

Biome Type MaxR Biome * Emdollars “
(10%! sej yr™1)  (Trillion®™$)
Terrestrial Biomes
Tropical & Subtropical Moist Broadleaf Forest 2743.5 1.37
Tropical & Subtropical Dry Broadleaf Forest 278.3 0.14
Tropical & Subtropical Coniferous Forest 61.7 0.03
Temperate Broadleaf & Mixed Forest 861.8 0.43
Temperate Conifer Forest 240.4 0.12
Boreal Forests/Taiga 608.6 0.30
Trop. & Subtrop. Grassland, Savanna & 1644.2 0.82
Shrubland
Temperate Grassland, Savanna & Shrubland 422.6 0.21
Flooded Grasslands& Savanna 73.6 0.04
Montane Grassland & Shrubland 233.9 0.12
Tundra 732.2 0.37
Mediterranean Forests, Woodlands & Scrub 136.2 0.07
Deserts & Xeric Shrubland 884.8 0.44
Mangroves 30.0 0.02
River 1123.0 0.56
Lake 52.5 0.03
Rock & Ice 974.9 0.49
Terrestrial total 11102.3 5.55
Marine Biomes
Estuary 3595.0 1.80
Ocean 9814.5 4.91
Global total 24511.76 12.26

2 . From Table 2
b MaxR divided by 2.0 E12 sej/*™$

2 What is the emergy of global ecosystem biomass and soil carbon?

3 Do ecosystems maximize total emergy, or is maximum productivity
and biomass the result of the interplay of the suite of renewable
emergy sources?

4 What is the impact on global productivity (GPP) and biotic natural
capital (BNC) that has resulted from human induced land cover
change?

To answer these questions, global coverages of earth's renewable
driving energy (multiplied by transformities to convert to emergy) were
combined with global coverages of productivity (GPP) soil carbon and
biomass.

We begin this discussion by first examining two constraints that are
the result of the data we used and thoughts regarding “services” vs.
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functions . We then turn to addressing each of the above questions and
their related theoretical questions, assertions and suppositions.

4.1. Biomes

Biomes play a significant role in this study as the concept is used to
explore the relationships between driving emergy and structure and
productivity of global ecosystems. How the world's ecological systems
are classified ultimately dictates relations one might find between
driving emergy and ecosystem properties.

The geobiosphere, composed of numerous ecosystems has been
classified into generalized biomes, or collections of flora and fauna with
common characteristics occupying a shared environment having similar
climatic conditions. The term was first used by Clements (1917) to
describe biotic community. Tansley (1935) added a soil component and
climatic conditions to the concept. The International Biological Pro-
gram (1964-74), an internationally coordinated effort to conduct large
scale ecosystem studies, increased awareness of the concept. Following
the IBP program there were (and continue) numerous efforts to classify
global biotic communities(Allee et al., 1949; Bailey, 1989; HOLDRI-
DGE, 1947; Olson et al.,, 2001; Olson and Dinerstein, 1998;
Whittaker, 1962).

Most of the classification schemes that have been devised rely on
two abiotic elements, water and temperature. For water, while evapo-
transpiration is sometimes used, the most common water parameter in
the majority of the classification schemes was annual precipitation. The
classification scheme of Olson et al. (2001), adopted here, relied on
climatic zones or regions (tropic, subtropic, temperate etc.) and
moisture regimes (humid, semi humid, arid, etc.). Thus, it is somewhat
obvious, if the classification scheme relies in a large part on water
availability and temperature (solar input), then the most important
driving energy sources would be highly correlated to these two vari-
ables.

4.2. Biome Productivity

The productivity of global biomes (Figure 5 and Table 4) was de-
rived from global coverages generated as one of the many products of
NASA's Moderate Resolution Imaging Spectroradiometer (MODIS)
program. Since the GPP data derived from MODIS is contemporaneous,
it was necessary to derive GPP for biomes without the presence of
human land uses. This required that we subsample the MODIS data for

Table 9

Emergy and Emdollar values of terrestrial biome soil carbon
Biome Soil Carbon ™ Turnover Time > Tot. MaxR “ Emergy * Emdollars

(10 gC) (yrs) (sej yr™ ) (10** sej) (Trillion®™$)

