INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6" x 9" black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

UMI®

Bell & Howell Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600

THE BASIS FOR RAINFOREST DIVERSITY AND BIOSPHERE 2

By

LINDA SUSAN LEIGH

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

UMI Number: 9946010

UMI Microform 9946010 Copyright 1999, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized copying under Title 17, United States Code.

UMI

300 North Zeeb Road Ann Arbor, MI 48103

ACKNOWLEDGMENTS

Dr. H. T. Odum has been the quintessential mentor, finding no idea too trivial to explore and no emergy analysis or comparison too radical to consider. I thank him for his encouragement of both creative imagination and scholarship. I would like to thank my committee members for the inspiration they provided throughout my doctoral program: Dr. M. T. Brown, Dr. C. L. Montague, Dr. C. S. Holling, and Dr. F. N. Scatena.

I am indebted to the original Biosphere 2 rainforest design team with whom I worked in my role as Biome Design Coordinator from 1985 to 1993: Ghillean Prance (rainforest biome design 'captain'), Tony Burgess (desert biome design 'captain'), Peter Warshall (food web design), Scott Miller (entomology), Harry Scott (biome design and species selections), John Druitt (biome design and species selections), Walter Adey (aquatic systems), Julia Bennett (plant propagation and management), Bob Scarborough (soils), Stephen Storm (soils) Phil Hawes (architectural design), Michael Balick (plant selections), Andrew Henderson (plant selection, collections), and others. I completed the third plant survey with the assistance of Jessica Bolson, and measurements in 1998 with assistance of the students of the Spring 1998 Columbia University Earth Semester at Biosphere 2.

Some of the data for this dissertation were assembled from the following reports, which are on file at Columbia University's Biosphere 2 Center in Oracle, Arizona: biomass estimates for 1990 and 1991 (Alan Haberstock, Dec. 1991); biomass estimates for 1993 (Mark Bierner, Oct. 1993);

ii

soil chemical and physical properties in 1993 (Harry J. Scott, Dec. 1994); maps and survey data (Jeremiah Teague and Co., Sept. 1991); soils design, assembly, and placement (Robert Scarborough, Mar. 1993). Access to the Biosphere and logistic support was facilitated by Adrian Southern and John Adams. Eda Melendez provided data from Ei Verde.

An educational grant was received from Edward Bass, a scholarship fund from the Drylands Institute, and a Graduate Assistantship in the contract between the Institute of Tropical Forestry, U.S. Department of Agriculture and the University of Florida, H. T. Odum, Principal Investigator.

Unconditional thanks are extended to Richard Felger, Silke Schneider, Roy Walford, Kathleen Dyhr, Bernd Zabel, Dan Levinson, Randall Gibson, and Bonnie Knickerbocker; Carlos Nagel, the late Alfredo Rivera, Sherry and Casey Brandt-Williams, Joanie Breeze, Tony Burgess, Jerry Leigh; and a long list of loyal friends.

"Never say die" and "Keep the voyage going, going, but never gone" reflect the attitudes of me and my fellow crew members inside Biosphere 2 --Gaie Alling, Taber MacCallum, Jane Poynter, Roy Walford, Mark Nelson, Sally Silverstone, and Mark Van Thillo -- and they continue to inspire.

I extend a special acknowledgment and heartfelt thanks to Ren Hinks who encouraged me on a daily basis.

TABLE OF CONTENTS

1	page
ACKNOWLEDGMENTS	ii
LIST OF TABLES	viii
LIST OF FIGURES	xii
ABSTRACT	xvii
1 INTRODUCTION	1
Review of Diversity-Influencing Processes in Other Studies Species and Area Species and Individuals Succession. Theories of Diversity. Diversity Decline A Conceptual Model of Ecosystem and Diversity. Carrying Capacity of Systems for Diversity Spatial Organization. Hierarchical Organization. Rainforest in Biosphere 2. Design Elements and Description A Conceptual Model of Diversity in Rainforest of Biosphere 2. Rainforest in Puerto Rico.	2
2 METHODS	43
Construction and Operation of the Rainforest in Biosphere 2 Procedures Used in Starting the Ecosystem Soil Components and Placement Collection and Initial Placement of Plants Habitat Assembly Climate Maintenance Systems Human Intervention Plant Mapping and Identifications. Initial Mapping and Identifications: 1990-1991	45 47 49 53 56 57 57
Species Additions and Removals	

	Field Measurements	
	Second Survey: Transition period, 1993-1994	
	Third Survey: June-August 1996	59
	Surveys of Species Found per 1000 Individuals Counte	61
	Leaf Area Index	62
	Number of Seedlings per m ²	
	Percent of Holes in Leaves	
	Number of Green or Yellow Fallen Leaves per m ²	
	Calculations	
	Diversity Index	
	Biomass Estimates	
	Growth Form Spectra	
	Poisson Distribution	
	Simulation Method	
	Emergy Evaluation	67
~		70
3	RESULTS	72
	Characterization of and Changes in Disambers 2 Deinformet	70
	Characterization of and Changes in Biosphere 2 Rainforest Soil	
	9011 Plants	
	Spatial Distribution of Plants	
	Cumulative Species per Cumulative Individuals Counted	
	Leaf Area Index	
	Number of Seedlings and Green and Yellow	
	Fallen Leaves per m ²	94
	Percent of Holes in Leaves	
	Litterfall and Decomposition Rates	
	Carbon Uptake and Respiration	
	Cutting and Consumers	
	Diversity Index	
	Biomass Estimates	
	Comparisons Between Biosphere 2 and Tabonuco Forest in	
	Puerto Rico	101
	Physical Environment	
	Soil	
	Plants	
	Overview Simulation Models	
	Production and Biomass Minimodel Description	
	Results of Simulating the Production and Biomass Minimodel	
	Production and Diversity Minimodel Description	
	Results of Simulating the Production and Diversity Minimodel	143
	Emergy Evaluation of Rainforest in Biosphere 2	

•

4	DISCUSSION	154
	Succession with Declining Diversity	154
	Effect of First Arrivals	
	Limited Access to Genes	
	Declining Diversity and a Species Plateau	
	Extrapolation of Species Composition According to	1.00
	Reproduction	158
	Simulation of Species Decline	160
	Mechanisms Affecting Diversity in Biosphere 2	
	Excess Resources and Diversity	
	Effect of Trimming Weedy Growth	
	Pulsing Disruption	
	Consumers	
	Graphical Representation of Cumulative Species-Individual	
	Counts	166
	Effect of Spatial Characteristics of Plants in Biosphere 2	
	Comparisons with El Verde	
	Comparisons Between Rainforest Structure in Biosphere 2 and	
	EI Verde	
	Soil Structure	170
	Absence of Most animals and Simplification of Food Webs	171
	Plant Reproduction	171
	Species and Individuals	172
	General Implications	
	Comparison of Biosphere 2 with Role and Trends of	
	Global Biodiversity	
	Declining Diversity and Downsizing	
	Comparing Succession of Diversity in Biosphere 2 with	
	Global Cultural Change	
	Carrying Capacity of Systems for Diversity	
A T		
A	PENDICES	
	A BIOSPHERE 2 RAINFOREST PLANT MAPS	177
	B BIOSPHERE 2 RAINFOREST PLANT LISTS	199
	C PRODUCTION AND BIOMASS MINIMODEL	

D	PRODUCTION AND DIVERSITY MINIMODEL	323
REFERE	ENCES	332

BIOGRAPHICAL SKETCH	

LIST OF TABLES

<u>Table</u>		page
1-1.	Definitions and concepts used in this dissertation (after Odum 1996)	3
1-2.	Symbols for the energy systems language used in this dissertation	22
1-3.	Parts and processes of ecosystem model that affect species numbers and account for observed declines	24
2-1.	Chronology of Biosphere 2 rainforest construction and operation	44
2-2.	Rainforest soil components and their origins. From Scarborough (1994)	46
2-3.	Percent of components in topsoil mixture specifications and their corresponding habitats. From Scarborough (1994). Totals are approximate	48
2-4.	Spreadsheet used to calculate coefficients for single tank biodiversity model in Figure 2-3, calibrated at steady state	69
3-1.	Characteristics of Biosphere 2 rainforest soils from samples taken on different dates	73
3-2.	Soil bulk density and percentage coarse fragments in Biosphere 2 rainforest from samples made in November 1993. From Scott (1999)	76
3-3.	Total number of species and individual plants seeded in the Biosphere 2 rainforest	78
3-4.	Number of individual plants and species recorded in 1991, 1993, and 1996 surveys of Biosphere 2 rainforest. The first number in each entry includes plants from the 1991 planting, the second number from the 1993 planting, and third is plants that have self-propagated. Species reported are for species new to the rainforest.	81

3-5.	Leaf and branch interceptions per observation through vertical points in Biosphere 2 rainforest. Data for 1993 from Odum et al. (1993)	
3-6.	Distribution of seedlings found in 30, 0.54 m ² circular plots in Biosphere 2 rainforest understory in 1998	
3-7.	Distribution of green and yellow leaves in 0.54 m² circular plots on lowland rainforest ground, April 1998	98
3-8.	Percent of holes in leaves in Biosphere 2 rainforest trees. Data for 1993 from Odum et al. (1993)	98
3-9.	System metabolism of Biosphere 2 rainforest for summer, 1996. NEE=Net ecosystem exchange, R _s =Soil respiration, A _c =Canopy assimilation, RUE=Radiation use efficiency, R _p =Plant respiration. From Lin et al. (1999)	100
3-10.	Shannon-Wiener index of diversity in Biosphere 2 rainforest for 1991, 1993, and 1996	102
3-11.	Aboveground plant biomass estimates in Biosphere 2 rainforest for 1990, 1991, and 1993. From Haberstock (1991) and Bierner (1993)	102
3-12.	Environmental variables at El Verde and Biosphere 2 forests. From Odum (1970), Romer (1985), Ahrain et al. (1998), and Cuevas et al. (1991)	104
3-13.	Comparison of soil properties of Puerto Rico and Biosphere 2 forests. From Edmisten (1970), Silver et al. (1994), Scott (1999), and Lin et al. (1998 and 1999)	106
3-14.	Soil bulk density in Biosphere 2 rainforest and Puerto Rico tabonuco forest. From Scott (1999), Edmisten (1970), and Silver et al. (1994)	108
3-15.	Plant species occurring in El Verde that were originally planted in Biosphere 2 forest, with an inventory of individuals counted per species in 1991 and 1996	109
3-16.	Sampling sites for species/individual counts, and number of species/1000 individuals	113
3-17.	Leaf-area indices of Puerto Rico tabonuco forest and Biosphere 2 rainforest. From Odum(1970), Jordan (1969), Odum and Pigeon (1970), and Odum et al. (1993)	120

•

3-18.	Seedling density in Biosphere 2 and tabonuco rainforest. Tabonuco forest data from Odum (1970b)
3-19.	Percent of holes in leaves in Biosphere 2 and tabonuco forest trees. Tabonuco forest data from Odum (1970b)
3-20.	Litterfall rates in Biosphere 2 rainforest habitats and tabonuco forests. From Nelson (1999), Wiegert (1970), Cuevas et al. (1991), Lugo (1992), and Lodge (1991)
3-21.	Decomposition rates of litter in Biosphere 2 rainforest and tabonuco forest in Puerto Rico. From Nelson (1999) and Wiegert (1970)
3-22.	Nutrient content of leaves in percent of dry weight in Biosphere 2 and El Verde forests. From Odum (1970a), Ovington (1970), Medina et al. (1981), and Lin et al. (1999)
3-23.	Carbon exchange in Biosphere 2 (summer) and tabonuco rainforests. R _s =Soil respiration, A _c =Canopy assimilation From Lin et al. (1999)
3-24.	Estimates of aboveground biomass density in Biosphere 2 and tabonuco forests. From Haberstock (1991), Bierner (1993), Ovington and Odum (1970), Scatena et al. (1993), and Lugo (1992)
3-25.	Accumulated emergy inputs to Biosphere 2 rainforest for start-up of the system prior to material closure in 1991
3-26.	Comparison of emergy in developing rainforest in Biosphere 2 in 1991 and 25-year-old natural tabonuco forest
4-1.	Extrapolation of species composition of Biosphere 2 rainforest to 100 years with 30 species. H=Herb, T=Tree, P=Palm, G=Giant herb, A=Bamboo, C=Climber, S=Shrub
4-2.	Species/1000 individuals and slope of log-log graphs for all study sites. K=slope of log-log graph173
B-1.	Individual plants in the Biosphere 2 rainforest
B-2.	Species from the first planting of the Biosphere 2 rainforest, with inventories from 1591, 1993 and 1996. T=Tree, S=Shrub, P=Arboreal palm, R=Graminoid, C=Climber, A=Woody graminoid, such as bamboo, H=Herb, G=Giant herb, E=Epiphyte

B-3.	Species from the second planting of the Biosphere 2 rainforest, with inventories from 1993 and 1996, or self-propagated. T=Tree, S=Shrub, P=Arboreal palm, R=Graminoid, C=Climber, A=Woody graminoid, such as bamboo, H=Herb, G=Giant herb, E=Epiphyte
C-1.	EXCEL spreadsheet used to calculate coefficients for Biosphere 2 rainforest production and biomass minimodel under predicted steady state conditions
C-2.	Program in BASIC for the simulation of metabolism of the rainforest in Biosphere 2, Model B2METAB in Figure 3-19
D-1.	EXCEL spreadsheet used to calculate coefficients for Biosphere 2 rainforest diversity and production minimodel, SPDIV
D-2.	Program in BASIC for the simulation of production and diversity in the Biosphere 2 rainforest, Model SPDIV in Figure 3-28

LIST OF FIGURES

Figur	<u>e</u>	page
1-1.	Systems diagram representing theories of ecosystem diversity	21
1-2.	Areas within Biosphere 2	32
1-3.	Continuous photosynthetically active radiation, CO ₂ , and temperature in terrestrial wilderness biomes of Biosphere 2 during the first material closure	33
1-4.	Side view of rainforest biome	35
1-5.	Habitats delineated within the Biosphere 2 rainforest	37
1-6.	Systems diagram representing ecosystem diversity within Biosphere 2 rainforest	39
2-1.	Hydrologic connection of Biosphere 2 rainforest to the rest of the Biosphere 2 system	54
2-2.	Diagram and equations for species diversity on an island as described by MacArthur and Wilson (1967) and drawn by Beyers and Odum (1993)	68
2-3.	Single tank model of biodiversity as a balance of steady inflow pathway coefficients	68
2-4.	Single tank model of biodiversity with calibration values for flows and storages	69
2-5.	Simulation of number of species Q for different starting values using the single storage model in Figure 2-3	70
3-1.	Map section #3 showing location, growth form, and canopy size of individual plants in the Biosphere 2 rainforest in September 1991. The twenty map sections are given in Figure A-1. Approximate scale: 1 cm=0.6 m	79
3-2.	Change in plant species abundance and distribution in Biosphere 2 rainforest, 1991-1996, for plants from the first planting	83

3-3.	Number of individual plants in Biosphere 2 rainforest time including 2 planting periods, 1991 and 1993	84
3-4.	Number of species in Biosphere 2 rainforest through time and with two planting periods, 1991 and 1993	84
3-5.	Relationship of number of species to number of individuals over time in Biosphere 2 rainforest on linear (upper figure) and semilog (lower figure) scale. Open triangles are plants from 1991 planting, squares from 1993 planting, and circles combine plants from both. Survey data are from 1991, 1993 and 1996.	86
3-6.	Number of individuals within growth forms in Biosphere 2 rainforest in 1991, 1993 and 1996. Data include only plants from first planting. H=Herb, T=Tree, S=Shrub, C=Climber, G=Giant herb, P=Arborescent palm, E=Epiphyte, R=Graminoid, A=Bamboo	87
3-7.	Number of species within growth forms in Biosphere 2 rainforest in 1991, 1993 and 1996. Data include only plants from first planting. H=Herb, T=Tree, S=Shrub, C=Climber, G=Giant herb, P=Arborescent palm, E=Epiphyte, R=Graminoid, A=Bamboo	88
3-8.	Change in number of species within growth forms from 1991 planting in Biosphere 2 rainforest through time	89
3-9.	Change in distribution of species within growth forms from 1991 planting in Biosphere 2 rainforest through time	90
3-10.	Spatial distribution of plants in Biosphere 2 rainforest in 1991 (solid squares) compared to Poisson distribution (open triangles)	91
3-11.	Cumulative plant species as a function of cumulative individuals in Biosphere 2 rainforest, 1991. Data for all habitats except cliff faces and surface aquatic systems are plotted on linear (a), semi-log (b) and log-log (c) scales	92
3-12.	Cumulative plant species as a function of individuals in Biosphere 2 rainforest, April 1998. Open squares have Scindapsus and Syngonium subtracted	93

3-13.	Cumulative species as a function of cumulative individuals in Biosphere 2 rainforest in 1991 (solid circles), 1998a (all plants, open squares) and 1998b (<i>Syngonium</i> and <i>Scindapsus</i> deleted, crosses)	95
3-14.	Growth form spectra of Biosphere 2 rainforest and El Verde tabonuco forest. B2=Biosphere 2. Data for El Verde from Smith (1970)	112
3-15.	Cumulative plant species as a function of cumulative individuals >0.5 m tall counted on an 11-year-old landslide at El Verde site	114
3-16.	Cumulative plant species as a function of cumulative individuals counted in Biosphere 2 rainforest (solid circles) and on an 11-year-old landslide at El Verde site (open squares)	115
3-17.	Cumulative plant species as a function of cumulative individuals counted on El Verde landslide (open circles), Radiation Center (open triangles), and Bisley grid (crosses)	116
3-18.	Cumulative plant species as a function of cumulative individuals counted on El Verde landslide, Radiation Center, Bisley grid and Biosphere 2 rainforest for 1991 and 1998	118
3-19.	Systems diagram for simulating production and biomass in Biosphere 2 rainforest showing storages, pathway coefficients, and equations	127
3-20.	Systems diagram for simulating production and biomass in Biosphere 2 rainforest showing calibration values projected for steady state after 20 years of operation	131
3-21.	Ten-year simulation of production and biomass minimodel, B2METAB in Figure 3-19. Final values for plant biomass are on the right side of their graphs. $g/m^2 = grams per$ square meter, dry weight for biomass	132
3-22.	One-hundred-year baseline simulation of production and biomass in the minimodel, B2METAB in Figure 3-19. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass	133

3-23.	Comparison of simulations of biomass by the model in Figure 3-19 showing effects of light, elimination of weedy biomass, limited pruning, and altered airflow on mature and weedy plant biomass. Values for biomass at 100 years are given on the right side of the graphs in grams of dry biomass per square meter. Scales are the same for each box. M=Mature plants, W=Weedy plants	135
3-24.	Comparison of effects of light, elimination of weedy biomass, limited pruning, and altered airflow on system production ratio, Pg/Rp. Scales are the same for each box, with the center line = 1	136
3-25.	Systems diagram for simulating diversity and production in Biosphere 2 rainforest showing storages, pathway coefficients and equations	140
3-26.	Systems diagram for simulating production and diversity in Biosphere 2 rainforest showing calibration values for storages and flows	144
3-27.	Baseline simulation of diversity and production minimodel SPDIV, in Figure 3-25 for Biosphere 2 rainforest for 10 years. Final values for plant biomass and species are on the right side of their graphs. $g/m^2 = grams$ of dry biomass per square meter.	145
3-28.	Baseline simulation of diversity and production minimodel, SPDIV, in Figure 3-25 for Biosphere 2 rainforest for 100 years. Final values for plant biomass and number of species are on the right side of their graphs. $g/m^2 = grams$ of dry biomass per square meter	147
3-29.	Emergy analysis summary diagram of Biosphere 2 rainforest	149
4-1.	Extrapolation of number of plants in El Verde rainforest to a possible diversity plateau (solid triangle) for the Biosphere 2 rainforest. Measured data from Biosphere 2 are shown with solid circles (1991) and open squares (1998)	159
A-1.	Map cells showing the location of individual plants in the Biosphere 2 rainforest	177

C-1.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with light increased 20% over baseline. Final values for plant biomass are on the right side of their graphs. g/m ² =grams per square meter, dry weight for biomass
C-2.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with no weedy biomass. Final values for plant biomass are on the right side of their graphs. g/m ² =grams per square meter, dry weight for biomass
C-3.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, where all pruned biomass is put onto the soil. Final values for plant biomass are on the right side of their graphs. g/m ² =grams per square meter, dry weight for biomass
C-4.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with no pruning by humans. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass
C-5.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, human effort is reduced to .75 of the baseline. Final values for plant biomass are on the right side of their graphs. g/m ² =grams per square meter, dry weight for biomass
C-6.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, human effort is reduced to .85 of the baseline. Final values for plant biomass are on the right side of their graphs. g/m ² =grams per square meter, dry weight for biomass
C-7.	One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with airflow cut off from the rest of the Biosphere. g/m ² =grams per square meter, dry weight for biomass
D-1.	Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 10 years. Final values for plant biomass and species are on the right side of their graphs. g/m^2 =grams of dry biomass per square meter329

- D-2. Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 100 years. Final values for plant biomass and species are on the right side of their graphs. g/ m²=grams of dry biomass per square meter330

Abstract of Dissertation Presented to the Graduate School of the University of Florida in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

THE BASIS FOR RAINFOREST DIVERSITY AND BIOSPHERE 2

By

Linda Susan Leigh

August 1999

Chairman: H. T. Odum Major Department: Environmental Engineering Sciences

A miniature rainforest created in the glass-enclosed Biosphere 2 mesocosm in Arizona was compared with montane rainforest in Puerto Rico to study the basis for biodiversity and succession. Initial seeding of high plant diversity was a technique for determining by extrapolation the carrying capacity in Biosphere 2 and in disturbed areas in Puerto Rico. In Biosphere 2 the rainforest area was started in 1991 with 1890 plants of 316 species in 0.19 hectares. Three hundred and thirty-nine plants in 92 species were added in 1993. A diversity index, species per 1000 individuals counted, decreased from 250 in 1991 to 96 in 1998 compared to 60 in the comparison forest while the Shannon-Wiener index decreased from an initial 5.39 to 4.64 in 1996 compared to 4.62 in the comparison forest. Although normal populations of insects and pollinators were absent, vegetative reproduction established productivity, diversity,

xvii

hierarchy and developed soil profiles approaching those in the comparison forest.