Tropical & Subtropical Moist Broadleaf Forests 223.8 38.0 2.7E+24 104.3 52.1
Tropical & Subtropical Dry Broadleaf Forest 31.6 38.0 2.8E+23 10.6 5.3
Tropical & Subtropical Coniferous Forest 9.2 38.0 6.2E+22 2.3 1.2
Temperate Broadleaf & Mixed Forests 161.7 29.0 8.6E+23 25.0 12.5
Temperate Conifer Forests 54.6 29.0 2.4E+23 7.0 3.5
Boreal Forests/Taiga 347.9 91.0 6.1E+23 55.4 27.7
Tropical & Subtropical Grasslands, Savannas & Shrublands 166.2 10.0 1.6E+24 16.4 8.2
Temperate Grasslands, Savannas & Shrublands 110.5 61.0 4.2E+23 25.8 12.9
Flooded Grasslands & Savannas 12.3 520.0 7.4E+22 38.3 19.1
Montane Grasslands & Shrublands 51.5 61.0 2.3E+23 14.3 7.1
Tundra 150.4 490.0 7.3E+23 358.8 179.4
Mediterranean Forests, Woodlands & Scrub 30.1 14.0 1.4E+23 1.9 1.0
Deserts & Xeric Shrublands 152.0 37.0 8.8E+23 32.7 16.4
Mangroves 5.9 520.0 3.0E+22 15.6 7.8
Total 1507.8 9.0E+24 708.3 354.2
@ . soil carbon data from GlobalSoil Data Task Group (2000).
b

. Turnover time from Raich and Schlesinger (1992)
. Total MaxR is from Table 2.

)

. Emergy is the product of MaxR in column 4 and turnover time in column 5.
. Emdollars are computed by dividing the emergy in column 5 by the world emergy money ratio (2.0 E12 sej $ 1)
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Table 10
Emergy and emdollar values of terrestrial biome biomass
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Biome Type Biome Biomass ™ AEI ", Turn over time © Emergy Emdollars
10° g Q) (10%'sej yr™ 1) (yr) (10%*sej) (Trillion em$)
Terrestrial Biomes
Tropical & Subtropical Moist Broadleaf Forest 229.0 2743.5 51 139.9 70.0
Tropical & Subtropical Dry Broadleaf Forest 17.4 278.3 37 10.3 5.1
Tropical & Subtropical Coniferous Forest 8.4 61.7 84 5.2 2.6
Temperate Broadleaf & Mixed Forest 112.3 861.8 60 51.7 25.9
Temperate Conifer Forest 52.2 240.4 121 29.1 14.5
Boreal Forests/Taiga 103.4 608.6 101 61.5 30.7
Trop. & Subtrop. Grass & Shrubland, & Savanna 17.7 1644.2 11 18.1 9.0
Temperate Grassland, Savanna & Shrubland 8.8 422.6 18 7.6 3.8
Flooded Grassland & Savanna 2.0 73.6 26 1.9 1.0
Montane Grassland & Shrubland 4.6 233.9 44 10.3 5.1
Tundra 5.8 732.2 29 21.2 10.6
Mediterranean Forest, Woodland & Scrub 9.5 136.2 45 6.1 3.1
Desert & Xeric Shrubland 8.2 884.8 46 40.7 20.4
Mangrove 3.6 30.0 89 2.7 1.3
Rivers 0.03 1123.0 0.6 0.7 0.3
Lakes 0.01 52.5 0.6 - -
Rock & Ice 0.1 97.5 14 1.4 0.7
Terrestrial Total 583.0 10224.9 408.4 204.2
Estuary and Ocean
Estuary 0.2 3595.0 3 10.8 5.4
Ocean 1.1 9814.5 3 294.4 14.7
Global Total 584.3 23634.3 448.6 224.3
@ . From Table 4.
b equal to renewable emergy input (MaxR) from Table 2.
¢ . from simulation model (see supplemental material)
4, Product of AEI (column 3) and turnover time (column 4)
¢, World emergy/money ration in 2014 = 2.0 E12 sej/$
Table 11
Change in land area and GPP of biomes from human induced land cover change
Land Area (10° m?) GPP (10° kg y™)
Land Cover Type Pre-Anthropocene ca. 2000 % Change Pre-Anthropocene ca. 2000 % Change
Terrestrial Biomes
Tropical & Subtropical Moist Broadleaf Forest 19085.4 10821.9 -43% 47,670 41,798 -12%
Tropical & Subtropical Dry Broadleaf Forest 2891.8 510.5 -82% 5,720 3,819 -33%
Tropical & Subtropical Coniferous Forest 701.6 195.7 -72% 908 966 6%
Temperate Broadleaf & Mixed Forest 12482.6 3570.3 -71% 15,645 13,295 -15%
Temperate Conifer Forest 4018.7 2602.7 -35% 3,421 3,443 1%
Boreal Forest/Taiga 14774.8 14192.1 -4% 8,567 8,689 1%
Trop. & Subtrop. Grassland, Savanna & Shrubland 19680.0 7592.1 -61% 20,780 19,582 -6%
Temperate Grassland, Savanna & Shrubland 9787.3 2890.7 -70% 3,676 5,069 38%
Flooded Grassland & Savanna 976.2 322.0 -67% 945 920 -3%
Montane Grassland & Shrubland 5155.9 2406.2 -53% 1,018 2,038 100%
Tundra 11539.8 11533.2 0% 1,726 1,730 0%
Mediterranean Forest, Woodland & Scrub 3153.3 697.9 -78% 2,178 2,378 9%
Desert & Xeric Shrubland 27170.1 20859.2 -23% 3,228 5,250 63%
Mangrove 296.3 144.0 -51% 591 525 -11%
River 3121.7 1425.7 -54% 2,785 2,889 4%
Lake 994.2 955.2 -4% 232 256 10%
Rock & Ice 11069.6 11047.7 0% 20 23 17%
Subtotal 146899.2 91766.9 -38% 119110.0 112671.2 -5%
Marine Biomes
Estuary 301.9 174.2 -42% 416 423 2%
Ocean 362266.5 362081.6 0% 6,537 6,796 4%
Grand Total 509467.6 454022.8 -11% 126063.0 119890.2 -5%

areas without human land cover change, by masking all human domi-
nated areas. This left, in some regions of the globe, a relatively small
number of pixels from which to compute GPP for the entire biome
(Table B-5, Supplemental Material). It also became apparent that the
same biome on different continents exhibited different mean GPP
(Figure 13). While few of these differences were statically significant,
the differences did point out the fact that a global biome map that
homogenizes all similar ecosystems across the planet, may be a sim-
plification that helps to hide some relationships between driving
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emergy and productivity. The relatively small number of pixels in some
biomes/continents may have contributed to the observed differences in
GPP when computed separately by continent.

4.3. Ecosystem Services vs Ecosystem Functions

Ecosystem services’ (ES) are the ecological characteristics, func-
tions, or processes that directly or indirectly contribute to human
wellbeing: that is, the benefits that people derive from functioning
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Table12
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Estimate of the emergy and emdollar losses of terrestrial biomass due to land cover change

Biome Type Emergy “(10**sej)

b

% Land area change

% BNC change “  Total % Change “ Emergy “(10*'sej) Emdollars * (Trillion em$)

Terrestrial Biomes

Tropical & Subtropical Moist Broadleaf 139.9 -43%
Forest
Tropical & Subtropical Dry Broadleaf Forest 10.3 -82%
Tropical & Subtropical Coniferous Forest 5.2 -72%
Temperate Broadleaf & Mixed Forest 51.7 -71%
Temperate Conifer Forest 29.1 -35%
Boreal Forests/Taiga 61.5 -4%
Trop. & Subtrop. Grass & Shrubland, & 18.1 -61%
Savanna

Temperate Grassland, Savanna & Shrubland 7.6 -70%
Flooded Grassland & Savanna 1.9 -67%
Montane Grassland & Shrubland 10.3 -53%
Tundra 21.2 0%
Mediterranean Forest, Woodland & Scrub 6.1 -78%
Desert & Xeric Shrubland 40.7 -23%
Mangrove 2.7 -51%
Rivers 0.7 -54%
Lakes - -
Rock & Ice 1.4 0%
Terrestrial Total 408370.9 -38%

100% -43% 60165.5 30.1
100% -82% 8443.3 4.2
100% -72% 3734.4 1.9
100% -71% 36711.3 18.4
100% -35% 10179.1 5.1
100% -4% 2458.9 1.2
50% -31% 5516.4 2.8
50% -35% 2662.6 1.3
50% -34% 641.0 0.3
50% -27% 2727.6 1.4
50% 0% 0.0 0.0
50% -39% 2390.0 1.2
50% -12% 4680.6 2.3
100% -51% 1363.4 0.7
Na - -
Na - -
Na - -
141674.1 70.8

®

. from Table 8.