Graphs of cumulative species versus individuals counted were analyzed to identify mechanisms affecting diversity including seeding, competition for excess nutrients and carbon dioxide, extinction rate, seasonal change in insolation, and pruning and management by humans.

The productive basis for diversity was simulated with a model of production, consumption, and recycle that included management alternatives. Simulation runs showed total biomass production highest when the weedy vine biomass was regularly trimmed and removed.

Another model of main factors affecting diversity was simulated with a minimum species limit to help explain the observed patterns and anticipate species carrying capacity. With an addition of 50 new species after 2 years, the simulation showed an increase in diversity and decrease in biomass after 10 years when compared to the simulation without further additions. Emergy and emdollar evaluation showed resources required for developing the rainforest in Biosphere 2 were 2300 times larger than those for the natural succession.

CHAPTER 1 INTRODUCTION

The basis for biodiversity is a principal question in ecology and other fields. Whereas most studies of succession and development of ecosystems have concerned periods of increase and diversification, less studied are the limits to diversity. Are there general systems principles controlling the selforganization of diversity in all systems? What happens when there is initial seeding of high diversity and limited area? In this dissertation the selforganization of the rainforest in Biosphere 2, the glass-enclosed mesocosm in Arizona, is compared with the tabonuco rainforest in Puerto Rico. Floristic studies, measurements, and models are used to account for patterns of growth and diversity.

Suppose a system is defined to include a newly added set of individual organisms and species. Immediately, relationships develop between these and the flows of energy and matter and some between each other. Parts and relationships can be represented with systems diagrams that give an overview of the whole and the parts. Diversity and structure are the information of the system that, like other storages, requires energy for its maintenance. The amount and quality of energy available to a system in part determines which of the energy requirements for diversity, structure, and their connections can be supported, thus shaping its biodiversity. Science of the parts of ecosystems, such as physiology, and science of the whole, such as systems ecology, are converging with respect to understanding biodiversity.

To improve the synthesis when science of the parts is applied, ecosystems and energy are included in systems models.

This dissertation considers the self-organization of the diversity of systems with limited resources. Do systems have a carrying capacity for diversity? How do resources and mechanisms of system interaction account for observed patterns? The next section is a literature review of the theories and processes that have been offered to account for decreases in diversity and structure. In order to clearly relate diversity to its resource basis, Table 1-1 provides definitions of the measures used.

Review of Diversity-Influencing Processes in Other Studies

Observations of diversity patterns over scales of time, space, or energy inputs suggest causal mechanisms affecting the processes that contribute to diversity. A comparative approach is often used in studying diversity in ecological systems.

Species and Area

Diversity is the number of kinds of units in an area. In an ecosystem it may be the number of species found. Patterns of diversity have been observed and compared for decades over spatial scales ranging from the entire biosphere (latitudinally) to continents, regions and localities (Rosensweig 1995).

A general pattern in the relationship of species and area show that within a taxonomic group, large areas support more species than small areas. A clear description of the pattern was first published by Jaccard (1912), and in 1921 Arrhenius published a mathematical description of the curve, which

Table 1-1. Definitions and concepts used in this dissertation (after Odum 1996).

TERM	DEFINITION
Emergy	The amount of available energy of one particular type that was used up, directly and indirectly, to make something (product or service). The unit with the prefix "em" is used with the units summed to indicate that it is an emergy rather than an energy scale. This study uses solar joules as energy units and solar emjoules as emergy units.
Power	Flow of useful energy per unit time.
Empower	Flow of emergy per unit time.
Transformity	A measure of energy quality defined as the emergy per unit available energy of a product or service. Units are emjoules per joule.
Species richness	The number of species found in an area. This is often used interchangeably with diversity, though richness only accounts for the number of species and not their distribution in an area.
Diversity	The accounting of different types within a system using taxonomic, functional, size, trophic levels, information content, etc., as the categories. The number of species and their relative abundances within an area are often used to calculate an index of diversity using various formulas.
Diversity indices: Shannon index	$H' = -\Sigma p_i \ln p_i$ p_i is the proportion of individuals found in the <i>i</i> th species.
Margalef index	(S-1)/ln N S = number of species, N = number of individuals
Species/1000 individuals	A form of the Margalef index

Table 1-1 – continued.

TERM	DEFINITION
Logarithmic index	log S7log N
Information	The units, connections, and configurations of a system requiring some form of energy as their carrier. Information is useful if it can make its system operate. Genetic codes are an example of useful information.
Maximum empower theory	Self-organizing systems prevail by developing designs that maximize emergy inputs and effective use (Odum 1996).
System	A part of nature with components defined by artificial or real boundaries, where 'windows' of time and space delimit the system of study. Single organisms or single populations are systems since they have relationships to their external factors and among their parts. A set of organisms is a system even if the units are new and not interacting much with each other. They are interacting with the light, material and heat flows. A system can be any size.
Energy hierarchy	The natural arrangement of energy transformation processes in a chain in which each process uses energy of one kind to generate less energy of a different kind. Available energy decreases along the chain, but transformity increases.

was quickly refuted by Gleason (1922). Extensive dialogue regarding the significance of the mathematical relationship has followed.

A plot of the increase of species as the sample size increases within an ecosystem is called the species/area curve. The first species/area curve is attributed to H. C. Watson in 1835 (Connor and McCoy 1979). The curve is used to indicate the number of species within an area of study larger than the sampled area; to determine the rate at which species accumulate within an area for comparison with other areas; and to determine the minimum sampling size needed to adequately characterize diversity of an area. Vestal (1949) attempted to calculate equivalent reference areas for vegetation types in about 240 areas worldwide. The reference areas were used to compare plant diversity within the area as well as to calculate sampling size required to characterize the vegetation type. The following site differences were cited as reasons for the necessity of varying the area sampled to determine diversity: size of plants or clumps of plants; degree of species dominance; low density of plants overall; productivity of the site; size and shape of the site; degree of heterogeneity of the environment; complexity of the community; floristic richness; abundance among species; successional stage; stand condition. Studies of diversity have to be carefully related to area. Though these reasons are plausible explanations for the need of varying sample sizes, his results have been considered "dubious", "purely hypothetical and probably wrong" due to methods he used in data conversions (Goodall 1952).

Though the pattern of diversity increasing with area may seem obvious or trivial, Huston (1994, p. 35) claims that, "...the underlying mechanisms include most of those that are potentially important in regulating diversity." Three hypotheses were suggested by Connor and McCoy (1979) in examining the causal mechanisms behind the pattern. The

first is considered the null hypothesis, and states that the pattern is a statistical sampling phenomenon (Gotelli and Graves 1996). The alternate hypotheses are the result of biological processes. The first suggests that diversification of species is greater in heterogeneous habitats, which occur with greater frequency as total area increases. The second suggests that the extinction rate is higher in smaller areas where populations are smaller, and that immigration rates don't change between areas.

As the area over which species occur increases, the available resources for species support increase proportionally. Species-area curves comparing local and regional scales show the species increasing as the total energy available to support diversity increases. In a study of 82 different variably sized terrestrial ecosystems, Orrell (1997) found correlation between species richness and the energy flow of each ecosystem.

Due to difficulties in comparing species/area curves where different areas have been sampled, other researchers have recommended using a plot of the number of species that accumulate for the number of individuals counted. Research by Condit et al. (1996b) in tropical forests demonstrate that diversity estimates can be compared over sites where an identical number of stems have been counted.

Species and Individuals

A common pattern measured in nature is the relationship between the cumulative number of species found and the individuals counted within a system. The typical pattern is a curve of decreasing slope (example Figure 3-11), and is the same type of pattern as the species/area curve (Huston 1994). The pattern holds for total enumeration of individuals within a site as well as

for subsets, such as trees within a particular stem diameter range (Condit et al. 1996b). Documentation of this pattern has been repeated with various taxa such as aufwuchs in natural springs and a laboratory microcosm (Odum and Hoskin 1957; Yount 1956), fishes (Angermeier and Schlosser 1989), and insects (Fisher et al. 1943).

Succession

Succession is the process of self-organization of an ecosystem after a disturbance. It is linked to diversity in that species composition and dominance change in an area over time due to processes within the system or processes at a larger scale. Clements (1936) initially suggested succession as a phenomenon whereby early successional species facilitate later successional species. According to his conceptual model, each stage of succession paves the way for the next stage by altering soils, humidity, nutrients and water availability. Connell and Slatyer (1977) suggest 3 categories of causal mechanisms for successional changes, adding to Clements' facilitation category: facilitation, inhibition, and tolerance. With their model, the net effect of an earlier successional species on the establishment of a later species can be either positive (facilitation), negative (inhibition), or neutral (tolerance). A neutral effect allows equal probability of all organisms to become established in an area, and "leads to a community composed of those species most efficient in exploiting resources, presumably each specialized on different kinds or proportions of resources." (Connell and Slatyer 1977). All three of these mechanisms along with life history characteristics of organisms are important in any given ecosystem (Ricklefs 1990).

Gutierrez and Fey (975) developed a model simulating the general dynamic patterns of succession, relating ecosystem structure to successional patterns. Simulations of their model suggest that the internal feedback structure of an ecosystem drive secondary succession. Ulanowicz (1980) uses community flow networks through ecosystems to describe the development and information content of the systems, suggesting that flows by themselves adequately describe ecosystem succession.

Four stages of succession are suggested by Holling (1986): exploitation, conservation, creative destruction, and renewal (recycle). During the exploitation and conservation phases, an ecosystem develops structure, functions, and diversity from available energy and matter. Disturbances – the creative destruction phase - occur as pulses on widely varying spatial and time scales which are generally characteristic of a given ecosystem. Disturbances may be caused by abiotic elements or by biotic factors. The pulse of nutrients made available allows their recycle into a newly developing ecosystem, which may have very different configurations than the previous ecosystem (Holling 1986).

When a disturbance is widespread, the successional process may be in the same phase over the entire area of disturbance. In the case of treefalls, the successional process starts over in small local areas, creating a discontinuous, mosaic landscape. Remmert (1991) calls this a 'mosaic-cycle', where variousaged patches of different sizes occur throughout an ecosystem. The importance of spatial and temporal landscape patterns to vertebrate species diversity has been documented for avian species in Panama by Karr and Freemark (1983).

Diversity of an ecosystem is generally reduced after the creative destruction phase. During the establishment and conservation phases,

diversity generally increases, though there are cases where diversity declines during these 2 phases. Diversity decline has been observed just after the point where all species (both opportunist and mature life-histories) occur at the same time. Eventually, the opportunist species are out-competed for resources, and a species decline is seen (Remmert 1991) where later successional species dominate.

Theories of Diversity

Since species diversity reflects the sum of additions and removals of species from an area, local and regional processes that add or subtract species are important to its understanding. Species are added to an area by evolution or by immigration. They are subtracted from an area by total extinction or by one of following processes: change in physical conditions that no longer meet the needs of the species, such as catastrophes or climate change; random events that affect rates of propagation and mortality; or exclusion by local processes due to interactions between individuals, such as competition, predation, and pollination (Hawksworth and Kalin-Arroyo 1990).

Many theories have been offered to explain differences in diversity. They include both equilibrium and non-equilibrium processes. Theories invoking equilibrium dynamics suggest that the rate of addition and removal of species from a region is equivalent, and that areas have their own equilibrium value of species diversity. If species are lost, the processes of adding or subtracting species will adjust the value so that it remains constant. On the local scale, equilibrium theory suggests that species interactions account for the level of diversity saturation, and that local diversity is fed by the regional species pool (Ricklefs 1990). Non-equilibrium or dynamic

equilibrium theory suggests that communities have fluctuating species diversity resulting from an approximate balance between local and regional processes (Ricklefs 1990). Competitive exclusion and its prevention are the basis of this theory, according to Huston (1994).

The following broad theories suggest underlying processes of observed patterns of diversity: 1) Diversity through fluctuations; 2) Time theory; 3) Diversity proportional to resources; 4) Energy or empower diverted for physiological adaptation; 5) Population mechanisms affecting diversity; and 6) Habitat heterogeneity theory.

Diversity through fluctuations

More diversity is predicted when fluctuations of conditions affecting species is large enough so that no one species can gain competitive dominance, but not so large as to cause extinctions. This is the basis of the "intermediate disturbance hypothesis" proposed by Connell (1978), who applied it to rainforests. Rainforests have numerous gaps, evidence that there is almost perpetual disturbance of small areas. Gaps are thought to occur before competitive exclusion within the forest can reduce its diversity. Hence, a high diversity is maintained in rainforests.

Previously, Hutchinson (1961) questioned the mechanism of coexistence of many species of phytoplankton in relatively large lakes as well as the co-existence of large numbers of species in other ecosystems. He framed his argument using the competitive exclusion theory, and maintained that if disturbance in the ecosystem recurred more frequently than the time over which species would have been excluded due to interspecific competition, species richness should remain high.

Fluctuations may cause extinction of rare species, leaving a lower diversity at least temporarily. Pimm (1991) discusses 2 ways in which species extinction rates increase for small populations: one due to random demographic causes, such as all individuals growing in one year are the same sex, and the second due to fluctuations that add to the risk of random extinction. Supporting this, Tilman and El Haddi (1992) reported a 40% extinction rate of species in grassland ecosystems due to drought. Most of the species lost were rare before the drought. Hall et al. (1992) suggest that the geographic distribution of individuals of a species reflects the net energy balance of the species, occurring in a gradient that can be divided over 3 parts of the distribution: the range over which the stored energy is sufficient for reproduction and long term existence of the species; the range over which stored energy is adequate for survival but not reproduction; and the range wherein energy reserves must be consumed for survival. The extremes of the gradient may be the areas over which a species becomes rare, and has a higher probability of extinction with fluctuations that will take energy for adaptation.

Seasonal fluctuations can increase diversity of an ecosystem. For example, in arid lands a large annual flora may flourish during seasonal rainfall events. Since the perennial plants of arid lands are widely spaced, probably due to competition for water, seasonal invasion by annual plants is possible when water is available (Colinvaux 1986).

<u>Time theory</u>

The amount of time over which a region has been undisturbed by major climatic changes, such as glaciations, may influence the number of species that are in the area. Tropical areas may have had more time for

evolution to occur than temperate regions. Periods of drying may also have created refugia for tropical moist species, providing the isolation believed important to speciation. Temperate and arctic regions also have ancient floral elements, however, so the time that floras have had to evolve may not be as different as originally proposed (Ricklefs 1990), though temperate and arctic regions have been periodically nearly eliminated by expansion of glaciers.

Sanders (1968) proposed the stability-time hypothesis, which addressed the high diversity of the deep sea benthos compared to continental shelf benthos. He suggested that the difference was due to stability of the environment of the deep sea, allowing evolutionary specialization and low extinction rates due to environmental fluctuations. In addition, respiratory costs of living in the environment would be very low.

Diversity proportional to resources

More diversity is predicted when there is more energy to support the greater complexity of the system of more species. Odum (1960, 1970 and 1971) related diversity to the energy requirements using permutations and square functions to relate number of species to energy requirement. Where the levels of energy supporting an ecosystem decrease, species diversity has been observed to decrease. For example: Energy theory was suggested by Connell and Orias (1964) but they later retracted their view. Odum (1970a, 1970b) offered energy theory of diversity for a rainforest in Puerto Rico.

Wright (1983) proposes a species-energy theory, predicting diversity of species from either actual evapotranspiration (for plants) or total net primary production (for breeding land or freshwater bird species) of island biota. Wright showed that on islands of varying sizes and locations, as the basic energy resources decrease, as with increased latitude or seasonal changes,

species diversity decreases. Since lower populations of species are supported with less energy, there is a higher probability of species extinctions. More recently Rosenzweig and Abramsky (1993) suggested a decrease of diversity with a decrease of primary productivity, as well as a diversity decrease with an increase of primary productivity above a certain level. In other words, the proposed pattern on a regional scale is hump-shaped.

The relationship between energy and species richness is scaledependent. Wright et al. (1993) show the relationship on regional and local scales. He emphasizes the importance of using extensive measures of incoming energy to a system (total amount per area) for the correlation rather than intensive (amount per m^2).

The maximum empower theory predicts this. Empower (definition Table 1-1) is a measure of the rate of resource use by an ecosystem which combines different resources in one energy-evaluated unit. Emergy is used to combine inputs and processes on a common basis (insolation, precipitation, transpiration, evaporation, and primary production). Energy concentration has been proposed as a third measure of scale (with time and space) for relation to diversity.

Population mechanisms affect diversity

Population approaches to diversity describe processes occurring at the scale of individual organisms and their interactions with and effects on each other. These include predation, competition, and mutualism. The implication is that population densities change by each individual responding to its local conditions rather than in response to average conditions across an area (Tilman et al. 1997).

Three approaches to understanding population dynamics are discussed by Tilman et al. (1997): metapopulation-like models, cellular-automaton-like models, and reaction-diffusion models. Huston (1994) concludes that competition has a direct effect on species diversity only under a very restricted set of condition.

Spatial heterogeneity theory

Large-scale equilibrium dynamics are implied with the spatial heterogeneity theory (Huston 1994). Higher diversity is maintained by having enough different, local patches within a region so that there is a balance of losses and additions. Patches that are caused by disturbance will support species of different successional stages. Patches that are caused by environmental heterogeneity will support different species than the surrounding environment due to availability of different resources or the rate at which the resources can be exploited.

Diversity Decline

Insight into the way diversity may be limited comes from the study of situations with declining diversity. In studies of contained microcosms started with high diversity, an initial decline in diversity is generally observed (Beyers and Odum 1993). For any system, diversity decline may result from processes within the system or from those outside of the system.

A survey of common knowledge and published examples suggested the following circumstances where species diversity has been observed to decrease in natural and experimental systems.

Catastrophic destruction

Whether by human hands or by large scale planetary events, destruction of part of an ecosystem reduces the number of species.

Externally driven diurnal and seasonal changes

Declines in species are observed as part of the ups and downs of abiotic influences such as climatic cycles. For example: The Sonoran Desert in Arizona has a rich winter ephemeral flora appearing only in the years when the rainfall regime meets certain criteria. When the dry season begins, ephemeral species die and the local diversity decreases. Animal migrations also follow seasonal patterns of resource abundance, with a decline in local diversity occurring on a yearly cycle.

<u>Oscillations</u>

Declines in species are observed during parts of the oscillatory cycles due to internal rhythms. Diversity has been observed to rise and fall. For example: Ecosystems pulse with recurring cycles of production and consumption (Odum 1994), often due to recurring natural perturbations such as forest fires or floods. In general, systems grow and exhibit successional stages towards a climax stage which is followed by a descent; this oscillation is repeated through time.

Concentrated seeding

Wherever species are assembled in higher concentrations than can be supported, declines follow. For example: Experiments using microcosms showed that an initial high seeding of species in a microcosm were followed by a decrease of species to a lower level (Dickerson and Robinson 1986). This may be the result of competitive exclusion due to limited resources in a small volume, as well as due to the increased maintenance costs of species as they aged (Beyers and Odum 1993).

Competitive overgrowth by enriched populations

Where conditions for growth become enriched, rapid growth by some species can displace others. The result is generally an increase in the density or biomass of one or a few species, reducing the available resources (such as light) to remaining species which may then become locally extinct.

Cultural eutrophy is an example of available resources increasing abruptly. In a five month field plot experiment, Kent (1996) documented species declines due to the surge of competition with the abundant growth of cattails, water hyacinths, and other species that could most effectively use the excess resource.

In a study of old field succession in Michigan, Tilman (1993) recorded a decline of species in plots that were fertilized with nitrogen compared to those that were not fertilized. An increase in productivity of the plots was correlated both with an increased loss of species and a decreased rate of establishment of species, both contributing to a reduction in the number of species. Increased loss of species was attributed to competitive interactions, and decreased establishment of new species.

<u>Changed conditions</u>

Where environmental conditions change so that existing species are not adapted, species decreases are observed at least temporarily. For example: In a Barro Colorado Island study, a long term drying trend showed a decline and predicted extinction of 16 species, while colonizer species were increasing (Condit et al. 1996a). A similar decline in species was documented in a prairie ecosystem, where it was attributed to drought (Tilman and El Haddi 1992).

Decreased resources

Also, diversity decreases with decreasing production. Production is strongly correlated with precipitation. Though diversity in general decreases

with less rain, correlations made of diversity and precipitation is not as compelling as diversity and evaporation. Increased competition due to a change in resources may cause the diversity decline.

Decreasing diversity along gradients

The number of woody plant species in 0.1 ha plots within 69 neotropical forests was compared, and richness was correlated with soils and climatic data (Clinebell et al. 1995). The most important variables correlated with number of species were annual rainfall and rainfall seasonality.

Gentry and Dodson (1987) showed richness of epiphytes in western Ecuador and southern Central America to decrease with decreasing absolute precipitation, using data from local floras.

Wright (1992) reports a consistent decrease in number of species with decreased rainfall in tropical forests, emphasizing the inverse relationship of rainfall and seasonality throughout the wet tropics. The standard forest plots that he examined showed a fivefold decrease in plant species densities in the Neotropics in rainfall gradient from 4000 to 1000 mm; and sixfold decrease over a Ghanan rainfall gradient of 1750 to 750 mm.