. from Table 11

. assume 100% loss of forested systems and 50% loss of grassland systems
. product of Emergy in column 2 and total % change in column 5

o

ecosystems (Costanza et al., 1997; Millennium Ecosystem Assessment
(MEA), 2005). Ecosystem functions (EF), on the other hand, are the
ecological processes that control the fluxes of energy, nutrients and
organic matter through an ecological system. There is a very simple yet
important reason for this distinction on our part, that is a direct result of
emergy accounting principles. Since the functions of ecosystems are co-
products, i.e. they occur simultaneously within systems driving by the
same emergy, they cannot be added. Thus, the emergy assigned to GPP
is the same emergy assigned to evapotranspiration, or nutrient cycling,
or O, production or CO; sequestration of a particular ecosystem. Simply
put, the value of an ecosystem's functions is the emergy driving the
system.

Services are another thing...they are, first and foremost, a product of
human imagination. Services are aimed at humans and are defined as
actions of assisting or doing work for someone. Therefore, ESs are ac-
tions by ecosystems that help or do work for humans. There are nu-
merous ways of evaluating ESs, mostly in monetary terms (avoided
cost, replacement cost, factor income, travel cost, hedonic pricing, and
contingent valuation), It is these methods of evaluation that make the
distinction between functions and services important. Each of these
methods rely on some form of willingness-to-pay and therefore are
“receiver value systems”. Emergy is a donor value system, so to eval-
uate ecosystem functions we compute the emergy required to produce
them. To evaluate the services that and ecosystem provides we compute
what people are willing to pay for it. Quite simply, to opposing views of
value.

In this paper we have compared our computed values of ecosystem
functions to economic values by converting emergy to monetary units
using a global emergy money ratio. We have refrained from suggesting
that one is better than the other, since they measure two very different
things. The utility of converting to emdollars is merely the fact that
humans recognize dollar values and are proficient at distinguishing
relative importance based on them.

4.4. Drivers of Biome Productivity and Structure

Throughout the analysis of biomes and driving emergy, water and
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, computed by dividing emergy in column 6 by the world emergy/money ratio in 2014 = 2.0 E12 sej/$

temperature played significant roles in determining productivity and
structure of global biomes. The analysis of biome driving emergy
showed that the chemical potential emergy of water (AET + runoff)
was the dominant emergy (Table 2) for a majority of the biomes (11 out
of 16 terrestrial biomes plus the coastal estuary biome). These corre-
sponded to the moist climatic provinces® (perhumid®, humid, and
subhumid). Interestingly, the biomes of the dry climatic provinces
(semiarid; and arid) were dominated by wind as the driving energy. The
dominate input emergy of a system has been termed MaxR, which is a
contraction of maximum renewable.

According to emergy theory, systems should respond to the emergy
driving them. Therefore, one might expect that the higher the emergy
input the greater total work that can be done by a system. In ecosys-
tems, total work is measured by GPP, thus correlations between GPP
and MaxR should be a test of the general proposition. Generally, this is
true, GPP as a measure of total work shows an increasing trend with
increasing driving emergy (compare data in Tables 3 and 4).

The suite of emergy inputs to ecosystems, also called “emergy sig-
nature” was shown in Figure 3. The two dominate driving emergy forms
for nearly all biomes were rain and wind. In the moist climatic regimes
rain dominated, while in the dry regimes, wind was the dominate input.
If the theory that systems respond to emergy and not necessarily to the
form of the emergy input, then a test of correlation between MaxR and
productivity should yield strong correlation regardless of the input
emergy forms. Simple linear regressions of MaxR vs GPP (Figure 8)
yielded strong correlations, especially with those biomes whose dom-
inate input was rain (R2? = 0.75). In the same regression, biomes whose
dominate input was wind exhibited lower than expected GPP, sug-
gesting that the proposition that maximum emergy, regardless of form
is a strong indicator of productivity is inaccurate. A second regression of
AET vs GPP found a much stronger correlation between the two vari-
ables (R? = 0.89) further explaining the lack of correlation of the dryer

*Moist climates are those with a positive moisture index and dry provinces
are those with a negative index (Thornthwaite,1948)