The number of species declines polewards from the equator and coincides with decreasing rainfall, temperature, evapotranspiration, insolation, and primary production. Whether these relationships are merely correlative or causal has been addressed widely, but the patterns have been observed for many life forms. For example: Based on 74 samples of 0.1 ha lowland sites, Gentry (1988) reports an order of magnitude downsizing in number vascular plant species between rich tropical forests and temperate forest.

Gentry (1982) used total plant species numbers in 0.1 ha samples across the upland Neotropics, and showed a strong correlation between diversity and precipitation in the Neotropics. He later discussed that this relationship may be a special case relevant to the Neotropics where there is a strong correlation of total annual rainfall and strength of dry season (Gentry 1988). Such a relationship was not apparent in the samples from tropics of Africa. In addition, he found that the relationship at the high end of actual precipitation was nonlinear, becoming asymptotic above 4,000 mm. This may show saturation level for species diversity. He also warns that the asymptote may be an artifact of sampling methods - species-area curves do not level off for the highest diversity sites; thus the area sampled at the lower sites may not reflect diversity at the highest-diversity sites. He further strengthens the relationship between rain and number of species with data from 1 ha plots measuring trees and lianas \geq 10 cm diameter. In upper Amazonia, adjacent forest types were shown to have different species and were growing on different substrates, with little change in species diversity.

Overlaying the latitudinal pattern of diversity are regional or local declines in diversity with reduced rainfall. This often is associated with effects of local or regional topography influencing temperature and rainfall patterns. In arid northern Chilean Andes above the Atacama Desert, Arroyo et al. (1988) report a steep gradient of plant species diversity corresponding with the rainfall gradient. Surveys in 1620 minimum area quadrats were made on 6 transects 1/4 degree latitude wide and between 18-28 S, running from the edge of the Atacama Desert (1500-3000m) to the elevational limit for vascular plants (4500-5000 m depending on latitude). Data showed species diversity decline with increasing aridity on a latitudinal gradient along the

western side of the Andes as well as from east to west across the Andes along the rainfall gradient.

Based on surveys in 48 sites in the Neotropics (lowland tropics of Middle and South America, montane cloud forests, and supra-treeline of Andes), Duellman (1988) found a decline in diversity from wet to dry regions and from low to high elevations for the entire anuran fauna.

Both a decrease in structure and diversity occurs with the decreased input of rainfall and temperature. Evapotranspiration is a function of both rainfall and temperature directly related to plant production.

Decreased information exchange due to fragmentation

Diversity has been observed to decrease where ecosystem areas are fragmented by insertion of other uses of space, and are isolated from exchanges of species and seeding with adjacent areas. Bierregard et al. (1992) documented loss of species in lowland tropical rainforest where habitat islands were created by the removal of forest around various size fragments. Diversity decline due to fragmentation of habitat is also reported on the islands that were created by the formation of Gatun Lake for the opening of the Panama Canal (Leigh et al. 1993).

Onset of stable conditions

Some researchers have related species decline to the onset of stable conditions after times of greater fluctuation. Whereas competitive exclusion may be pre-empted due to disturbance, the lack of disturbance will allow interspecies competition to cause a higher rate of extinction.

Growth in size

Where space is limited during a time of growth, increasing size of dominant species by occupying more space, may exclude species. This is

demonstrated in a successional sequence of a very limited area of forest where a dominance hierarchy develops, shading out species in the understory.

Loss of controllers

Where species are dependent on control actions by other species, loss of the control species may cause loss of species. For example, plants dependent on insects for pollination were lost when insects were not available.

Physiological demand

Where special conditions require energy to be diverted to sustain life, diversity has been observed to decrease. For example: Increased levels of toxic stress may result in reduced diversity accompanied by an increase in biomass. Pratt et al. (1987) report a decrease of microorganism species present in microcosms with increasing zinc concentration.

<u>A Conceptual Model of Ecosystem and Diversity</u>

In order to overview the principal parts and processes of an ecosystem and the role of diversity, a conceptual model was developed in Figure 1 -1. By using the energy systems language, Table 1-2, the main components and processes that appear to be involved in determining the diversity are shown not separately but as part of a connected whole. Enough parts and pathways of interaction are included to consider the observations and alternative theories discussed in the previous sections. The model diagram is a way to combine and synthesize the factors affecting diversity such as energy, competitors, nutrient materials, outside pulses, and internal oscillations. The conceptual model may be used for all scales over which diversity is studied.

A systems model is a complex hypothesis. To account for diversity declines, a systems model must have the main parts and processes that affect

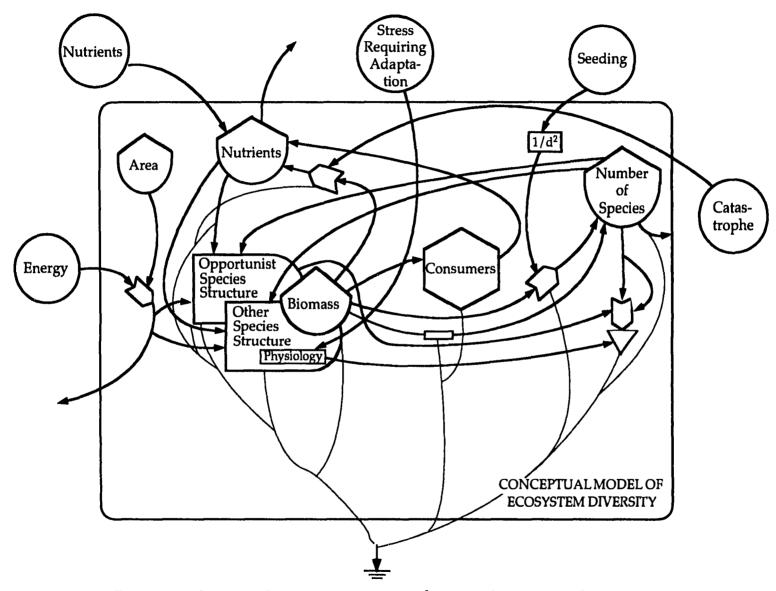


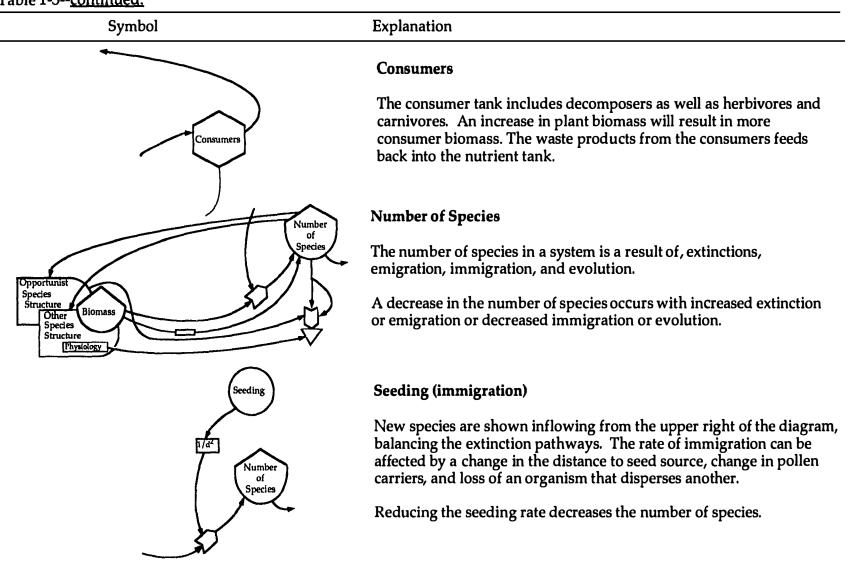
Figure 1-1. Systems diagram representing theories of ecosystem diversity.

Table 1-2. Symbols for the energy systems language used in this dissertation. From Odum (1983).

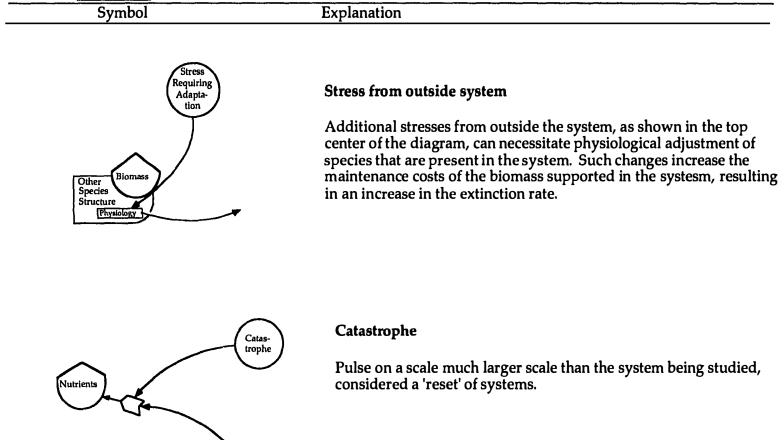
Symbol	Explanation
>	<i>Energy circuit:</i> A pathway whose flow is proportional to the quantity in the storage or source upstream.
♦	<i>Source</i> : Outside source of energy delivering forces according to a program controlled from outside; a forcing function.
	<i>Tank:</i> A compartment of energy storage within the system storing a quantity as the balance of inflows and outflows; a state variable.
¥ K	<i>Heat sink</i> : Dispersion of potential energy into heat that accompanies all real transformation processes and storages; loss of potential energy from further use by the system.
$\rightarrow \sum_{\downarrow}$	<i>Interaction:</i> Interactive intersection of two pathways coupled to produce an outflow in proportion to a function of both; control action of one flow on another; limiting factor action; work gate.
→ ○	<i>Consumer</i> : Unit that transforms energy quality, stores it, and feeds it back autocatalytically to improve inflow.
	<i>Switching action:</i> A symbol that indicates one or more switching actions.
	<i>Producer</i> : Unit that collects and transforms low-quality energy under control interactions of high-quality flows.
	<i>Box</i> : Miscellaneous symbol to use for whatever unit or function is labeled.
S A	Constant-gain amplifier: A unit that delivers an output in proportion to the input I but is changed by a constant factor as long as the energy source S is sufficient.
≤ - ¢₽	<i>Transaction</i> : A unit that indicates a sale of goods or services (solid line) in exchange for payment of money (dashed line). Price (P) is shown as an external source.

the species numbers and are capable of accounting for observed declines. Figure 1-1 is used here to suggest what parts and processes are important and how they may account for diversity decline in an ecosystem. Of course, whether the model and its inherent hypotheses are appropriate can only be verified by study of the behavior of the real systems. In Table 1-3, explanations for ways that diversity may decrease are suggested as consequences of the way the model was formulated.

External sources entering the system


The box drawn in Figure 1-1 defines the boundary of a system. Everything outside of the box is not considered part of the system. Inflows from sources outside the system are represented by circles outside of the box, with pathways crossing the boundary into the system. The external sources operate on larger spatial scales than the system.

The circle on the left labeled "energy" represents the energy sources sun, wind and rain that enter the system. The inflow may vary over time scales, such as diurnal, seasonal, and geological depending upon the scale of the system being studied. The total amount of energy entering is in proportion to the area of the system being studied, as represented by the interaction between the storage tank labeled "area" and the energy source. Thus, the total energy entering a larger area will be greater than that entering a smaller area in the same region. Some of the energy entering the system is used by the producers, represented with bullet-shaped characters. Some of the energy entering the system flows through the system without being used, and is shown as a pathway with an arrow exiting the system. An example is sun that is reflected from surfaces in the system.


Table 1-3. Parts and processes of ecosystem model that affect species numbers and account for observed declines.

Symbol	Explanation					
Area	External Energy Sources					
Energy	The main energy inputs from the left (sun, rain, wind) support all the processes in the system. The inflow may vary diurnally, seasonally, and over geologic time depending upon the scale of the system being studied.					
\sim γ	Reduction of the inflow of energy sources causes a decrease in all					
\searrow	the storages and flows in the system, including the number of					
	species. If the area over which energy is flowing into the system is reduced, primary production decreases proportionally, resulting					
	in a similar decrease in number of species.					
\cap	Biomass					
(Energy) Dpportunist	As the energy from outside sources increases primary productivity wil					
Structure Biomass	increase.					
Other Species						
Structure						
	Nutrients					
Nutrients						
	An increase of nutrient inflow, whether from rainfall, run-in, wandering wildlife, or additions such as fertilizer or sewage, can					
	increase productivity of plants resulting in increased biomass of the					
Nutrients	species that can respond most quickly to those additions.					
	In such cases where only several species can make use of the					
	additional nutrient loads, the number of species in the system may					
(+ //	decrease due to competition with the species that could not respond.					

Table 1-3--continued.

Table 1-3--continued.

Over a latitudinal gradient from the equator to the poles, the energy from outside sources decreases. The reduction of energy to the system causes a decrease in all the storages and flows in the system, including the number of species per unit or area. If the area over which energy is flowing into the system is reduced, such as the fragmentation of a forest surrounded by clearcutting for agriculture, primary production and number of species decrease proportionally.

External nutrient sources can enter the system with rainfall, run-in, wandering wildlife, air pollution or additions such as fertilizer or sewage. A sudden increase of nutrients may result in a rapid rise in productivity of the system, in which case one or several plant species may respond with rapid growth. Some species may become locally extinct from competitive interactions such as shading, resulting in a system with fewer species.

Examples of stress from external sources are changes in water relations such as drought, temperature extremes, or input of substances resulting in toxic buildup in the soil. Plant response to adapt to stress may require use of energy, taking energy away from other uses. This may result in the diversion of energy from biomass production and diversity support in order to support adaptations for survival of the stressful condition.

Seeding from sources external to the system depends on dispersal methods and distance from the seed source. As distance (d) from the source increases, dispersal of propagules into the system decreases $(1/d^2)$. Where ecosystems are separated in space from similar ecosystems that supply propagules, species with seeds that do not have a vector for farther dispersal may be eliminated from seeding an area.

Catastrophes cause a pulse of nutrients to a system and a resetting of successional pathways to an earlier stage. Systems are often adapted to

certain frequencies, amplitudes and sizes of catastrophes such as hurricanes or fires. If one of these 3 changes, the results may be systems with lower diversity than the initial system.

Internal processes

Competition for light is shown between the opportunistic plant species and other species. Opportunistic species are those that establish as early successional species, or species that are 'weedy'. The opportunistic species draw light from the energy pathway first, before those species that are later successional species indicative of a more mature system (labeled "other species structure"). As the later successional species grow, they are able to pull more light for production and overshade the early successional species. Local diversity may show an increase when species from both early and later successional stages are present, and a decrease when the earlier species become locally extinct from overshading. As external energy sources increase, primary production increases. The symbol showing the mature species also shows physiology, which reflects the respiratory costs of physiological adjustment to changing conditions within the system. As stress from the outside increases, the energetic cost of plant adaptation increases. This is shown on the diagram as an increase in the constant-gain amplifier (triangle), which in turn increases the extinction rate from the species diversity tank.

Plant biomass is shown with 4 outflowing pathways. The first pathway flows into the nutrient storage. This occurs through decomposition of plant material from litterfall, plant mortalities including those due to catastrophe, and exudates. Another pathway shows biomass feeding consumers, where all consumers in the system are aggregated into one consumer storage. The other 2 pathways from biomass lead to the species diversity tank. Biomass

(representing suitable habitat) interacts with seeding on one pathway, allowing colonization of new species when the energy base can support it. As the rate of seeding decreases, the rate of colonization also decreases. The second flow to diversity represents the habitat base supporting extant species.

Pathways from the diversity tank are either extinction pathways or pathways that feed back to the primary production of the system. The quadratic extinction pathway represents extinction due to competition with other species. The rate of extinction increases when opportunist species increase, such as with increase due to a pulse of nutrients. It also increases when the stress from outside the system increases, requiring more energy for plant adaptation to new conditions. The second extinction pathway is a linear pathway, representing extinction due to causes other than competition. Feedback pathways show an increased efficiency of the system due to new species or additional species added to the system.

Nutrients are added to the system either from outside sources or from cycling of biomass or through consumers. Available nutrients decrease when they are immobilized by plant uptake, or when they flow out of the system in processes such as runoff or soil erosion.

In any real ecosystem more than one of these mechanisms affecting diversity may be operating. Simulation is used to relate the complex hypothesis to the observations.

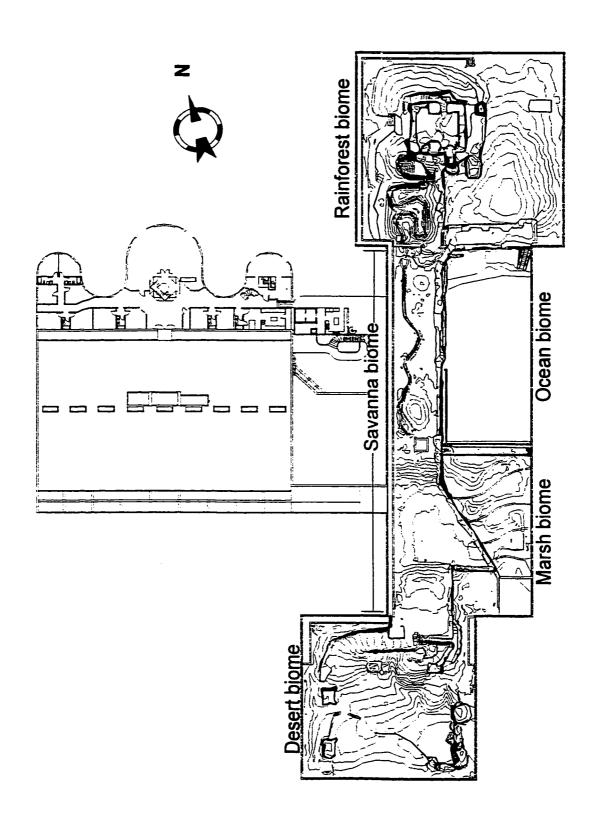
Because of its feedback amplifier loops (autocatalytic input designs and material cycles), the diversity model is consistent with the maximum empower concept. This principle may be stated as follows: Self-organizing systems prevail by developing designs that maximize emergy inputs and effective use.

The model in Figure 1-1 includes the general premise that some species variety is necessary to maximize a system's processes. To fit the principle, increasing or decreasing diversity needs to be consistent with increasing and/or sustaining resource inputs or increasing functional efficiencies.

Carrying Capacity of Systems for Diversity

A general question asked by those responsible for maintaining diversity in public lands and parks is whether there is a carrying capacity of an ecosystem for diversity. If the maximum empower principle applies, ecosystems sustain that diversity that promotes total system function. Priority in self-organization may go for physiological adaptation of fewer species where this is necessary to maximize system productivity and efficiency.

Spatial Organization


There are extensive published observations on the spatial patterns developed by ecosystems, including the patterns of horizontal plant organization on the forest floor and patterns of vertical structure. Explanations for observed distributions have to include the role of light energy and the apparently general tendency for self-organization to form hierarchies. Obviously changes of diversity are affected by the seeding, which determines the locations and survival of plants. In situations where humans do the planting, how does self-organization develop afterwards?

Hierarchical Organization

Like other ecosystems, the rainforest develops components and processes in an energy hierarchy, which is represented in model diagrams by position from left to right. Items on the left have more energy (low quality energy), turnover faster, and have smaller territory. Position of a component or pathway flow in an energy hierarchy is measured by its transformity. Transformity is the emergy per unit energy (Table 1-1). Emergy is the energy of one kind previously used directly and indirectly to make a product or service. Calculating emergy and transformities of ecosystem components and flows is a way of determining the pattern of energy hierarchy. Maps of transformity and changes of transformity over time may be estimated.

Rainforest in Biosphere 2

Biosphere 2 is a 1.25 hectare mesocosm in Arizona designed to be closed to material exchanges with the environment outside of its glass boundary, but open to exchanges of energy and some types of information. Areas within Biosphere 2 were established to represent different biomes of earth, and included aquatic (ocean and estuary) and terrestrial (savannah, desert, and rainforest) wilderness areas and a habitat for human residents and their agricultural systems (Figure 1-2). Whereas the atmospheric chemistry and water systems were global phenomena among all of the areas of Biosphere 2, temperatures, rainfall regimes, and humidities were maintained locally within each area. Figure 1-3 shows the photosynthetically active radiation, CO_2 concentration and temperature for terrestrial wilderness areas in the Biosphere.

.

Figure 1-2. Areas within Biosphere 2.

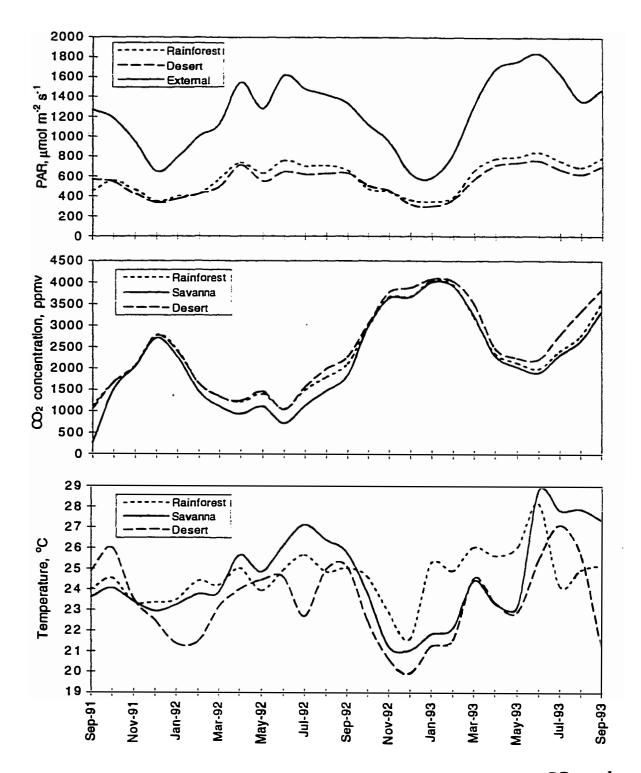


Figure 1-3. Continuous photosynthetically active radiation, CO_2 , and temperature in terrestrial wilderness biomes of Biosphere 2 during the first material closure.

The footprint of the tropical rainforest biome within Biosphere 2 is 1900 m^2 . The highest point of the pyramidal glass structure enclosing it is 22 m, measured from the soil surface in the lowland rainforest (Figure 1-4). The total volume of the rainforest is about 35,000 m³ (Dempster 1993), nearly 17% of the total Biosphere 2 volume. The contribution of the rainforest to the atmospheric chemistry of the larger scale mesocosm has been modeled by Engel and Odum (1999). Their simulations suggest that the rainforest may be responsible for up to 50% of the whole Biosphere 2 metabolic rate.

The rainforest biome was designed to be functionally analogous to the planetary rainforest biome. It was built and its climate managed to emulate the general structure and function of a New World tropical rainforest. It is a geographical island, disjunct from the larger system from which its components were obtained.

Design Elements and Description

The climate of the Biosphere 2 rainforest was created by control of rain, temperature, humidity and air flow so as to support plant species from various humid tropical regions. The annual changes in day length were greater in Biosphere 2 than in a planetary rainforest, and temperature and atmospheric CO_2 ranges were greater on both a daily and annual basis.

The rainforest soils were created from a local desert grassland soil combined with other organic materials. The design objectives were to produce a functional equivalent of tropical rainforest soils, to allow soils to develop in place, and to provide a horticulturally adequate substrate. Over time, the formation of humic and fulvic acids was expected to reduce the soil pH, similar to a planetary rainforest (Scarborough 1994). The soils were designed to be deep enough to allow expansion of roots needed to stabilize

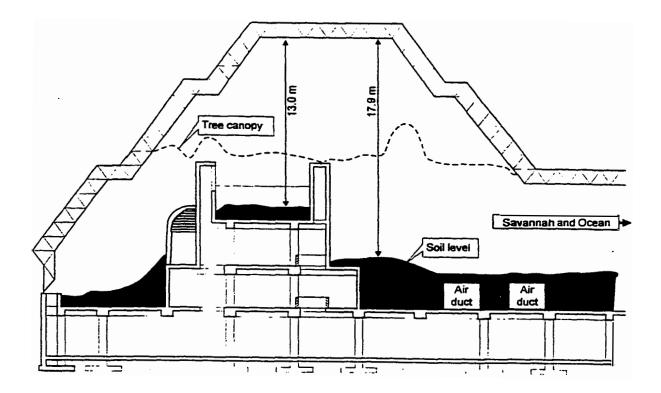


Figure 1-4. Side view of rainforest biome.

aboveground canopy expansion and to contain a storage of elements necessary plant growth.

The design challenge of the Biosphere 2 rainforest was to consider diversity over a hundred year time scale, as well as across the scales of population, community, and ecosystem, including functional diversity. The rainforest was excessively species-packed for self-organization over time under minimal influence of human management. Since no biotic introductions were to be made during the study period after the initial closure in 1991, initial planting had to include all of the species for succession and mature development. In contrast, an unconfined rainforest experiences continuing immigration during successional changes. Therefore, a much larger number of species was planted than could survive, letting extinction occur as a natural process in the system. Though effort was made through pruning to reduce competition for light during the first years of operation to ensure the survival of certain key species, decline in the number of plant species was expected. It was hypothesized that the rainforest structure would change over time from that of a recently cleared ecosystem to a complex primary forest (Prance 1991). The final mix of plant species was eclectic with a bias toward Neotropical taxa.

Eight separate habitats were initially delineated in the rainforest (Prance 1991). The habitats were named lowland rainforest, ginger belt, várzea, cloud bowl, surface aquatic systems, bamboo belt, mountain terraces, and cliff faces (Figure 1-5).

The conceptual design for the rainforest began in 1985; plant collections were made from 1986 to 1991; planting began in 1990; animal introductions began in 1991; and a total survey and mapping of every plant was completed prior to the first material closure, which lasted from September 1991 through

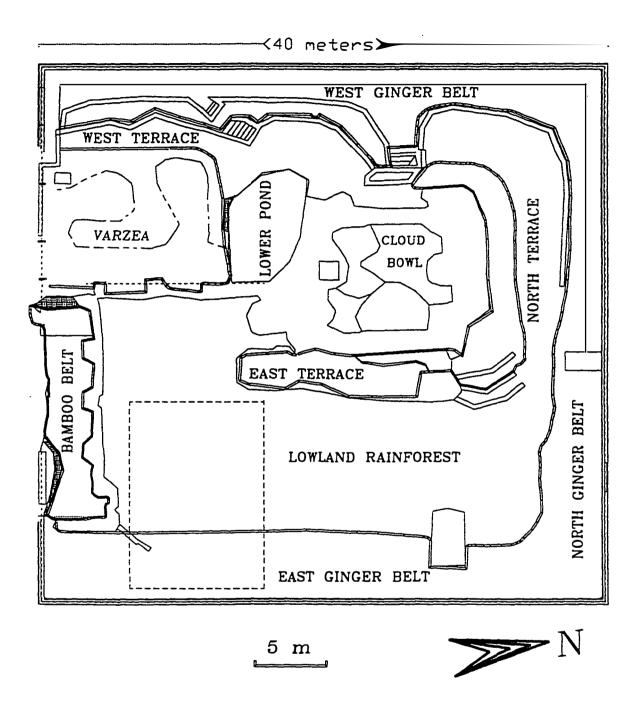


Figure 1-5. Habitats delineated within the Biosphere 2 rainforest.

September 1993. A total re-survey of plants in the rainforest was made after the 2-year closure and again in 1996.

Measurements of energy flows and storages made during and after the period of closure included temperature, relative humidity, rainfall duration, plant sizes, light level, atmospheric CO_2 and O_2 , and trace gas concentrations.

An artificial ecosystem such as the Biosphere 2 rainforest or a botanic garden might be expected to behave according to models of a natural ecosystem with equivalent energy inputs and available information. What are the different options for ecosystems to maximize power, and what aspects of human management of 'artificial' systems will alter this?

A Conceptual Model of Diversity in Rainforest of Biosphere 2

Whereas Figure 1-1 has the main features of any system believed to affect the diversity of stored information, Figure 1-6 represents these concepts for the rainforest biome area of Biosphere 2. The diagram is a complex hypothesis for understanding diversity changes in Biosphere 2. The differences between parts and processes of the earlier conceptual model of diversity in ecosystems (Figure 1-1) and the model of the Biosphere 2 rainforest are as follows.

External sources entering the system

The striped border in Figure 1-6 defines the glass boundary of the Biosphere 2 structure that physically separates it from the outside. The inner, solid box in the diagram represents the rainforest biome, one of 7 biomes inside. There was no physical barrier separating the rainforest biome from the other biomes. Though many of the parts and processes within the

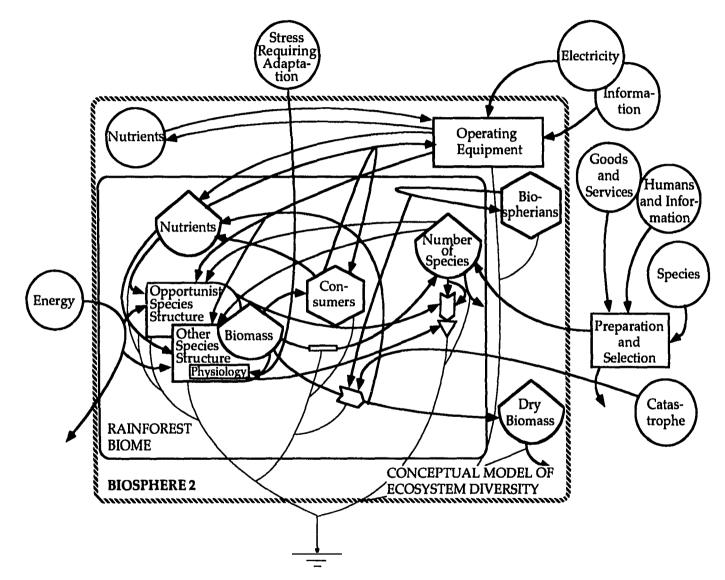


Figure 1-6. Systems diagram representing ecosystem diversity within Biosphere 2 rainforest.

rainforest model are the same as the earlier, general model, the external sources are quite different.

The primary energy source entering the rainforest was sunlight; rain and wind do not enter from an external source. Since the Biosphere 2 rainforest was contained, its area was constant and the tank for land area interacting with energy has been deleted. During periods of material closure, no nutrients entered the Biosphere from outside. Certain stress-causing external conditions could have affected the producers, such as a long period of reduced sunlight. Electricity and information were external sources used to operate and design the mechanical systems providing the subsidies normally produced by nature, such as waves in the ocean, airflow throughout the Biosphere, and rainfall operated by a sprinkler system.

The species that were planted in the rainforest were selected from the earth's species pool, with human decisions rather than habitat and dispersal characteristics determining which plant species would colonize the area. Catastrophes from outside sources would be those that would have affected the operating systems or caused massive collapse of the external structure. A total shutdown of the power systems, for example, may have caused overheating during the day, resulting in plant mortalities. This would have resulted in a pulse of dead biomass that would have been placed in the dry biomass storage, shown with the interaction of catastrophe and biomass pathways, flowing into the dry biomass storage tank.

Internal processes

The cycling of nutrients between the rainforest and other areas inside the Biosphere included flows driven by the operating equipment. Airborne nutrients such as CO_2 were exchanged by airflow through the air handlers.

Soil borne nutrients exited the rainforest in water that percolated through the soil profile and was pumped to a central storage reservoir, where it was mixed with water from the other areas. Some of these nutrients were then pumped back to the rainforest in rain water.

Biospherians lived in their habitat area outside of the rainforest, but visited the rainforest regularly. The model shows an interaction of the Biospherian pathway with biomass, representing pruning of the weedy biomass. Much of the weedy biomass was dried and stored, shown with the pathway to the dry biomass tank.

Some of the rainforest consumers traveled between areas in the Biosphere. This is shown with a flow pathway crossing over and then returning to the rainforest system. Examples were the galagos that concentrated their activities in the rainforest but traveled throughout the wilderness biomes.

Though the process of colonization of the rainforest by plant species differed from wild systems, the extinction process occurred similarly. This is shown in both conceptual models with a quadratic function representing competition with other plant species and a linear function representing other reasons for extinction.

Rainforest in Puerto Rico

The rainforest compared with that in Biosphere 2 is in the Luquillo Experimental Forest (USDA) of northeastern Puerto Rico. The area has 4 different vegetation zones - tabonuco forest, colorado forest, sierra palm brake, and elfin forest. The tabonuco rainforest, named after its dominant

tree species, has been the most extensively studied (Reagan and Waide 1996) and is the type used for comparison in this study.

Long-term data are available for the El Verde study site and the Bisley watersheds and MAB biodiversity plots. An extensive study of the tabonuco forest type funded by the Atomic Energy Commission was undertaken from 1963-1968, before and after irradiation (Odum and Pigeon 1970). Subsequently, a volume was published (Reagan and Waide 1996) describing the food web of El Verde.

Among the many papers that deal with plant diversity and successional patterns in the tabonuco forest are the following: Lugo (1992) compared the plant species in pairs of tree plantations and secondary forests; Taylor et al. (1996) analyzed numbers and densities of species by life form in an irradiated area of the tabonuco forest over 23 years after irradiation with data from 8 surveys; landslide succession has been documented by Myster and Walker (1997), Walker et al. (1996), and Guariguata (1990); Crow (1980) studied species changes in a 0.72 ha plot over 30 years, and Johnston (1990) followed Crow's work with a dissertation documenting successional change in the same plots.

Recent papers describing the effects of Hurricane Hugo on the tabonuco forest system and the re-development of the system to pre-hurricane conditions are published in a special issue of the journal Biotropica, Volume 28(4a), 1996.

CHAPTER 2 METHODS

In this study, measurements of diversity were related to measures of the resources and productivity in Biosphere 2, in the rainforest in Puerto Rico and other situations where limited resources may have restricted diversity.

Construction and Operation of the Rainforest in Biosphere 2

A chronology of the construction and operation of the mechanical, structural and life systems of the Biosphere 2 rainforest from 1987 through 1999 is shown in Table 2-1. Three different modes of operation of Biosphere 2 are distinguished by degree of material closure from the outside or the separation between biomes on the inside of the structure, and degree of control over composition of the atmosphere, as follows: (1) Complete material closure, with the entire atmosphere inside Biosphere 2 interacting as a unit separate from the outside atmosphere. (2) Forced airflow through the entire Biosphere from the outside. (3) Physical separation of the wilderness systems from the habitat and agriculture systems; separation of the wilderness biomes from each other with curtains; and forced airflow from outside. Construction and engineering details of Biosphere 2 are given in Zabel et al. (1999).

EVENT	87	88	89	90	91	92	93	94	95	96	97	98	99
Groundbreaking	0												
Interior structure				pais, produce									
Placement of soils													
Exterior structure													
Mechanical systems													
Planting					· · · · 2								
Plant mapping													
Plant survey										1			
Animals introduced					1	III							
Mission 1 closure								- 18 C					
Weedy biomass pruned													
Transition													
Mission 2 closure													
Change to continuous													
flow												· · · · ·	
Removal of biomass													
from Biosphere 2													
Exchange of water in south lung								l					
Separation of rainforest													
from other areas													

 Table 2-1. Chronology of Biosphere 2 rainforest construction and operation.

Procedures Used in Starting the Ecosystem

Soil Components and Placement

The soil profile was assembled with subsoil and topsoil layers. The subsoil was a mix of a coarse sandy loam (highly weathered granitic grus) extracted from a local quarry and 5-15 cm granite rocks. It had uniform composition throughout the rainforest, and its thickness varied from 0 to about 5 m depending upon specifications made for root growth and the architectural structure over which it was placed. Criteria for subsoil selection were good downward percolation of water after repeated wettings; radon emissions not greater than background crustal emissions; low heavy metal content; price-competitiveness; and proximity to the Biosphere 2 site (Scarborough 1994). The subsoil volume was estimated to be 3340 cubic meters, based on measured volumes of the structure into which it was placed. Table 2-2 lists the quarry locations of the materials extracted for the rainforest soils. The subsoil was placed over a shallow gravel layer which covered and surrounded drainage pipes that carried water percolated through the soils to a collection trough, from which it was pumped to a global storage system inside the Biosphere.

Topsoils were placed on top of the subsoil. Their thickness varied from 0.3 – 3.2 m, averaging 0.9 m. Four mixtures formed the major volume (1750 cubic meters) of topsoil in the rainforest, with small amounts of 3 additional mixes (16 cubic meters) used for more specialized habitats (Scarborough 1994). Each mixture consisted of a different combination of the following materials: a local desert grassland soil ('Wilson Pond soil'), organic matter, gravelly

Material	Origin
Coarse sandy loam (subsoil)	Kalamazoo sand and gravel quarry, just southwest of San Manuel Copper Mine, Mammoth, AZ
Wilson Pond soil	Along boundary between Secs 2 & 3, T10S, R14E, 1200 feet south of highway 82 and 1.3 miles west of the Biosphere Road
Gravelly sand	Quarried on location
Compost, Coarse organic material	AAA Fertilizer, Tucson, AZ; various other local suppliers of organic materials
Fine peat	Purchased commercially
Coarse peat	Purchased commercially
Canadian sphagnum moss	Purchased commercially
Pumice chunks	Purchased commercially

Table 2-2. Rainforest soil components and their origins. From Scarborough (1994).

.

sand, sandy loam, and pumice chunks. Table 2-3 shows the different combinations and volumes of materials that were used and their placement within the ecosystem. The 'Wilson Pond soil' was an organic-rich (4-5% OM) silt loam to clay loam which was quarried from a large earthen cattle tank. The organic amendments were compost (made from forest mulch, cotton gin trash, rotted cattle silage, alfalfa hay, and cattle manure); coarse peat; coarse organic material; and Canadian sphagnum moss. The gravelly sand was quarried on location. Additional materials used in much smaller amounts were the coarse sandy loam subsoil, pumice chunks, and fine peat.

The soil materials were either mixed with heavy equipment outside or directly on conveyor belts feeding from the outside to the inside of the Biosphere. Various types of heavy equipment (both track and wheel vehicles), conveyor belts and/or shovels were used for soil placement inside the rainforest. Leaf litter and humus from local natural ecosystems were added to the soil surface after placement, and thousands of purchased earthworms and a much smaller number of earthworm species that were field-collected in southeastern Texas (Scott 1994) were placed in the soil.

Collection and Initial Placement of Plants

Starting in 1986, plants, seeds, and other propagules assembled for the rainforest were grown in greenhouses located near Biosphere 2. Plant accessions were acquired from botanic gardens, plant nurseries, and private collections, and from field collections in Puerto Rico, Belize, Venezuela, and Brazil. Permits were acquired for exportation from countries of origin and for importation to the United States and Arizona; state and federal quarantine

Component	Mix	Mix 2 ⁵	Mix 3 ^c	Mix $4^{\overline{a}}$	Mix 5 ^e	Mix 6 ^t	Mix 7 ^g	Total (m ³)
-	1ª							
Coarse sandy loam (subsoil)					60	15		1
'Wilson Pond' soil	50	60	80	10		35	50	996
Gravelly sand	25							239
Compost			20			35		84
Fine peat							50	2
Coarse peat		40		50	30			167
Coarse organic material	25							239
Canadian sphagnum moss				40				37
Pumice chunks					10	15		2

Table 2-3. Percent of components in topsoil mixture specifications and their corresponding habitats. From Scarborough (1994). Totals are approximations.

- ^a Lowland rainforest 688 m³ Bamboo belt – 57 m³ East terrace and west side of mountain – 203 m³ TOTAL: 948 m³
- ^b Várzea 298 m³
- Ginger belt and papaya areas 413 m³
 Cloud forest 92 m³
- ^e Behind cliff face 8 m³
- ^f Tree ferns -4 m^3
- ⁸ Ledges and planting pockets 4 m³

and inspection protocols were followed. Following soils placement in the rainforest biome, plant accessions were transplanted from greenhouses into Biosphere 2. The largest plants were placed first due to the logistics of lowering them into the Biosphere with cranes before the glass was installed. Plants were fertilized and watered in place with drip irrigation, sprinklers, or by hand with hoses.

Each plant was mapped by standard survey methods (Thompson 1992) using different symbols to represent plant growth forms. Measurements such as basal diameter, crown width, and stem length were made. Each plant was assigned a unique number, and data on location, geographic origin, size, and phenology were recorded. Thus a history of every plant in the rainforest biome could be tracked through time.

Habitat Assembly

The initial design (Prance 1991) created 8 habitats within the rainforest biome, each planted with a different assemblage of plants including canopy trees, ground cover, shrubs and intermediate level life forms, and epiphytes and vines. Initial plantings of fast colonizers and secondary forest species (*Clitoria racemosa, Carica* spp., *Leucaena* spp., *Cecropia schreberiana*) provided shade and structure to the emerging and more characteristic primary rainforest species (Prance 1991).

Lowland rainforest

The concave topography of the lowland rainforest area centered in the southeast quadrant of the rainforest allowed trees to reach a height sufficient for a layered canopy. The topsoil mixed for the lowland rainforest was 50%

loam, 25% gravelly sand, and 25% coarse organic material. There were lianas, epiphytes, and many broad-leaved trees and shrubs.

<u>Ginger belt</u>

The ginger belt surrounded the rainforest on all sides bounded by glass, excluding only the south edge which abutted the top of the beach cliff and the upper savanna. Its purpose was to shield the forest understory from excessive light. Studies on isolated patches of planetary rainforests show that the typical understory vegetation is altered for some distance beyond the forest edge in part by light penetration (Bierregaard et al. 1992). Thus this peripheral dense belt of vegetation was planted to filter the light and allow the interior of the forest to develop the shaded conditions that would foster an understory more typical of extensive rainforests.

Ginger belt topsoils were a mix of 80% loam and 20% compost. Soil depth was about 60 - 90 cm on the northwest and west side where no subsoil underlies the topsoil, and 1 m on the northeast, east and southeast sides, where it was underlain by a subsoil of variable thickness. The ginger belt ranged from about 1 m to about 4 m wide. Plants in the Order Zingiberales dominated the ginger belt. Plants in these genera were most abundant: *Musa, Heliconia, Alpinia, Strelitzia*, and *Costus*.

<u>Várzea</u>

The várzea habitat was designed to resemble a forest that is seasonally flooded. It featured a tightly meandering stream that ran from the pond to the edge of the savanna biome. The stream course was made by first filling the regular topsoil layers to the specified level; then excavating the stream courses; and then lining them with concrete and thick PVC. The várzea topsoil was 60% loam and 40% coarse peat. The várzea was not flooded during the study period. It was planted with *Phytolacca dioica*, *Pachira aquatica*, *Pterocarpus indicus*, and palms.

<u>Cloud bowl</u>

Suggested by the tepui sandstone formation from eastern Venezuela, the central mountain 'cloud bowl' was planned as a cooler and more humid microclimate. The soil was less than 1 m deep. It was a mix of 40% Canadian sphagnum moss, 50% coarse peat moss, and 10% loam. Soil in the planter pockets extended all the way to the bottom of the mountain. Bryophytes, carnivorous plants, shrubs, gingers and aquatic plants were introduced to this habitat.