S Defined by Thornthwaite (1948) as the wettest type of climate having a
humidity index value greater than 100.
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Table 13

Estimates of emergy and emdollar values of terrestrial biome soil carbon losses

Emdollars ® (Trillion em$)

Land use change ” % Soil Carbon Loss Soil Carbon Loss % (10'° gC UEV © Emergy “ (10%* sej)

Soil Carbon *(10'® gC)

Biome

6.9
0.7
0.2

3.9

1

4.66E +08

29.7
4.2
1.2

-31%
-16%
-18%
-19%
-38%
0%

-43%
-82%
-72%
-71%
-35%
-4%

223.8
31.6
9.2

Tropical & Subtropical Moist Broadleaf Forest
Tropical & Subtropical Dry Broadleaf Forest
Tropical & Subtropical Coniferous Forest
Temperate Broadleaf & Mixed Forest

Temperate Conifer Forest
Boreal Forest/Taiga

3.34E+08

0.3

2.56E+08

1.7
0.5

0.0
1.1

3.3

1.55E+08

21.5
7.3
0.0

161.7
54.6

1.28E+08
1.59E +08

347.9
166.2
110.5
12.3

2.2

9.89E+07

22.1

-22%
-19%
-20%
-25%
0%

-61%
-70%
-67%
-53%
0%

Trop & Subtrop Grassland, Savanna & Shrubland
Temperate Grassland, Savannas & Shrubland

Flooded Grassland & Savanna

1.7
2.5
0.9

3.4

2.33E+08

14.7
1.6
6.8
0.0
4.0

3.10E+09

2.77E+08

51.5

Montane Grassland & Shrubland

Tundra

2.38E+09

150.4
30.1

0.1

6.33E+07

-17%
-58%
0%

-78%
-23%
-51%

Mediterranean Forests, Woodland & Scrub
Deserts & Xeric Shrubland

Mangroves
Total

2.2

2.15E+08

20.2
0.0

152.0
5.9

2.65E+09

18.5

37.0

133.4

1507.8

. soil carbon data from Table 5
. % land use change from Table 11

a
b

. Percent soil carbon loss based on total loss of 133 PgC (Sanderman et al. 2018)

. Computed as product of column 2, 3 and 4.

c
d

. Computed from Table 5 by dividing total emergy by carbon stock.
. Emergy is computed as the product of UEV and soil carbon loss

e

f

. Emdollars are computed by dividing the emergy in column 5 by the world emergy money ratio (2.0 E12 sej $ 1)

g
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biomes who were dominated by wind. The fact that the R improved
when AET was used implies a stronger relation to available water, ra-
ther than just maximum emergy.

When GPP was computed for each continental biome and then the
results regressed against AET and MaxR (Figure 9), the regressions that
resulted were a bit weaker (R?2=.079 and R®>= 0.65, for AET and MaxR
respectively). The suggestion is that the “smoothing’ that results from
computing global means for biome GPP results in a stronger relation
between driving emergy and ecosystem productivity. In other words,
using global means for GPP rather than using GPP for each continental
biome reduces the variability in overall GPP and therefore increases the
R? of the regressions.

When regressions were conducted to evaluate correlations of AET
and MaxR with biome biomass, the results were far less strong (bottom
graphs in Figure 8). The variability was much greater, yielding an
R? = 0.37 for AET vs. biomass and R> = 0.28 for MaxR vs. biomass. It
appears that accumulation of biomass is only slightly related to the
intensity of the driving emergy. Other factors may be involved for in-
stance temperature, which modify environmental conditions.

4.5. Maximum Emergy or Multiplicity of Emergy?

Multiple regression analysis of biome productivity and biomass
(Tables 6 and 7) suggested that while all the forms of driving renewable
emergy explained some of the variation in GPP and biomass, by far, rain
and solar energy were the most important, and positively correlated,
while wind and geothermal were negatively correlated. Interestingly,
the multivariate adjusted R? values were quite different from the R? of
the univariate regressions. The multivariant adjusted R® for GPP
(Table 6: R? = 0.79) decreased from the univariate AET vs. GPP value
(Figure 8: R*= 0.89), while the multivariate adjusted R? for biomass
(Table 7: R% = 0.84) was relatively similar to the univariate regression
for rain and AET (Figure 9: R* = 0.87 and R>= 0.81 respectively). The
addition of solar energy had a positive effect in explaining some of the
variance in biomass, while it had little or no effect on GPP. Apparently
while rain alone is a relatively good predictor of GPP, the best model for
biomass was a multiple regression that included solar energy and to a
lesser degree wind.

It should be kept in mind that AET is always between 95% and 99%
of MaxR (see Table 2), in the moist ecosystems, since MaxR is composed
of AET and runoff chemical potential. In the dry biomes, AET makes up
only between 3% (rock and ice biome) and 50% (desert biome) of
MaxR. The better fit of AET alone compared to MaxR for the univariate
regressions does suggest that runoff chemical potential might add a
confounding factor to MaxR. It also suggests that while MaxR is a pretty
good correlate with productivity, water used is a stronger one. Without
the dry biomes, MaxR appears to be as good a predictor as AET.

The univariate and multiple regressions (Tables 6 and 7) suggest
that rain (and AET) are the most important variables explaining var-
iation in GPP. Odum (1996) had hypothesized (based on computations
of transformities of global rainfall) in many of land-based systems
analyzed in his book, that rain and more specifically, the portion of rain
that is used by vegetation (AET) was the most significant driver of
ecosystems. The analysis of multiple driving emergy sources confirms
Odum's original evaluations and strongly suggests that the water used
by ecosystems (AET) is the dominate determinant of productivity.

Interestingly, the best model for biomass was a multivariant re-
gression the strongest variable of which were AET, solar, and wind
(negative effect). Presumably the accumulation of biomass over time is
not only affected by the available water used, but by solar input and
negatively affected by wind. Wind can be both a positive and negative
influence on ecosystems. At low velocities wind can be a positive driver
of productivity by increasing evapotranspiration which in turn in-
creases nutrient transport from roots to leaves, for example. At high
velocities it has an increasing negative impact on the development of
biomass as a result of defoliation and windthrow. The univariant
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Figure 13. Gross primary production of global biomes showing the global mean and continental means.

regressions supported a singular dominate driver (rain), but the addi-
tion of solar and geothermal resulted in a slight increase in explaining
the variation in biomass.

4.6. The Impact of Human Induced Land Use Change

Without question, humans have altered the land cover of planet
Earth. The year 1700 was taken as the boundary between “pre-an-
thropocene” and the anthropocene. It was felt that prior to 1700 there
was very little influence from fossil fuel use, for it was the arrival of the
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industrial revolution in mid-1700 that coal began to replace biomass as
the main source of energy. In the roughly 300 years since 1700, there
has been a significant change in land cover, resulting in 38% of the pre-
anthropocene terrestrial biome land area changed to human dominated
land cover (Table 11). A majority of the terrestrial biomes (nine out of
16) exhibit per cent change greater than 50%. The large tundra (0%
change) and boreal forests (4% change) are the reason that the total
pre-anthropocene terrestrial landcover is not greater than 50%.

Using satellite imagery to evaluate current (2010) GPP and com-
paring to our estimates of pre-anthropocene GPP resulted in a net
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change of -5% with many biomes exhibiting positive changes
(Table 11). While we did not include agricultural lands in our analysis
(they were subtracted out before doing analysis of GPP), those biomes
with the largest increases in GPP were the biomes where human in-
fluences were dominated by agriculture. This is presumably the result
of several things, first, it is possible that some agricultural lands were
inadvertently included and not masked out and when viewed from
satellite sensors show the relatively high productivities characteristic of
irrigated and fertilized land cover. A second possibility is that of a
“spill-over effect”, where runoff from agricultural lands increases pro-
ductivity of surrounding natural areas.

Of course, the difference in production is not only that measured as
GPP, but also, the ultimate fate of the productivity. On the pre-an-
thropocene earth, productivity was cycled and recycled within ecolo-
gical systems supporting diverse food chains of organisms. In the cur-
rent system, the productivity increases that are seen in most biomes is
used to support a diverse and complex human system. With such de-
clines in available productivity, there must be an accompanying decline
in the quantity and diversity of organisms that the global ecosystems
can support.