Surface aquatic habitats

Surface aquatic habitats in the rainforest biome were hydrologically connected. The moss seep and upper pond in the cloud bowl spilled over a cut in the edge of the cloud bowl, creating a waterfall. The waterfall poured into a splash pool, which overflowed into the larger, lower pond and then into the várzea stream. At the bottom of the stream water flowed over a weir into a sump, from which the water was pumped back to the lower pond. Another pump moved water back to the cloud bowl. The water systems were underlain with a thick vinyl liner beneath a concrete layer. Taxa inhabiting the aquatic habitats at the beginning of the first material closure were *Azolla*, *Eichhornia*, *Nymphaea*, and *Typha*.

Bamboo belt

A bamboo belt was constructed along the south edge of the rainforest to baffle any airborne salt particles from the forest interior. Soils of the bamboo belt were 50% loam, 25% gravelly sand, and 25% coarse organic material, varying between 30 - 90 cm deep and laying over air delivery plenums. There was no subsoil beneath the topsoil in the bamboo belt. *Bambusa multiplex, B. tuldoides* and other species of bamboo initially formed the major structure of this habitat.

Mountain terraces

The mountain terraces skirted the rainforest mountain on the east, north, and west sides, extending to the west side of the lower pond. Flagstone walls were in place around the periphery of the terraces, separating them from the ginger belt habitat on the west and north sides and from the lowland rainforest habitat on the east. The flagstone was placed during construction to prevent soil from eroding down the somewhat steep grade from the mountain to the ginger belt. The topsoil mix for the mountain terraces was 50% loam, 25% gravelly sand, and 25% coarse organic material. The soils to the west and north of the mountain were about 0.3 - 3 m deep, and those east of the mountain were about 0.3 - 6 m deep. The plants on the terraces initially included *Carica papaya*, *Clitoria racemosa*, *Coffea arabica*, *Carludovica palmata*, *Inga* sp., *Hibiscus rosa-sinensis*, and *Manihot esculenta*.

The cliff faces of the mountain had pockets of soil to support vines, bromeliads, and other plants that were to cloak its surface. Vines from the Araceae, Passifloraceae, and Vitaceae family and ferns planted in the cliff face planter pockets. Rhyolite pumice chunks were blended at 10 to 15% of the total soil volumes. The high porosity of the pumice provides water-holding capacity and releases trace nutrients as it weathers.

<u>Climate Maintenance Systems</u>

<u>Water system</u>

In contrast to the desert and savanna biomes, the rainforest plants were active continuously; dormancy was not part of the yearly cycle. In the tropical rainforest biome, water applied as rainfall flowed through and exited the soil profile throughout the year. Figure 2-1 shows the water flows and reservoirs of the rainforest biome and their connection with the global system.

Rain was distributed to much of the rainforest biome through overhead sprinklers mounted in the space frame; other areas were irrigated with ground sprinklers or a drip irrigation system. Water vapor evaporated from soil, rain, or surface waters, transpired from plants, or delivered through a misting system could subsequently have been condensed from the air using the air handlers located in the rainforest basement. Water condensate that collected on the inside surface of the windows during late autumn, winter and early spring was an additional, seasonal source of condensate. Water from both of these sources was re-used in the wilderness biomes, and was one of the sources of rainwater.

The major water reservoirs in the rainforest were atmosphere (humidity), soil, water storage tanks, the surface aquatic habitats, and plants and other biota. The major water flows among reservoirs in the rainforest were rainfall and irrigation, subsoil drainage, reverse osmosis system flow, condensation, mist, evaporation, root uptake, transpiration, and diffusion as water vapor to other areas.

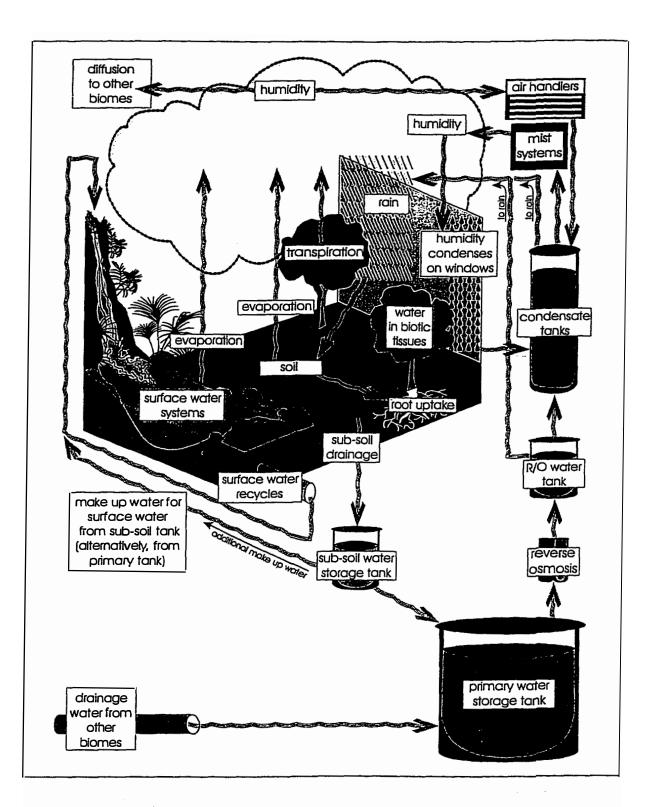


Figure 2-1. Hydrologic connection of Biosphere 2 rainforest to the rest of the Biosphere 2 system.

Some of the rain and irrigation water percolated through the entire soil profile. This sub-soil water, carrying substances leached from the soils, was collected and stored in a storage tank for future use. The subsoil water in the Biosphere was reused either as-is or after removal of dissolved solids by a reverse osmosis system. The remaining rain and irrigation water was either held in the soil pores by matric forces, taken up by plants and retained, or diffused back into the atmosphere via evaporation and transpiration. The average monthly relative humidity was over 65% year-round in the rainforest biome, with daily minima above 50%.

Air handling, temperature, and humidity control system

Seven air handlers in the rainforest basement were operated to regulate temperatures, extract condensate from the air, and to create air movement. Temperature was controlled by a heat exchange between a water coil and circulating air in the handler. Three temperature classes of water originating externally to the Biosphere were circulated in the coils of the system: heating water, cooling tower water, and chilled water which reached the lowest temperatures. The rate of the air flow through an air handler was controlled by opening or closing an 'econodisc' located inside each of the air handlers. Though normally controlled remotely, they were also controlled manually from inside the air handler. Air from the air handlers circulated through a system of plenums, ducts and openings from the basement into the rainforest. The air returned through gratings on the west and northwest periphery of the rainforest, where it entered the basement and was again pulled through the air handlers and over the heating coils.

Human Intervention

During the 2 year closure of the system (1991-1993) certain herbaceous plants in the rainforest biome were extensively pruned for two reasons. The first reason was to arrest primary succession. Early successional species were pruned so that the later successional species would survive. Pruning of vines occurred when they appeared to be heavily shading the trees and understory and when vines had grown into the tree canopies. Both vines and ginger belt herbs were pruned when they pressed against the glass causing algal growth on the glass surface. These selective harvests decreased the competitive advantage of high net-producers (e.g., Ipomoea and Passiflora vines) over species important for the long-term structure of the rainforest, particularly the larger trees. The second reason for harvest was an attempt to increase sequestration of CO_2 and to increase O_2 production. High levels of CO_2 were thought to be decreasing the ocean pH, and oxygen concentrations eventually decreased to the point of affecting the health of the human inhabitants. To meet these goals, plants were propagated in an attempt to cover vertical surfaces with photosynthetic biomass. Growth of high net-producing species (Ipomoea sp., Passiflora edulis) and herbaceous plant species in the circumferential ginger belt habitat was encouraged by judicious pruning in areas where they would not overwhelm other species, given the constraint of diversity maintenance.

The pruned biomass was removed from the rainforest, dried to retard respiration, and stacked in the basement. A small percentage of the material was used for fodder for domestic livestock. Of the three terrestrial wilderness biomes, the rainforest required the most time to manage for regulation of the atmosphere, while seeking to maintain species richness. Estimates of the

amount of biomass removed through pruning were made from weekly records of time used for each task and from field journals.

Plant Mapping and Identifications

Initial Mapping and Identifications: 1990-1991

By September 1991, over 1800 individual plants had been planted in the rainforest mesocosm. Every plant was marked with a pink flag that had a unique number written on it which tracked it in the database, linking its location in the rainforest with size measurements and other information, including its origin, when available. Thus a history of every plant in the Biosphere 2 rainforest could be tracked through time. Specimens of many accessions are maintained in herbarium cabinets on location at the Biosphere 2 Center, and some were placed in the herbarium of the New York Botanical Gardens. Some plants have not been identified, and many identifications that were made have not been verified.

Species Additions and Removals

During the first 2-year closure, Sept. 1991-Sept. 1993, additional papayas, bananas, malanga, and canna were planted in the rainforest for food production. These were mapped and logged into the database after the first closure. Additionally, some plants that had been planted before the first closure had been omitted from the original survey, and the corrections were made. During the beginning of the period (Nov. 1993-Dec. 1993) between the first and second closures an additional 339 individuals were planted in the rainforest. The *Leucaena* trees that had been planted for initial shade of the key rainforest species were removed and weighed for subsequent estimates of biomass.

Field Measurements

The first survey was the record made at the time of planting, shown in Figure A-1.

Second Survey: Transition Period, 1993-1994

Base maps used for the second survey were made from the original CAD-generated survey maps completed in 1991. The complete map of the rainforest was divided into cells, each covering approximately 10.6 m x 7 m at a scale of 1:24. Thirty-five complete or partial cells provided total coverage of the rainforest.

Each plant found from the original survey was marked with a black plastic tag (approx. 5 by 8 cm) with its unique number etched in white. The tags were fixed around the base of plants with plastic cable ties. Data forms that were computer-generated for each plant specified the measurements that were to be taken for the plant. Data recorded on the forms were entered into a data base, and the paper forms stored at the Biosphere 2 Center. Plants that had not been mapped before the 1991 closure were tagged and added to the original maps. Additionally, plants that were introduced during the period of the survey were tagged and noted on the map.

Third Survey: June-August 1996

The third plant survey was made in 1996 using blueline base maps copied from the original maps that had been modified during the 1993-1994 resurvey. We searched for every plant indicated on the base maps and for all plants that were listed in the database provided by Biosphere 2 Center. Each of the 35 cells had a form listing all of the species within the cell. We assigned one of three status categories to each plant: alive, dead or not found. When a tag was located with no plant next to it at the mapped location, the plant was classified as 'dead' and the tag was removed. When neither tag nor plant was found at the mapped location, the plant was considered 'not found'. In most cases, the 'not found' category plants were dead, though since we had neither evidence of correct location by finding the tag nor a live plant we created this category to indicate uncertainty (plant tags are easily lost in or were previously removed from this site). When a living plant of the same species listed in the database was found in the location of the survey point, it was classified 'alives'.

When the identification listed on the forms was incorrect or suspect, it was corrected or questioned on the field forms. On less than 10 occasions, a plant classified as 'dead' or 'not found' in the previous survey was found alive in the 1996 survey. When we were unable to locate the tag on a plant, we tied survey flagging tape to it with the original survey number and Latin binomial written in waterproof ink so that replacement tags could be made and attached at a later time. Collections of plants in flower were made and pressed for later identification. New numbers were assigned to plants that were in one of the following categories: plants (excluding tiny seedlings with only cotyledons or the first few leaves) recruited from seeds produced inside the Biosphere (e.g. *Pachira aquatica*); plants that had wandered to a new location but were clearly once located at a numbered survey point (e.g., *Dieffenbachia sp.*); plants that did not appear on the maps and did not have a tag, but clearly were intentionally planted at one point (e.g., *Eucharis grandiflora*).

Problems with the survey method

Clonal or creeping understory species and climbing plants and canopy vines were not mapped and total number of individuals for viney species that root at the nodes was not quantified during this period due to the uncertainty of delimiting an individual. This included *Scindapsus aureus*, *Syngonium podophyllum, Passiflora coriacea, Ipomoea sp., Cyperus alternifolius, Tradescantia sp., Calissia fragrans.* Likewise, the spread of clonal ginger belt species was not mapped. These plants were simply identified as alive, dead, or not found.

Not all of the planter pockets on the mountain could be accessed, and assumptions were made, in some cases with only limited visibility, that since there was no longer a functioning irrigation system to the pockets that the originally placed plants were dead. This included fewer than 20 individual plants.

Species lists and assembly of data

For the total species count, individuals within a genus that were unidentified to species were counted as a separate species only if there were no other species within the genus. If there were other species in the genus,

the unidentified individuals were considered unknown, since they could have overlapped with species already counted. Unknown species were not included in species abundance figures or growth form spectra. Species that were classified as "not found" in a survey were considered dead for purposes of this study.

Surveys of Species Found per 1000 Individuals Counted

Biosphere 2 rainforest

A count of the cumulative number of species found per cumulative number of individuals was made in the Biosphere 2 lowland rainforest habitat in April, 1998. Plants were identified and recorded in 1.5 m belt transects covering the entire lowland rainforest and the east-facing ginger belt. As each individual was identified, it was recorded in a column with the proper species label until there were a certain number of individuals per column, starting with 1 in the first column, 10 in the next, and about 100 in the subsequent columns. All of the plants in the lowland rainforest area were counted. A diagram of the transects was drawn and transferred onto a map of the area so that similar counts could be made using maps from previous years.

The 1991 count of cumulative species per cumulative individuals was completed from the original map and species list from 1991. The 1.5 m wide belt transects drawn on the maps were sampled in the same order as they were sampled on the ground in 1998. The center of each plant was included only if the surveyed center of the plant (as recorded on the map) was encountered within the transect; overlaps were not counted. In addition, species/individual counts were made for the ginger belt, bamboo belt, cloud bowl, várzea, and mountain terraces on the 1991 map.

Puerto Rico rainforest

The same field method was used in Puerto Rico on a landslide near the El Verde Field Station, but the belt transect zig-zagged across the landslide area. All plants greater than 0.5 m tall within a 1 meter distance on either side of the observer were counted and identified. Where there was uncertainty as to whether or not 2 plants were the same, collections were made and checked later with local botanical technicians. Considerable care was taken to stay within the boundary of the 11-year-old landslide area. In addition, databases were sampled for number of species per 1000.

Leaf Area Index

Leaf area index in the Biosphere 2 rainforest lowland habitat was estimated from counts of vertical leaf overlap using a 50-foot extendable rod expanded upwards from a ground point. The interception of every leaf above the ground point was counted. A record of the number of leaf interceptions per ground point was made for 30 points in the lowland forest habitat of the Biosphere 2 rainforest biome over a ground area of approximately 300 m².

Number of Seedlings per 0.54 m²

Thirty 0.54 m² circular plots were located 10 paces apart in the rainforest lowland habitat in April 1998. The plots were defined with a plastic hoop and were searched for seedlings. The counts were made over a ground area of approximately 370 m².

Percent of Holes in Leaves

A visual estimate was made of the percent of holes in leaf blades. Holes were counted if they appeared to have been caused by consumers, and were not counted if they appeared to be the result of mechanical injury from wind or human activities. The leaves that were selected were within the range of view of the ground-based observer. Ten leaves on each of twenty trees were counted using the following percentage categories: 0, <1, 1-5, 5-10. There were no leaves that had more than 10% of the blade consumed.

Number of Green or Yellow Fallen Leaves per 0.54 m²

The 0.54 m² circular plots used for seedling counts were also used for counts of the number of green or yellow fallen leaves per 0.54 m². Each plot was searched for yellow or green leaves. A leaf that was 100% green was recorded as green. A leaf that had any amount of yellowing was recorded as yellow. If over 50% of the leaf was brown, it was considered brown and not recorded.

Calculations

Diversity Index

The Shannon-Wiener index of diversity, $H' = -\Sigma p_i \ln p_i$ where p_t is the proportion of individuals found in the *i*th species, was calculated using the rainforest survey data for 1991, 1993, and 1996. Calculations were made to follow the plants from the first planting through all three sampling dates.

Biomass Estimates

Three estimates of biomass have been made: one for Nov. 1990, the second for July 1991 just prior to the first closure, and one in 1993 reflecting changes during the first 2 years of closure. The 1990 and 1991 estimates were made by personnel from Yale University School of Forestry and Environmental Studies (Haberstock 1991). Estimates were made from size attributes measured for individual plants inside the Biosphere such as height and diameter at breast height, using equations for trees from the literature (woody trees except for*Leucaena* from Scatena et al. 1993) and an equation for the 'Musa' type developed by Haberstock based on small destructive sampling at Biosphere 2.

For the 1990 estimate, every plant in the Biosphere 2 rainforest was measured. For the 1991 estimate, every large woody tree, about 1/2 of the 'Musa' category, and 10% of most other categories were measured. Measurements were made on randomly selected subsets of plant categories other than trees.

The July 1993 estimate (Bierner 1993) was extrapolated from a subset of tree measurements, using the equations cited above. The subset included 81 big trees, which were compared with their previous measurements to calculate a percent increase in biomass. That increase was assumed to be the same for all growth forms in the rainforest, and was applied to original biomass estimates to arrive at the 1993 estimate.

Growth Form Spectra

The symbols used to represent the rainforest plants on the original maps were changed for this study. Nine growth forms are used to describe the plants, as follows: tree (T), arborescent palm and palmlike plant (P), shrub (S), giant-leaved herb (G), herb (H), graminoid (R), woody graminoid, such as bamboo (A), climber (C), and epiphyte (E). Discrimination between giantleaved herbs (*Musa, Strelitzia*) and herbs (*Calathea, Maranta*) was somewhat arbitrary, but generally giant-leaved herbs have the form of herbaceous trees. All herbaceous and woody vines and lianas were lumped into the climber category. All bromeliads and orchids were considered epiphytes if a description of the species was not found to the contrary. Since these categories do not always agree with those of other studies, certain categories were lumped when comparisons were made with other published data. In particular, the following growth forms were lumped: Herb = Herb + Giantleaved herb + Graminoid; Tree = Tree + Arborescent palm + Woody graminoid.

Poisson Distribution

A grid of squares was printed onto transparencies, with each square representing a ground area of 2 m by 2 m. The transparency was placed over the map of plants in the rainforest biome, and the number of plants in each square was counted and recorded on the transparency. The entire rainforest biome was counted with the exception of squares containing concrete slabs, water bodies, or other features that would have prevented planting. A total of 389 squares were counted, or about 80% of the rainforest surface area.

The total number of squares containing the same number of plants was tabulated, and the mean number of plants per square was calculated. From this, a Poisson distribution was generated for comparison with the actual distribution. A chi-square test was used to make the determination.

The ratio of the variance to the mean was calculated to compare with the same ratio of the Poisson distribution, which is equal to one. A ratio greater than one would imply contagious distribution; less than one, regularity (Whittaker 1975).

Simulation Method

The simulation method used in this dissertation is described in detail by Odum and Odum (in press). The first step of the method is to draw a diagram of the system being studied using symbols of the energy systems language (Table 1-2). The study system is delineated inside the border of a window to include material and information storages in their hierarchical order, energy flows, feedbacks, and energy drains. External energy sources are shown flowing in from outside across the system border. Next, rate equations are written from the diagrams. The method is explained with a simple example.

The diagram and equations in Figure 2-2 represent the species diversity on islands as described by MacArthur and Wilson (1967) and interpreted and drawn by Beyers and Odum (1993) using energy systems symbols. Here diversity (Q) is the result of the constant inflow of seeds, spores, and other propagules immigrating from outside the system and the outflow from the system due to linear extinction. The number of species already established on an island system as shown creates a backforce against colonization by new

species. The backforce is represented diagrammatically by the pathway between P and S, which lacks an directional flow arrow; and mathematically in the equations which show the rate of flow as dependent on the difference between P and S.

Figure 2-3 shows a simple, one-tank model of biodiversity, where Q is the species diversity of the system; J is the constant flow of species from outside the system (seeds, spores, other propagules) immigrating into the system; K1 is the pathway coefficient for the rate of extinction, which is described with a quadratic drain representing extinctions in proportion to self interactions such as interspecies competition. K2 is the coefficient for linear extinction in proportion to species present. The inflow of species in this model is independent of the number of species already present, as shown by the constant flow of species P to the system storage Q.

For calibration, values of storages and flows are placed on the diagram to help visualize consistency. Then a calibration table is made to calculate the pathway coefficients. Table 2-4 calculates pathway coefficients for the model shown in Figure 2-4 when the biodiversity at steady state is 60 species.

An EXCEL spreadsheet was used to run the simple biodiversity simulation. Results of the simulation when started with different values of diversity are shown in Figure 2-5.

Emergy Evaluation

Emergy evaluations of Biosphere 2 construction and rainforest development were made according to the method of Odum (1996), as summarized below:

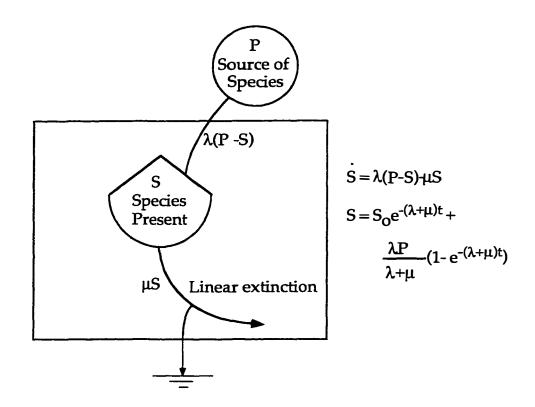


Figure 2-2. Diagram and equations for species diversity on an island as described by MacArthur and Wilson (1967) and drawn by Beyers and Odum (1993).