Studies of the human appropriation of net primary production
(HANPP) have shown that between 13% and 40% of NPP is being ap-
propriated by humans (Haberl et al., 2014, 2007; Krausmann et al.,
2013; Vitousek et al., 1986). If we assume that the areas of human
occupation are equivalent to appropriated productivity, then this study
quantifies the HANPP in 2000 to be 38% of total available productivity
(Table 11) a quantity within the upper bounds of the current estimates.
Interestingly, not only has this quantity of productivity been seques-
tered by humans, but actually the productivity of these lands has been
increased through management, fertilization and irrigation, so that if
we again assume that all the lands under human domination are sub-
sidized with water and nutrients, the quantity of NPP has increased
while the overall decrease exhibited (about 5%: Table 11) can be at-
tributed to bare and urban lands.

Without detailed measurements of standing biomass we can only
estimate the losses of BNC that have resulted from human induced land
use changes from available aerial coverage data. The assumption of
losses of 100% of above and below ground biomass from forested lands
converted to other uses and 50% of above and below ground biomass
from grassland and shrubland biomes resulted in losses totaling about
12% of standing biomass (Table 12). When converted to emdollars, the
loss represents °"$ 70 trillion. We wused the data of
Sanderman et al. (2017) to estimate soil carbon losses at 133PgC since
the beginning of the Anthropocene (Table 13), which when converted
to emdollars totaled about *@$18.5 trillion

5. Conclusion

The emergy supporting the geobiosphere based on the solar, tidal
and geothermal inputs totals 12.0 E+24 sej yr~'. When the emergy
supporting the biomes of the geobiosphere is summed it totals 24.5 E
+24 sej yr~! (See Table 7, Global total), slightly over twice the geo-
biosphere emergy baseline (GEB). Many would ask...” how is this pos-
sible, there is more energy supporting the biomes, than is supporting the
geobiosphere as a whole; either there is an accounting error, or there is some
sort of double counting.”

It is possible that there is some double counting, but there are two
factors that contribute the most to this apparent problem. The first
factor is a interesting and well-known phenomena in spatial analysis
known as the Modifiable Areal Unit Problem (MAUP) that we identified
in a previous paper (Lee and Brown, 2019). The MAUP results from
spatial aggregation and scale of analysis and ultimately results in sta-
tistical bias when summary statistics are computed from spatial data.
The second factor contributing this this apparent problem is related to
the fact that the geobiosphere is a complex network of energy conver-
sion processes, where primary renewable emergy sources (solar, tidal
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and geothermal) are transformed into secondary and then tertiary
sources. Lags in the system, storages of materials and potential energy
storages result in more emergy transfer between components, than is
driving the system. The dynamic interconnected nature of the geobio-
sphere strongly presupposes that simple static addition of the driving
emergy does not account for feedback or cycling of emergy over time
scales greater than one year. While static evaluation considers inputs
over a 1-year timeframe, it is well known, that the atmosphere, oceans,
and land masses have turnover times much greater than one year. It is
therefore entirely reasonable that when the driving emergy of each
biome is summed it totals more than twice the emergy that annually
drives the geobiosphere. As Aristotle (and many individuals since his
time) have stated...”the whole is greater than the sum of its parts”.

Each biome is driven by a unique signature of emergy sources. Yet
emergy theory suggests that it is not the sum of the emergy inputs that
drives ecosystems, but the largest, since embodied in each input is some
emergy from the other inputs (because of the interconnected nature of
the biosphere network of emergy flows and transformations. This study
questions that assumption. The simplistic mathematical conversion of
taking the largest, is just that...simplistic. It does not recognize the
complexity of the geobiosphere network, but assumes a series of rather
linear transformations of the GEB that result in rain, wind, river geo-
potential etc. If this study did nothing else, it calls into question this
rather naive assumption of linearity.

The impact of humans on the geobiosphere is pervasive and far
reaching. Still there are large areas of Earth that remain somewhat
untouched, the tundra and boreal forests, for instance. While exhibiting
nearly imperceptible land use change, non-the less they are under sig-
nificant potential change from global climate effects. How they adapt to
these changes, whether they will increase in productivity or whether
biomass decreases markedly from fire and human exploitation remains
uncertain. While in the past it was suggested that the great expanse of
tropical and sub-tropical rain forests were the Earth's systems that
provided large scale buffering to global changes, as they show marked
signs of increased human induced change, the only biomes left rela-
tively intact may soon begin to go the way of all the others. Currently,
about 12% of the Earth's biomass has been lost and about 8% of soil
carbon. This begs the question...what is the appropriate quantity of
untouched ecosystem function required to maintain a stable Earth
ecosystem? Are we approaching that limit?
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