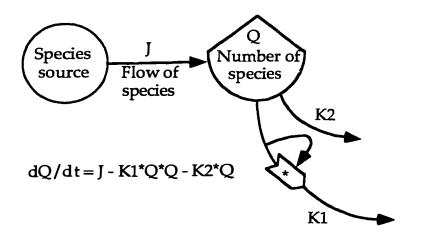


Figure 2-3. Single tank model of biodiversity as a balance of steady inflow and linear and quadratic extinction showing storages and pathway coefficients.

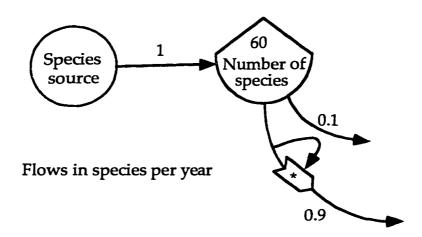


Figure 2-4. Single tank model of biodiversity with calibration values for flows and storages.

Table 2-4. Spreadsheet used to calculate coefficients for single tank biodiversity model in Figure 2-3, calibrated at steady state.

Storage or flow	Steady state value	Coefficient calculation
Storage		
Number of species Flow	Q= 60	
Yearly species additions Quadratic species extinction	J = 1 $K1^*Q^*Q = 0.9$	K1 = 0.00025
Linear species extinction	$K2^{*}Q = 0.1$	K2 = 0.001667

10 P

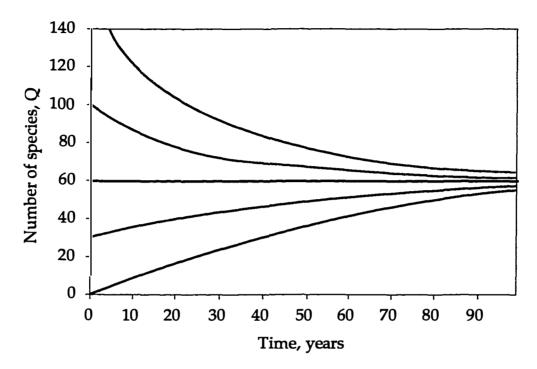


Figure 2-5. Simulation of number of species Q for different starting values using the single storage model in Figure 2-3.

First, a diagram of the system was drawn showing the elements that were to be included in the analysis. Second, the emergy evaluation table was constructed, including columns for the attribute of the system being measured and their energy values, transformity values, and emergy values. Others, such as emvalue, may be added if relevant to the analysis being made. The first column of each table is a note number, referring the reader to the notes following the table which explain the origin of the values and/or the calculations used to derive the values. The table was then filled in with available or calculated data.

The emergy analysis of the developing rainforest of Biosphere 2 included a summation of everything that went into creating the structure and ecosystems prior to the first material closure. A percentage of the total value in proportion to the relative size of the rainforest within the Biosphere was calculated, giving the total cost for the rainforest only. The final analysis was then used to compare to the tabonuco rainforest system of Puerto Rico.

CHAPTER 3 RESULTS

Data and analyses are presented for Biosphere 2 and the rainforest at El Verde in Puerto Rico.

Characterization of the Rainforest in Biosphere 2

<u>Soil</u>

The rainforest soils were relatively homogeneous in vertical profile after placement. Some textural discontinuities resulted from uneven mixing of the soil materials during their placement, creating sandier and rockier soils in parts of the lowland rainforest where the soil is a coarse sandy loam or coarse very sandy pebbly loam throughout the vertical profile (Scarborough 1994). Various soils used for potting mixes of individual plants became part of the rainforest topsoil after planting. Several of the larger trees had nearly a cubic meter of soil and root volume. In addition, clay aggregates in the soil mixture tended to maintain their structure as 'peds' from about 1–12 cm diameter (Scarborough 1994).

Measurements made by Scott (1999) for December 1993 and those reported by Lin et al. (1998) for later dates are shown in Table 3-1. Vertical development of the rainforest soils in the lowland and ginger belt habitats was apparent in December 1993, after 3 years of emplacement. Scott (1999) reports an accumulation of some elements (C, N, K, Ca, Mg) in the upper

Characteristic	Depth (cm)	1-Dec 1993⁴	19-Dec 1995⁵	25-Jan 1996⁵	No date ^c	31-May 1996⁴	16-Jun 1996⁴	15-Jul 1996⁴
pH	0-10	7.63	~	-	-	-	-	-
•	10 20	7.53	-	-	-	-	-	-
	0-20	-	7.34 <u>+</u> 0.10	7.38 <u>+</u> 0.21	7.68 <u>+</u> 0.07	-	-	-
	20-40	7.51	7.36 <u>+</u> 0.04	7.50 <u>+</u> 0.01	-	-	-	-
	40-60	7.52	-	-	7.98 <u>+</u> 0.10	-	-	-
OM (% dw)	0-20	-	3.62 <u>+</u> 0.49	4.08 <u>+</u> 0.47	4.16 <u>+</u> 0.42	-	-	-
	20-40	-	3.26 <u>+</u> 0.26	2.92 <u>+</u> 0.39	-	-	-	-
	40-60	-	-	-	3.88 <u>+</u> 0.39	-	-	-
C (% dw)	0-10	3.09	-	-	-	-	-	-
	10 20	2.35	-	-	-	-	-	-
	20-40	2.25	-	-	-	-	-	-
	40-60	2.35	-	-	-	-	-	-
N0₃-N (mg g ⁻¹)	0-20	-	22.4 <u>+</u> 5.3	26.2 <u>+</u> 2.3	-	11.4 <u>+</u> 2.9	11.0 <u>+</u> 3.3	8.2 <u>+</u> 1.3
	20-40	-	21.4 <u>+</u> 6.0	19.6 <u>+</u> 3.3	-	-	-	-
N (% dw)	0-10	0.29	-	-	-	-	-	_
	10 20	0.22	-	-	-	-	-	-
	20-40	0.22	-	-	-	-	-	-
	40-60	0.24	-	-	-	-	-	-
C/N	0-10	10.6	-	-	-	-	-	-
	10 20	10.2	-	-	-	-	-	-
	0-20	-	-	-	7.68 <u>+</u> 0.07	-	-	-
	20-40	10.2	-	-	-	-	-	-
	40-60	10.2	-	-	12.3 <u>+</u> 1.4	-	-	-

Table 3-1. Characteristics of Biosphere 2 rainforest soils from samples taken on different dates. From Scott (1999) and Lin et al. (1998 and 1999).

Table 3-1conti								
	Depth	1-Dec	19-Dec	25-Jan	No date ^c	31-May	16-Jun	15-Jul
Characteristic	(cm)	1994 *	1995 ^b	1996 ^ь		1996ª	1996 ^d	1996 ^d
$K (mg g^{-1})$	0-20	-	789 <u>+</u> 189	650 <u>+</u> 153	-	561 <u>+</u> 127	602 <u>+</u> 145	692 <u>+</u> 162
	0-10	1298						
	10-20	1009						
	20-40	856	533 <u>+</u> 132	523 <u>+</u> 89	-	-	-	-
	40-60	974						
Ca (mg g ⁻¹)	0-10	5497	-	-	-	-	-	-
	10 20	5210	-	-	-	-	-	-
	20-40	4967	-	-	-	-	-	-
	40-60	4841	-	-	-	-	-	-
Mg (mg g ⁻¹)	0-10	509	-	-	-	-		-
	10 20	440	-	-	-	-	-	-
	20-40	425	-	-	-	-	-	-
	40-60	441	-	-	-	-	-	-
PO₄-P (mg g ⁻¹)	0-20	-	117 <u>+</u> 25	111 <u>+</u> 24	-	64.5 <u>+</u> 11.5	67.4 <u>+</u> 10.8	60.9 <u>+</u> 9.8
• • • • • • • •	20-40	-	121 <u>+</u> 25	99 <u>+</u> 21	-	-	-	-
Fe (mg g ⁻¹)	0-20	-	251 <u>+</u> 45	190 <u>+</u> 16	-	161 <u>+</u> 27	144 <u>+</u> 16	162 <u>+</u> 17
	20-40	-	207 <u>+</u> 44	215 <u>+</u> 31	-	-	-	-

Scott (1999). n=6, avg. of ginger belt and lowland habitats. Data for K, Ca, Mg were converted from meq/100g to mg/g to make them easier to compare with other data presented.
Lin et al. (1998). (Table 1, n=5) (location of samples not given)
Lin et al. (1999). (Table 1 - date of samples not given)
Lin et al. (1999). (Table 2, n=5)

stratum (0 – 10 cm) of the rainforest soils during this period. Similar trends were reported by Lin et al. (1998) in Jan. 1996 for percent organic matter and NO₃-N, though in the same study the accumulation was not apparent just one month earlier. Over a short time (Dec. 95-July 96) the same study reports a clear decrease in concentrations of NO₃-N, PO₄-P, and Fe in the 0-20 cm stratum (the only layer for which data are available for both dates, n=5).

The pH values reported from Dec. 93 through Jan. 96 along a vertical profile are slightly alkaline, ranging from 7.34±0.10 to 7.98±0.10. Scarborough (1994) noted a "tendency towards precipitation of soil carbonate minerals in the rainforest soils, based upon several water chemistry signatures", and that the water routinely used for irrigation during the first 2 years was enriched with bicarbonate ions.

Soil bulk density in Dec. 1993 of the 0-10 cm stratum was 1.10 g cm⁻³ for the lowland and 1.05 g cm⁻³ for the gingerbelt (Scott 1999), Table 3-2. Bulk density was higher in all of the other strata (to 1.32 in lowland and 1.11 in ginger belt), but no further patterns were evident. Per cent volume of coarse fragments increased with depth.

Anoxic areas were reported by Scarborough (1994) after three years of soil development. He also reported "a great [deal] of soil homogenization of the upper 12–16 inches due to worm activity," and a gray surficial layer 0–7.5 cm deep forming in the NE quadrant of the lowland habitat that he attributed to worm activity. Soil fauna as described by Scott (1999) included worms to a depth of 40 cm, but not in the surface litter which he attributes to predation by and avoidance of ants. Other macrofauna counted by Scott were isopods, cockroaches, and millipedes.

	Depth	Bulk density	Coarse fragment
Location	cm	g cm ³	vol., %
Biosphere 2ª			
Lowland rainforest	0-10	1.10	8.23
	10-20	1.26	12.88
	20-40	1.32	15.22
	40-80	1.18	15.54
Ginger belt	0-10	0.94	10.94
0	10-20	1.11	14.60
	20-40	1.03	16.75
	40-80	1.10	21.13

Table 3-2. Soil bulk density and percentage coarse fragments in Biosphere 2 rainforest from samples made in November 1993. From Scott (1999).

^a Data from Scott (1999), n=3.

<u>Plants</u>

There were two periods of plant introductions to the Biosphere 2 rainforest. The first was from April 1990 to September 1991; the second from October 1993 to March 1994. The number of individual plants and species are summarized in Table 3-3.

At the start of the 1991 closure of the Biosphere, 1890 individual plants were recorded in the rainforest. Of the original plants recorded, 316 species (or monospecific genera) were recognized in 99 families, with 315 of the original 1890 plants not identified to species.

All of the plants growing in the rainforest by September, 1991 were mapped. Every plant was drawn on the map with a symbol representing its growth form and with a unique survey number. Canopy widths were mapped to scale. Figure 3-1 shows a section of the map. All of the map is shown in 20 sections in Figure A-1. Every survey point with its individual plant identification, growth form, and inventory status for 1991, 1993, and 1996 is listed in Table B-1.

During the second planting period at the end of 1993, 339 individuals were added in at least 92 species (or monospecific genera), 50 species of which were new to the rainforest.

In 1996 an additional 48 individual plants in 15 species were recorded. All of these plants appeared to have been self-propagated, some from seed (such as*Pachira aquatica* and *Coffea arabica*) and others clonally (such as*Colocasia*).

Approximate	Number of	Number of	
dates of planting	individuals	species	
4/90-9/91	1890	316	
11/93-2/94	339	92/50 ª	
Total	2229	366	

Table 3-3. Total number of species and individual plants seeded in the Biosphere 2 rainforest.

^aOf the 92 species, 50 were new to the Biosphere.

.

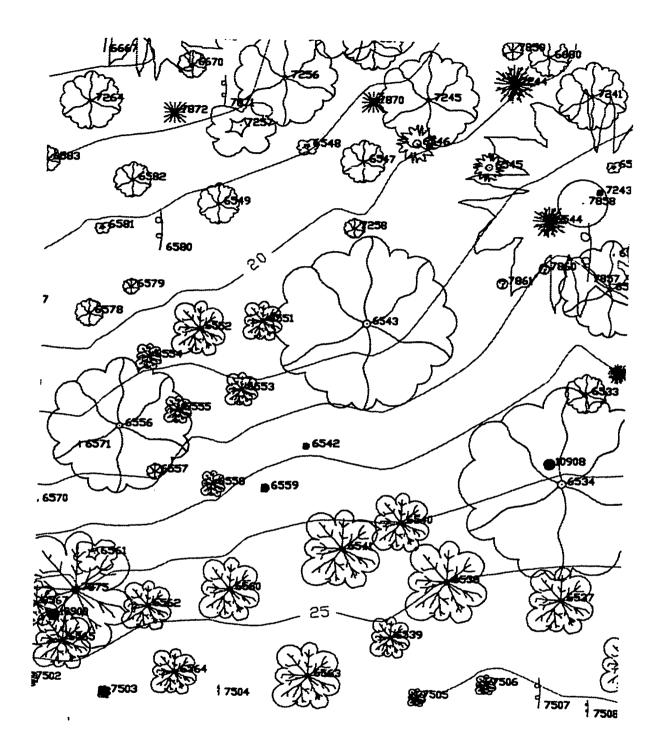


Figure 3-1. Map section #3 showing location, growth form, and canopy size of individual plants in the Biosphere 2 rainforest in September 1991. The twenty map sections are given in Figure A-1. Approximate scale: 1 cm = 0.6 m.

Plant survey results, first planting

At the end of 1993, a total of 872 (46%) of the original plants (first planting) were still alive. In 1996, 529 (28%) of the original plants were found. Table B-2 shows the number of individuals within each species at the time of closure in 1991, along with the subsequent inventories for 1993 and 1996.

In the 1993 inventory, 194 (61%) of the original species persisted and by 1996, 137 (43%) of the original species remained. The distribution of plants within species for both inventory years shows a decline in both numbers of species as well as number of individuals per species, as summarized in Table 3-4.

All or most of the plants in the following groups from the first planting died during the first 2 year study period: Adiantaceae (ferns), Aspleniaceae (ferns), Blechnaceae (ferns), Cyatheaceae (tree ferns), Orchidaceae, Polypodiaceae (ferns), Selaginellaceae (fern allies), and most Bromeliaceae (mostly epiphytes); *Sagittaria, Pontederia, Typha, Nymphaea*, and *Lycopodium*. This included almost all of the herbaceous and tree ferns, fern allies, epiphytes and aquatic plants. The large herbaceous species planted largely in the peripheral ginger belt thrived, spreading clonally. The most successful taxa in terms of maintaining large populations were all clonal species including the following taxa: Musaceae, Marantaceae, Zingiberaceae, and Strelitziaceae.

Table 3-4. Number of individual plants and species recorded in 1991, 1993, and 1996 surveys of Biosphere 2 rainforest. The first number in each entry includes plants from the 1991 planting, the second number from the 1993 planting, and third is plants that have self-propagated. Species reported are for species new to the rainforest.

Survey date	Number of individuals	Number of species
1991	1890	316
1993	872/339	194/50
1996	529/86/48	137/20/0

Plant survey results, second planting

In 1996, 41% of the second planting species and 25% of the individuals remained. Table A-3 lists the plants that were added to the rainforest after September 1993, and their subsequent inventory for 1996. In contrast to the first planting, many of the Bromeliaceae, largely epiphytes, survived. Most of the plants in the following families died: Orchidaceae, Arecaceae (palms), Aspleniaceae (ferns), and Polypodiaceae (ferns).

Abundance and distribution of plants within species

The change in the number of plants within species over 5 years is shown for the plants from the 1991 planting in Figure 3-2. For all years, there were relatively few common species and many rare species. In 1991, 90 species were represented by only one individual, whereas only about 15 species were each represented by more than 15 individuals. About 45% of the species in 1991 had only 1 or 2 individuals, which represented 11% of the plants. By 1993, both number of species and numbers of individuals within species had declined, and 56% of the species had only 1 or 2 individuals, representing only 15% of the individuals, a pattern repeated again in 1996. <u>Individual and species decline</u>

The mortality rate of individuals and extinction of species was higher for the second planting than the first over the period 1993-1996 as shown in Figures 3-3 and 3-4. Seventy-five percent of the second planting individuals died, whereas only 39% of the first planting individuals died; and about 60% of the species from the second planting and 30% of the species from the first planting went extinct over the same period.

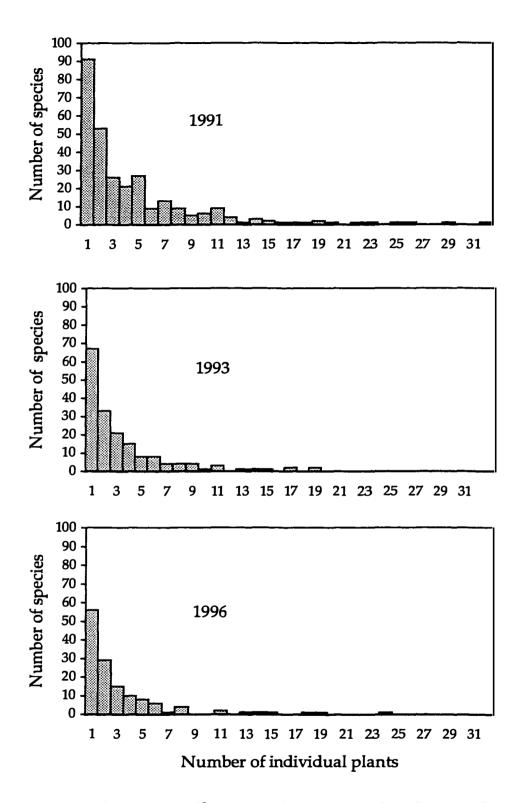


Figure 3-2. Change in plant species abundance and distribution in Biosphere 2 rainforest, 1991-1996, for plants from the first planting.

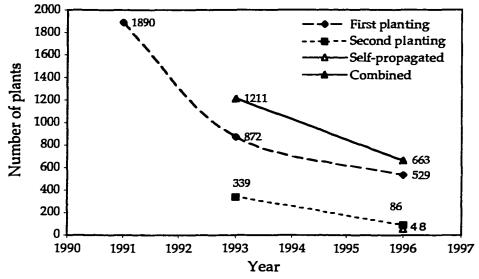


Figure 3-3. Number of individual plants in Biosphere 2 rainforest through time including 2 planting periods, 1991 and 1993.

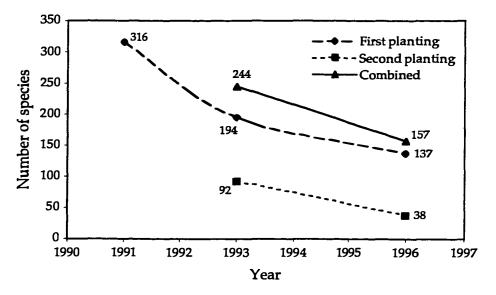


Figure 3-4. Number of species in Biosphere 2 rainforest through time including 2 planting periods, 1991 and 1993.

The decline of number of species was proportional to the decline of number of individuals, Figure 3-5.

Change in growth form spectrum

The decline of species and individuals within each of 9 growth forms is shown in Figure 3-6 and 3-7, respectively, for the plants from the initial 1991 planting. The largest percentage of survival in individual plants for both 1993 and 1996 was for bamboos, graminoids and giant herbs. The decline of absolute numbers of individuals was greatest for herbs, trees, and climbers, which also started out with the largest number of individuals.

Giant herbs, bamboos and palms showed the smallest percentage decline of species by both 1993 and 1996. Herbs and epiphytes had the largest percentage decline in species by 1993, and epiphytes, trees and climbers lost the largest percentage of species between 1993-1996. The epiphyte growth form was extinct by 1996.

For comparative purposes, plant growth forms in Figures 3-8 and 3-9 were lumped the into 5 types that are most commonly used in other studies: Herb = herb + giant herb + graminoid; tree = tree + arborescent palm + woody graminoid. Though the number of species with each growth form declined with time, the relative proportions of species within each growth form changed only slightly, with the greatest change seen in the increase in the relative proportion of tree species.

Plant reproduction

Most of the introduced pollinators died by the second year of closure. However, the following plant species set fruit at least once during the first 2 years: *Basella alba*, *Bixa orellana*, *Pachira aquatica*, *Carica papaya*, *Canna*

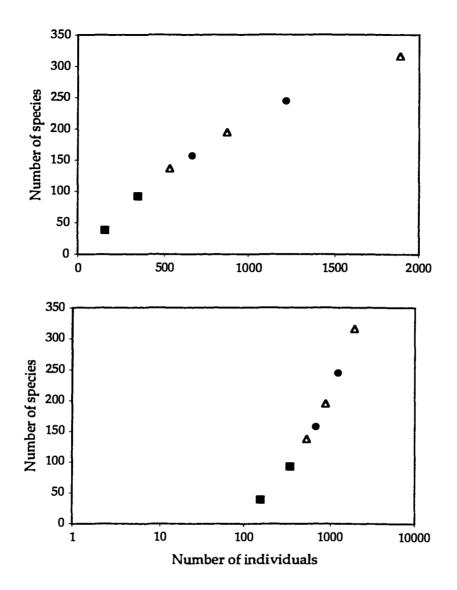


Figure 3-5. Relationship of number of species to number of individuals over time in Biosphere 2 rainforest on linear (upper figure) and semilog (lower figure) scale. Open triangles are plants from 1991 planting, squares from 1993 planting, and circles combine plants from both. Survey data are from 1991, 1993, and 1996.

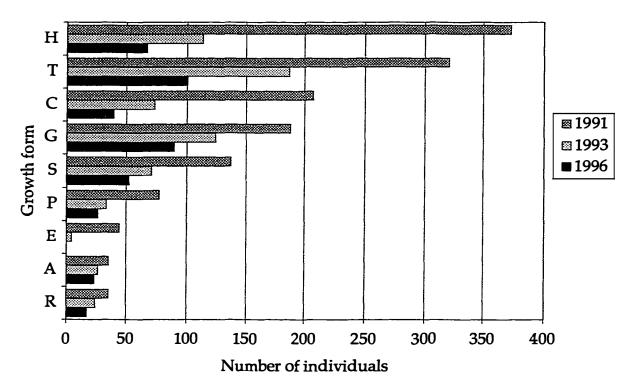


Figure 3-6. Number of individuals within growth forms in Biosphere 2 rainforest in 1991, 1993, and 1996. Data include only plants from first planting. H=Herb, T=Tree, S=Shrub, C=Climber, G=Giant herb, P=Arborescent palm, E=Epiphyte, R=Graminoid, A=Bamboo.

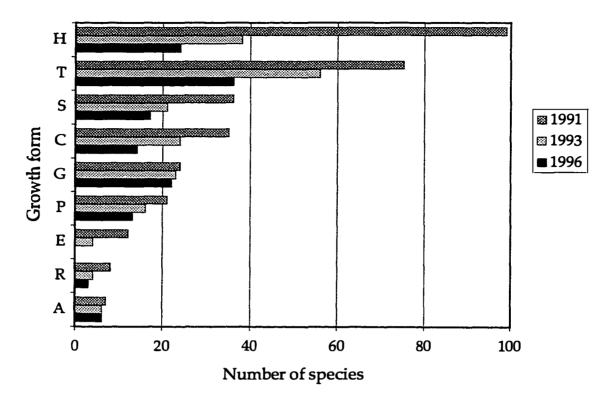


Figure 3-7. Number of species within growth forms in Biosphere 2 rainforest in 1991, 1993, and 1996. Data include plants from first planting. H=Herb, T=Tree, S=Shrub, C=Climber, G=Giant herb, P=Arborescent palm, E=Epiphyte, R=Graminoid, A=Bamboo.

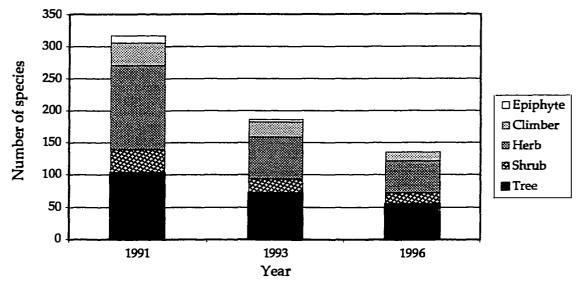


Figure 3-8. Change in number of species within growth forms from 1991 planting in Biosphere 2 rainforest through time.

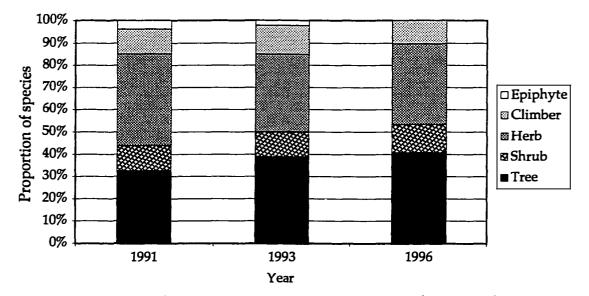


Figure 3-9. Change in distribution of species within growth forms from 1991 planting in Biosphere 2 rainforest through time.

edulis, Coffea arabica, Ficus buxifolia, Moringa oleifera, Leucaena spp., Ricinus communis, Ipomoea sp., Passiflora sp. and Ceiba pentandra. Viability of the seeds is not known. Seedlings of the following species were observed: Coffea arabica, Pachira aquatica, Canna edulis, and Leucaena spp. In subsequent years, additional species have set fruit. However, some plants that reproduced before the 1991 closure failed to reproduce between 1991-1993. Examples are Clitoria racemosa, Averrhoa carambola, and Myrciaria cauliflora. Pachira aquatica trees had not reproduced before their planting in the Biosphere.

Spatial Distribution of Plants

The Biosphere 2 rainforest plants were planted without a formal plan for their spatial distribution. A comparison of the distribution of the actual plants with the Poisson distribution is shown in Figure 3-10. The probability that the actual distribution of plants was only a change departure from the Poisson distribution was less that .001. Thus the actual distribution is not random. The variance to mean ration of the actual distribution was 0.355, suggesting regularity in the horizontal distribution of plants (Whittaker 1975).

Cumulative Species per Cumulative Individuals Counted

Plant species in the Biosphere 2 rainforest in 1991 accumulated as a function of the number of individuals counted, shown in Figure 3-11. Data are plotted on linear, semi-logarithmic and double logarithmic scales. Counts made in the lowland and east ginger belt habitats of the rainforest in 1998 are graphed In Figure 3-12. The graphs show species/individual counts both with

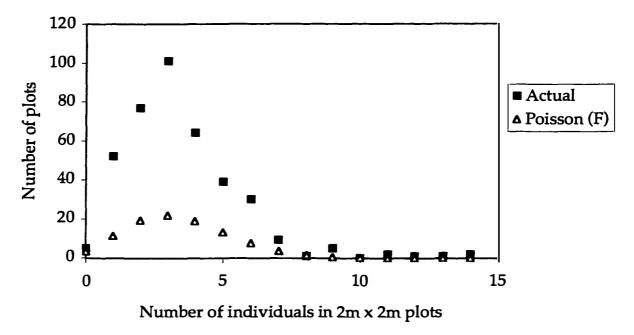


Figure 3-10. Spatial distribution of plants in Biosphere 2 rainforest in 1991 (solid squares) compared to Poisson distribution (open triangles).

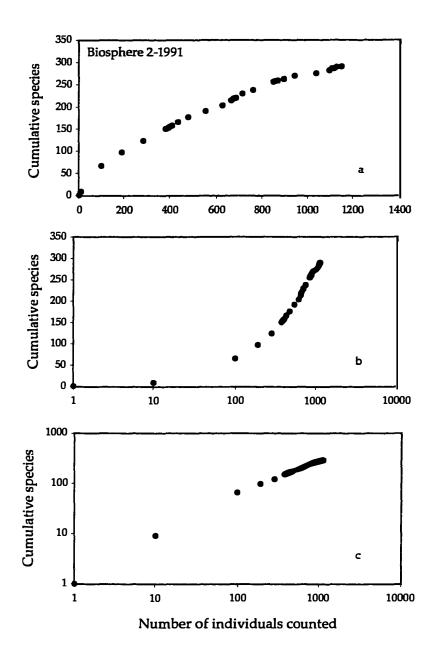


Figure 3-11. Cumulative plant species as a function of cumulative individuals in Biosphere 2 rainforest, 1991. Data for all habitats except cliff faces and surface aquatic systems are plotted on linear (a), semi-log (b) and log-log (c) scales.

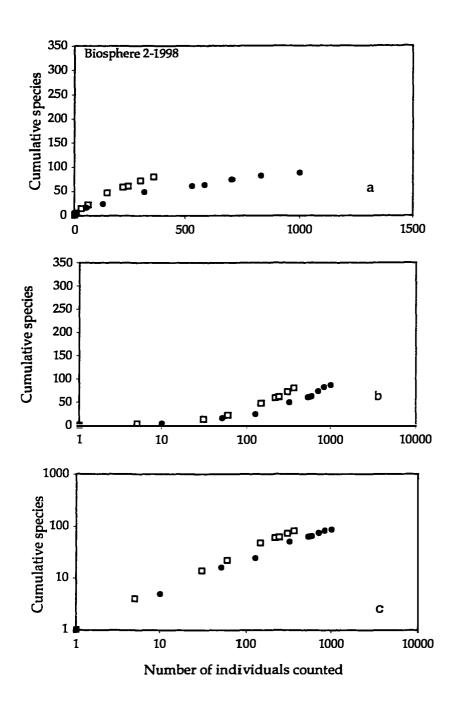


Figure 3-12. Cumulative plant species as a function of individuals in Biosphere 2 rainforest, April 1998. Open squares have *Scindapsus* and *Syngonium* subtracted.

and without the 2 most common species that formed a continuous ground cover in some areas, *Scindapsus aureus* and *Syngonium podophyllum*. Together they accounted for over half of the individual plants in 1998. Without the 2 species, the slope of the graph is steeper since more species accumulate with fewer individuals. Data for the 2 years are graphed together in Figure 3-13.

Leaf-Area Index

The leaf-area index averaged for 30 observations in April, 1998, was 6.07 cm^2/cm^2 , Table 3-5. The range of leaf interceptions per point was 0 – 16. Notes from field observations made in November, 1993 (Odum et al.) show a leaf-area index of 4.9 averaged for 10 observations, with a range of leaf interceptions from 2-7. The mean number of interceptions of branches was 0.9.

Number of Seedlings and Green and Yellow Fallen Leaves per m²

In 1996, a single *Leucaena* seedling was found in one of the 30, 0.54 m² circular plots, Table 3-6.

Green and yellow fallen leaves counted per circular plot were distributed as shown in Table 3-7. The average number of green leaves per plot was 1.8 with a range from 0 - 8 leaves, and the average number of yellow leaves per plot was 1.7, with a range of 0 - 6 leaves.



Figure 3-13. Cumulative species as a function of cumulative individuals in Biosphere 2 rainforest in 1991 (solid circles), 1998a (all plants, open squares), and 1998b (*Syngonium* and *Scindapsus* deleted, crosses).

	No. of	
Date	observations	No. of interceptions per observation
		Leaves
Nov. 93ª	10	2,5,7,4,5,6,6,5,5,4
Apr. 98	30	7,8,3,4,4,7,3,4,10,7,4,16,1,7,5,
-		13,7,4,7,0,7,7,10,5,4,1,3,4,14,6
		Branches
Nov. 93 ^a	10	0,0,0,1,3,2,1,0,0,2
^a Data fro	m field notes	by Odum et al. (1993), on file at
Biosphe	ere 2.	

Table 3-5. Leaf and branch interceptions per observation through vertical points in Biosphere 2 rainforest. Data for 1993 from Odum et al. (1993).

Table 3-6. Distribution of seedlings found in 30, 0.54 m² circular plots in Biosphere 2 rainforest understory in 1998.

No. of seedlings	No. of plots
0	29
1	1

Percent of Holes in Leaves

Table 3-8 shows the mean values for percent holes in tree leaves. Visual estimates were made for 20 trees throughout the rainforest in April 1998 and for 7 trees in Nov. 1993. The range of leaf holes per leaf in 1993 was 0 - 3.3%, and in 1998 the range was 0.1% - 1.7%.

Litterfall and Decomposition Rates

Litterfall and decomposition rates for the Biosphere 2 rainforest were reported by Nelson (1999) for measurements made from Oct. 1992 to Sept. 1993. Litter was collected monthly from 40, 0.25 m² baskets distributed among the habitats in the rainforest. Yearly dry weight of litterfall averaged over all habitats of the rainforest was 723 ± 158 g m⁻² yr⁻¹. The total yearly litterfall for the rainforest biome weighted by the size of each habitat in which it was collected was 1078 kg yr⁻¹. Average monthly litterfall values ranged from about 40 g m⁻² in Dec. 1992 to about 95 g m⁻² in May 1993. The high value for May was attributed to tree fall and branch breakage, but could also include leaf and stem drop from rising temperatures in the higher levels of the rainforest, killing the new growth of the taller trees and resulting in increased litterfall.

Decomposition rates were measured for leaves of three species in the rainforest, and the average rate of disappearance was 95% per year. Leaf samples from two species, *Leucaena sp.* and *Cecropia schreberiana*, disappeared completely within one year.

	No. of plots				
No. of leaves	Green	Yellow			
0	9	12			
1	7	3			
2	5	7			
3	5	3			
4	2	1			
5	1	2			
6	0	2			
7	0	0			
8	1	0			

Table 3-7. Distribution of green and yellow leaves in 0.54 m² circular plots on lowland rainforest ground, April 1998.

Table 3-8. Percent of holes in leaves in Biosphere 2 rainforest trees. Data for 1993 from Odum et al. (1993).

	No. of lvs.	Percent holes in leaves per tree
Date	observed/tree	(mean of all leaves observed per tree)
Apr. 98 ª	10	1.6, 1.6, 0.1, 1.3, 0.4, 0.1, 1.7, 1.0, 0.9,
		0.4, 0.4, 0.6, 1.2, 0.2, 1.6, 0.1, 1.4
	21	0.9
	11	0.3
	7	1.1
Nov. 93 ^b	12	1.3, 0.2
	10	0, 0.5
	9	3.3
	8	2.6
	6	1.8

^a Data were recorded as ranges, <1, 1-5, etc. The midpoint of the ranges was used to calculate the mean value per tree, where <1 = 0.5, 1-5 = 2.5, etc.

^b Data from field notes by Odum et al. (1993) on file at Biosphere 2.

Carbon Uptake and Respiration

Engel and Odum (1999) calculated community respiration and average daily CO₂ absorption rates for the entire Biosphere using diurnal curve analyses of oxygen and carbon dioxide measured in Jan. – Feb. 1995. They found an average community gross production rate of 23 g O₂ m⁻² d⁻¹, community respiration rate of 25 g O₂ m⁻² d⁻¹, and average CO₂ absorption rate of 0.2 g CO₂ m⁻² h⁻¹.

Net ecosystem exchange of CO₂, total soil respiration and canopy assimilation were reported by Lin et al. (1999) for the rainforest biome for June-July 1996. During this period the rainforest was separated with a secure curtain from the rest of the Biosphere. Estimates were made from measurements of diurnal variation of CO₂ in the atmosphere when atmospheric CO₂ levels were kept at about 450 ppm. Results are summarized in Table 3-9 in units given in the original publication. Average total canopy assimilation was 18.8 g CO₂ m⁻² d⁻¹ (day = 13.5 hours), or, stated as production,

 $(18.8 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1})(32 \text{ g O}_2 / 44 \text{ g CO}_2) = 13.7 \text{ g O}_2 \text{ m}^{-2} \text{ d}^{-1}.$

Total respiration rates were 25.1 g CO_2 m⁻² d⁻¹, or 18.2 g O_2 m⁻² d⁻¹, and net ecosystem exchange per day was 6.3 g CO_2 m⁻² d⁻¹, or -4.5 g O_2 m⁻² d⁻¹. These production and respiration rate estimates are somewhat lower than those made by Odum and Engel, even though measurements were made when more light would be entering the Biosphere and higher metabolic rates would be possible. Table 3-9. System metabolism of Biosphere 2 rainforest for summer, 1996. NEE=Net ecosystem exchange, R_s =Soil respiration, A_c =Canopy assimilation, RUE= Radiation use efficiency, R_p =Plant respiration. From Lin et al. (1999).

Location	Date & time	NEE	Total R _s	Total A _c	RUE
Rainforest	June-July '96				
	Day, 13.5 hours	113.2 <u>+</u> 19.1	-313.6 <u>+</u> 14.2	426.8 <u>+</u> 12.3	0.013 <u>+</u> 0.001
		mmol CO ₂ m ⁻²	mmol $CO_2 m^2$	mmol $CO_2 m^{-2}$	$mol CO_2 mol^{-1}$
					(Total R _p)
	Night, 10.5 hours	256.8 <u>+</u> 8.0	-233.8 <u>+</u> 9.2	-	-23.0 <u>+</u> 10.0
	-	mmol CO ₂ m ⁻²	mmol CO ₂ m ⁻²		mol CO ₂ mol ⁻¹
* Data from	n Lin et al. (1999).				

Cutting and Consumers

An estimated 22 hours per month was used for pruning in the Biosphere 2 rainforest, and an approximation of 10 kg per hour was cut. Rate of cutting for the first 2 year study period was 220 kg per month. A small fraction of this was used as fodder for the domestic animals, and the remainder was air-dried and stored in the basement area.

Diversity Index

Results of calculations of the Shannon-Wiener index is given in Table 3-10, showing decreasing plant diversity through time in the Biosphere 2 rainforest for the plants from the first planting.

Biomass Estimates

Aboveground plant biomass estimates for three dates are listed on Table 3-11. For the 1991 estimate, the standard error was estimated to be 25% of the biomass. The second estimate shows a 161% increase over the first, in 8 months. From July 1991 to July 1993 there was a 97% increase. Estimated increase in biomass from Nov. 1990 to July 1993 was 414%.

Comparisons Between Biosphere 2 and Tabonuco Forest in Puerto Rico

Data were assembled from secondary and plantation forests within the tabonuco forest type in Puerto Rico for comparison with trends in the developing structure, diversity and processes of the Biosphere 2 forest. The secondary forests are located in El Verde forest and Bisley watersheds, and are

Location	Date	Index*
Biosphere 2	1991	5.39
_	1993	4.91
	1996	4.64

Table 3-10. Shannon-Wiener index of diversity in Biosphere 2 rainforest for 1991, 1993, and 1996.

* Natural log (ln) used in calculations.

Table 3-11. Aboveground plant biomass estimates in Biosphere 2 rainforest for 1990, 1991, and 1993. From Haberstock (1991) and Bierner (1993).

Date	Biomass (kg)	Increase
Nov. 1990 ^a	809	
July 1991ª	2112	161%
July 1993⁵	· 4161	97%

^aData from Haberstock (1991). ^bData from Bierner (1993). successional forests that are recovering from land uses and hurricanes, developing without human management. The plantation sites, often paired with the secondary forest sites with regard to age and soil type, are singlespecies tree plantations in which additional plants from nearby forests have become established.

In addition, a count of cumulative species per cumulative individuals was made for a landslide site near the El Verde Field Station in the tabonuco forest type in Puerto Rico in May 1999. The vegetation on the site has been developing over 11 years and is described by Myster and Walker (1997) as early successional, continuing to increase in plant diversity and biomass. In contrast, the Biosphere's rainforest system is 9 years old with declining diversity and increasing biomass.

Physical Environment

Table 3-12 shows values for environmental variables that distinguish the Arizona and Puerto Rico rainforests. The Biosphere 2 rainforest is approximately 12° further north than the tabonuco forest in Puerto Rico, and has a greater range of daylength through the year. The light reaching the Biosphere 2 rainforest is 68% that of the tabonuco forest due to shading and reflection by the outside structure. Vapor pressure deficit for the Biosphere from Oct. '97 - May '98 was 6 - 9 millibars. Vapor pressure deficit for El Verde was less (1.8 - 6 millibars). There was a greater range of temperatures, both diurnally and seasonally in Biosphere 2. During the first 2 years of material closure, the CO₂ ranged between 500 and 4200 ppm. Thermal stratification of

Variable and units	Fl Vordo	Pinehan 2
	El Verde	Biosphere 2
Insolation, kcal m ⁻² day ⁻¹		
Above canopy	_	
Annual avg.ª	3830 ^b	2610 ^c
Near forest floor		
Avg.	134 ^h	
Daylength, hrs.		
Avg.		
Range	12-13	
Vapor pressure deficit		
millibars		
	5.5ª	
Avg.	+	 6-9 ^t
Range	1.8 - 6ª	6-9
Temperature, C°		
Above forest		
April - Dec. avg.	22.6 ^g	
Jan Mar. avg	20.6 ^g	
Diurnal range	21-25 ^g	23-42 [£]
Near forest floor		
Avg.	22.9	27-29 ^f
•	20.7 - 25.2 ⁱ	25-35 ^f

Table 3-12. Environmental variables at El Verde and Biosphere 2 forests. From Odum (1970), Romer (1985), Ahrain et al. (1998), and Cuevas et al. (1991). Dashes mean no data are available.

^a Averaged over full year, 24 hours per day.

^b Odum (1970), p. I-217.

^c Romer (1985), p. 32, reports 253 W m⁻² for Tucson, AZ. approximately half of ambient light entered Biosphere 2 structure. $0.5(253 \text{ W m}^{-2})(2.30 \text{ E}-4 \text{ kcal sec}^{-1})(3600 \text{ sec hr}^{-1})(24 \text{ hrs.})=$ 2612 kcal m⁻² d⁻¹

- ^d Odum (1970), H-41.
- ^e Odum (1970), B-415.
- ^f Ahrain et al. (1998), monthly mean values, Oct. 97-May 98.
- ^g Odum (1970), B-347.
- ^h Odum (1970), I-218.
- ⁱ Cuevas et al. (1991).

the air in the Biosphere due to low air flow created temperatures at the canopy top that were too high for plant growth, limiting the height of trees.

<u>Soil</u>

The Biosphere 2 soils were alkaline (pH range from 7.4 - 7.98); those in tabonuco forests acidic (pH range from 4.2 - 5.7), Table 3-13. Values for iron were lower in Biosphere 2, but other cations were much higher in all profile depths. Total percent nitrogen is similar in the two systems for the upper 10 cm of the soil profile, and higher in Biosphere 2 for in the deeper parts of the profile. The range of both total nitrogen and organic matter for Bisley samples is greater than that found in the Biosphere. Soil bulk density values for both systems are shown in Table 3-14. The highest value from all sites (1.32 g cm⁻³ at 20-40 cm) are in the Biosphere 2 lowland rainforest habitat; the lowest values from Bisley watershed (0.63 ± 0.04 g cm⁻³ at 0-10 cm) and the North Cut Center (0.66 g cm⁻³ at 0-15 cm).

<u>Plants</u>

Species and individuals

Thirty-nine species, or 12.3% of the flora planted in Biosphere 2 in 1991 were species that occur in El Verde, Table 3-15. Many of those plants were collected in Puerto Rico. By 1996, 21 species, or 54% of the original Puerto Rican species were still alive compared to 43% of the total species in the rainforest. About 13% (241) of the original individuals were El Verde species, and 34% of the individuals were still alive in 1996 compared to 28% of the total original individuals.

Location	Depth		Р	OM	Total N		ppm		
Date	cm	pН	ppm	% dry wt	%	Ca	Mg	K	Fe
<u> </u>				Puert	o Rico				
South Control Ctr.*	0-13	4.3	21	=	-	202	300	104	-
Sept. '64	13-25	4.3	17	-	-	270	87	24	-
Radiation Ctr.*	0-13	4.8	21	-	-	810	285	96	-
Sept. '64	13-25	4.9	14	-	-	415	99	24	-
North Cut Ctr. ⁴	0-13	5.7	13	-	-	3840	1515	186	-
Sept. '64	13-25	5.4	6	-	-	1110	873	30	-
Bisley ^b , June 88									
Ridge	0-10	4.7 <u>+</u> 0.1	34 <u>+</u> 7	9.6 <u>+</u> 2.2	0.34 <u>+</u> 0.07	461 <u>+</u> 100	267 <u>+</u> 49	195 <u>+</u> 16	1340 <u>+</u> 149
U	10-35	4.9 <u>+</u> 0.1	7 <u>+</u> 1	3.1 <u>+</u> 0.3	0.14 <u>+</u> 0.01	140 <u>+</u> 40	134 <u>+</u> 49	78 <u>+</u> 47	707 <u>+</u> 112
	35-60	4.2 <u>+</u> 0.1	3 <u>+</u> 1	1.4 <u>+</u> 0.2	0.08 <u>+</u> 0.01	120 <u>+</u> 60	134 <u>+</u> 61	39 <u>+</u> 12	74 <u>+</u> 93
Slope	0-10	4.8 <u>+</u> 0.1	23 <u>+</u> 2	7.1 <u>+</u> 0.6	0.31 <u>+</u> 0.02	601 <u>+</u> 100	389 <u>+</u> 49	235 <u>+</u> 19	968 <u>+</u> 93
-	10-35	5.0 <u>+</u> 0.1	6 <u>+</u> 1	2.6 <u>+</u> 0.2	0.13 <u>+</u> 0.01	301 <u>+</u> 100	292 <u>+</u> 85	78 <u>+</u> 16	372 <u>+</u> 56
	35-60	5.0 <u>+</u> 0.1	3 <u>+</u> 0	1.7 <u>+</u> 0.2	0.07 <u>+</u> 0.01	220 <u>+</u> 80	255 <u>+</u> 121	39 <u>+</u> 4	168 <u>+</u> 19
Upland Valley	0-10	5.1 <u>+</u> 0.1	21 <u>+</u> 4	4.4+0.5	0.25 <u>+</u> 0.02	741 <u>+</u> 260	547 <u>+</u> 182	156 <u>+</u> 12	652 <u>+</u> 118
	10-35	5.1 <u>+</u> 0.1	9 <u>+</u> 1	2.4+0.4	0.13 <u>+</u> 0.02	601 <u>+</u> 301	340 <u>+</u> 97	78 <u>+</u> 7.8	391 <u>+</u> 130
	35-60	5.1 <u>+</u> 0.1	5 <u>+</u> 1	1.2 <u>+</u> 0.3	0.05 <u>+</u> 0.01	601 <u>+</u> 521	365 <u>+</u> 194	39 <u>+</u> 12	205 <u>+</u> 93
Riparian Valley	0-10	5.3 <u>+</u> 0.1	26 <u>+</u> 2	5.2 <u>+</u> 0.6	0.23 <u>+</u> 0.02	1242 <u>+</u> 200	523 <u>+</u> 73	235 <u>+</u> 27	577 <u>+</u> 93
. ,	10-35	5.4 <u>+</u> 0.1	20 <u>+</u> 4	3.7 <u>+</u> 1.0	0.19 <u>+</u> 0.04	842 <u>+</u> 220	377 <u>+</u> 73	117 <u>+</u> 16	521 <u>+</u> 112
	35-60	5.3 <u>+</u> 0.2	9 <u>+</u> 1	1.3 <u>+</u> 0.0	0.06 <u>+</u> 0.01	481 <u>+</u> 0	474 <u>+</u> 170	78 <u>+</u> 12	205 <u>+</u> 56

Table 3-13. Comparison of soil properties of Puerto Rico and Biosphere 2 forests. From Edmisten (1970), Silver et al. (1994), Scott (1999), and Lin et al. (1998 and 1999).

Location	Depth		Р	OM	Total N		ppm		
Date	cm	pН	ppm	% dry wt	%	Ca	Mg	K	Fe
				Biosphere	2				
Lowland &									
Gingerbelt	0-10	7.63	-	6.18	0.29	5497	509	1298	-
Dec. '93°	10-2 0	7.53	-	4.70	0.22	5210	440	1009	-
	20-40	7.51	-	4.50	0.22	4967	425	856	-
	40-60	7.52	-	4.70	0.24	4841	441	974	-
Rainforest									
Dec. '95 ^d	0-20	7.34<u>+</u>0.10	117 <u>+</u> 25	3.62 <u>+</u> 0.49	-	-	-	789 <u>+</u> 189	251 <u>+</u> 45
	20-40	7.36 <u>+</u> 0.04	121 <u>+</u> 25	3.26 <u>+</u> 0.26	-	-	-	533 <u>+</u> 132	207 <u>+</u> 44
Jan. '96 ^d	0-20	7.38 <u>+</u> 0.21	111 <u>+</u> 24	4.08 <u>+</u> 0.47	-	-	-	650 <u>+</u> 153	190 <u>+</u> 16
	20-40	7.50 <u>+</u> 0.01	99 <u>+</u> 21	2.92 <u>+</u> 0.39	-	-	-	523 <u>+</u> 89	215 <u>+</u> 31
No date ^e	0-20	7.68 <u>+</u> 0.07	-	4.16 <u>+</u> 0.40	-	-	-	-	-
	20-40	7.98 <u>+</u> 0.01	-	3.88 <u>+</u> 0.39	-	-	~	-	-
May '96°	0-20	-	64.5 <u>+</u> 11.5	-	-	-	-	561 <u>+</u> 127	161 <u>+</u> 27
June '96 °	0-20	-	67. <u>4</u> +10.8	-	-	-	-	602 <u>+</u> 145	144 <u>+</u> 16
July '96°	0-20	-	60.9 <u>+</u> 9.8	-	-	-	-	692 <u>+</u> 162	162 <u>+</u> 17

Table 3-13 -- continued.

* Edmisten (1970), p H-82.
 * Silver et al. (1994) Data are mean values with standard errors made in 2 watersheds at 4 different

topographic positions. The number of samples per mean varies between depth and site from 2-41. ^c Scott (1999). OM% dry weight is calculated as 2 times the reported value for carbon.

^d Lin et al. (1998).

^e Lin et al. (1999).

	Depth	Bulk density
Location	cm	g cm ⁻³
Biosphere 2ª		
Lowland rainforest	0-10	1.10
	10-20	1.26
	20-40	1.32
	40-80	1.18
Ginger belt	0-10	0.94
	10-20	1.11
	20-40	1.03
	40-80	1.10
Puerto Rico		
South Control Center ^b	0-15	1.05
	15-30	1.02
	30-61	1.00
Radiation Center ^b	0-15	1.18
	15-30	1.14
	30-61	1.11
North Cut Center ^b	0-15	0.66
	15-30	0.92
	30-61	1.03
Bisley Watershed ^c	0-10	0.63+0.04
-	10-35	0.98+0.03
	35-60	1.13+0.06
A Data from Crott (1000)		1.13+0.06

Table 3-14. Soil bulk density in Biosphere 2 rainforest and Puerto Rico tabonuco forest. From Scott (1999), Edmisten (1970), and Silver et al. (1994).

^a Data from Scott (1999). n=3, samples from Dec. 1993.

^b Data from Edmisten (1970). Composite sample from each site.

^c Data from Silver et al. (1994). Mean value and standard error of 87 measurements.

		Number	of plants
Growth form	Species ^a	1991	1996
Trees	Cecropia schreberiana Miq.	11	5
	Ceiba pentandra (L.) Gaertn.	6	5
	Cordia alliodora (Ruiz & Pav.) Oken	2	0
	Mangifera indica L.	5	0
	Psidium guajava L.	8	2
	Spathodea campanulata P. Beauv	1	1
	Syzygium jambos (L.) Alston	7	2
	Tabebuia heterophylla (DC.) Britton	3	0
Arboreal palm	ns and palm-like plants		
-	Cnemidaria horrida (L.) C. Presl	1	0
	Cocos nucifera L.	2	2
	Cyathea arborea (L.) Sm.	3	0
	Prestoea montana (Graham) G. Nicholson	1	0
Shrubs	Coffea arabica L.	18	13
	Hibiscus rosa-sinensis L.	4	3
	Theobroma cacao L.	11	0
Climbers	Dioscorea alata L.	3	1
	Marcgravia rectiflora Triana & Planch.	5	1
	Philodendron angustatum Schott	7	1
Giant herbs	Alpinia purpurata (Vieill.) ex K. Schum.	4	4
	Hedychium coronarium Koenig	19	8
	Heliconia caribaea Lam.	8	2
	Musa sp.	31	24

Table 3-15. Plant species occurring in El Verde that were originally planted in Biosphere 2 forest, with an inventory of individuals counted per species in 1991 and 1996.

		Number	of plants
Growth form	Species ^a	1991	1996
Herbs	Asclepias curassavica L.	4	1
	Bacopa monnieri (L.) Wettst.	1	0
	Blechnum occidentale L.	1	0
	Colocasia esculenta (L.) Schott	1	1
	Eryngium foetidum L.	1	0
	Etlingera elatior (Jack) R.M. Sm.	4	1
	Ludwigia octovalvis (Jacq.) P.H. Raven	1	0
	Nephrolepis exaltata (L.) Schott	32	0
	Polypodium aureum L.	1	0
	Polytaenium feei (W. Schaffn. ex Fée) Maxon	5	0
Graminoids	Paspalum plicatulum Michx.	1	1
Epiphytes	Guzmania berteroniana (Schult. & Schult.) Mez	1	0
	Guzmania monostachia (L.) Rusby ex Mez	2	0
	Polypodium crassifolium L.	6	0
	Rhipsalis baccifera (J.S. Muell.) Stearn	5	0
* Plant list from	m Biosphere 2 cross-checked with El Verde chec	klist of	
	T_{-1} : T_{-1} (100()		

Charlotte M. Taylor in Lawrence (1996).

Growth form spectra

Graphs of the spectra for the 2 systems are shown in Figure 3-14. The growth form spectra of the 2 rainforests show a much smaller proportion of herbs in the tabonuco forest than in Biosphere 2, and a large percentage of epiphyte species.

Cumulative species as function of cumulative individuals

The sites, size class of plants measured, dates of measurements, and results of number of species per number of individuals counted are summarized in Table 3-16.

Cumulative species encountered per 1000 individuals counted are shown in Figure 3-15 for the landslide site sampled at El Verde. The data are graphed alongside data for the Biosphere 2 rainforest in 1998, Figure 3-16. The graphs show that species are accumulated at about the same rate until about 500 individuals were counted; then the Biosphere 2 accumulated species more quickly than the landslide.

Data from the Bisley grid and the Radiation Center were graphed similarly, using databases provided by El Verde LTER staff. The 3 Puerto Rico sites are graphed together on Figure 3-17. The Bisley and landslide graphs are nearly identical, though the Bisley data only account for woody species greater than or equal to 2.5 cm at diameter breast height. The Radiation Center accumulated the least species for 1000 individuals counted. The Radiation Center data set included all plants, including sprouts and seedlings, and according to Taylor et al. (1996) the 1988 counts were made at a time when a lot of seeds were sprouting.

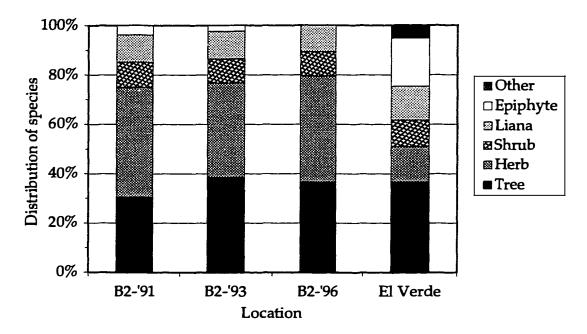


Figure 3-14. Growth form spectra of Biosphere 2 rainforest and El Verde tabonuco forest. B2 = Biosphere 2. Data for El Verde from Smith (1970).

		Subset of	Species/	
Site name	Date	plants counted	1000 plants	Notes
Biosphere 2	1991	All plants	273	
Biosphere 2	1998	All plants on east side of rainforest	96	Most common 2 species were <i>Syngonium</i> podophyllum and <i>Scindapsus aureus</i> , sprawling species on forest floor.
El Verde landslide	1999	All plants, ≥0.5 m tall	60	Landslide occurred in 1988.
Bisley grid	1992	Woody plants ≥2.5 cm dbh	63	
Radiation Center	1988	All plants, including seedlings and sprouts	41	Sampling occurred during fruitfall and seedling germination time (Taylor et al. 1996).

Table 3-16. Sampling sites for species/individual counts, and number of species/1000 individuals.

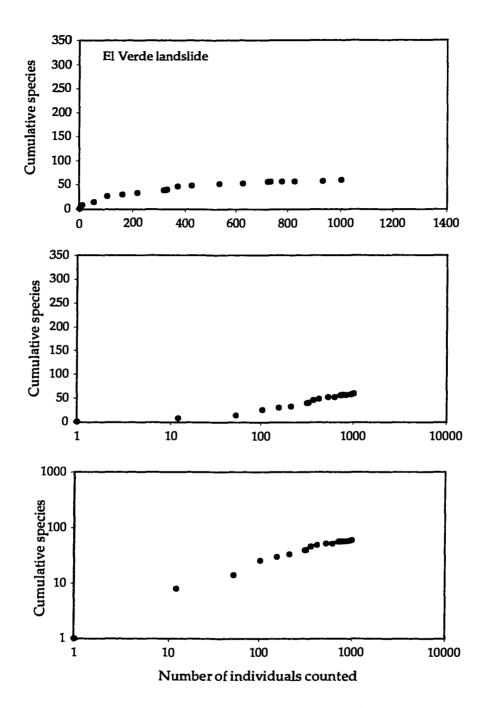


Figure 3-15. Cumulative plant species as a function of cumulative individuals >0.5 m tall counted on an 11-year-old landslide at El Verde site.

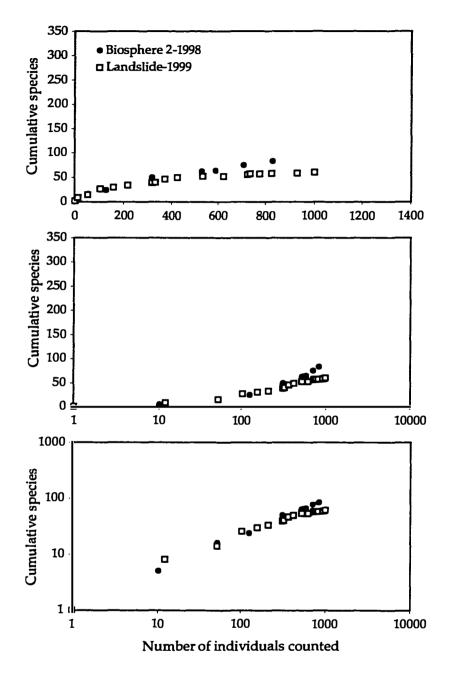


Figure 3-16. Cumulative plant species as a function of cumulative individuals counted in Biosphere 2 (solid circles) and on an 11-year-old landslide at El Verde (open squares).

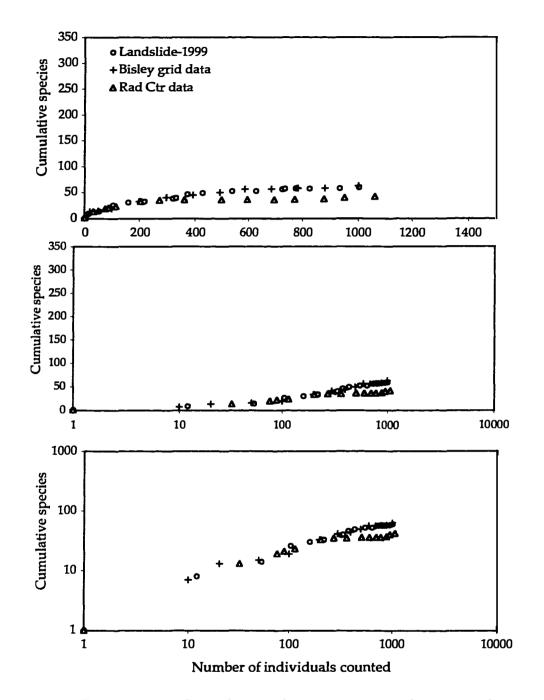


Figure 3-17. Cumulative plant species as a function of cumulative individuals counted on El Verde landslide (open circles), Radiation Center (open triangles), and Bisley grid (crosses).

In Figure 3-18 all sites are graphed. By 1998, the Biosphere 2 rainforest had approached the values of the landslide and Bisley rainforest.

Leaf area indices

Table 3-17 shows leaf area indices for a number of sites in the tabonuco forest, and for 2 dates in the Biosphere 2 rainforest. Though measurements for the Biosphere are sparse, they indicate an increase in leaf area through time, approaching or exceeding values for the tabonuco system. Data from the tabonuco forest also show an increase after disturbance for the Radiation Center and North Cut Center.

Seedling density

Seedling density was higher in the tabonuco than the Biosphere 2 rainforest, Table 3-18. The Biosphere data reflect the low rate of reproduction by seed for most of the species.

Percent of holes in leaves

Table 3-19 shows the extent of leaf surface herbivory, measured by the absence of leaf tissue. The percent of holes in leaves at El Verde ranged from over 30% to less than 5%, depending on the species of tree (Mercado 1970). The average number of leaf holes was 7% (Odum 1970b), compared to an average in Biosphere 2 of less than 1 in 1998 and less than 2 in 1993.

Litterfall and decomposition rates

The mean litterfall rate for the Biosphere 2 rainforest was slightly lower than the mean range of the tabonuco forest, shown on Table 3-20. However, the Biosphere lowland rainforest data include large woody branches from a treefall, which skews this value upward from the mean

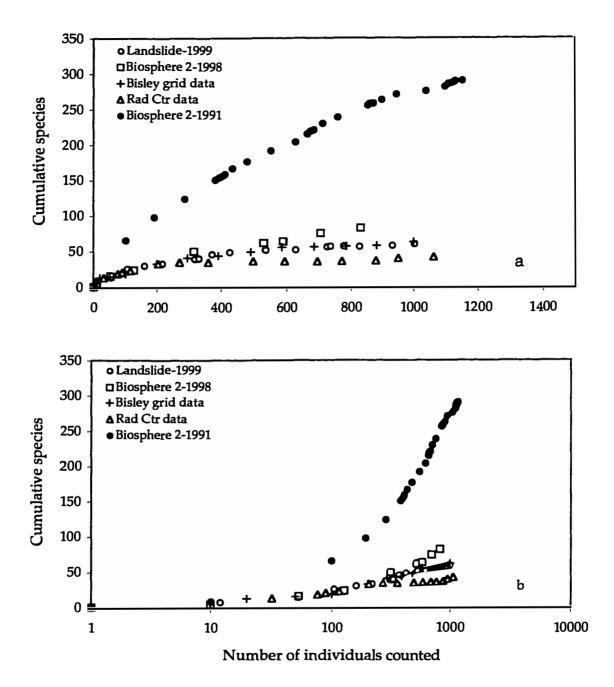


Figure 3-18. Cumulative plant species as a function of cumulative individuals counted on El Verde landslide, Radiation Center, Bisley grid, and Biosphere 2 rainforest for 1991 and 1998. a) linear scale; b) semi-log scale; c) log-log scale.

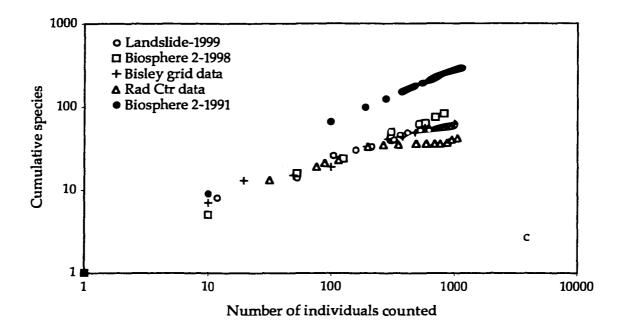


Figure 3-18 – continued.

·····		Leaf area/		
Location	Method	ground area		
Puerto Rico tabonuco forest				
El Verdeª	Direct harvest	6.4		
Ravine	Subset, n=2	2.1		
Slope	Subset, n=4	6.4		
Ridge	Subset, n=4	8.7		
El Verde [⊳]	Plumb line	6.6		
Slope	Subset, n=16	6.68		
Slope	Subset, n=16	5.60		
Ridge	Subset, n=16	8.60		
El Verde ^c	Plumb line	5.24		
Radiation Center	1 yr. after irradiation	3.16		
	3 yrs. after irradiation	5.51		
North Cut Center	1 yr. after cutting	4.03		
	3 yrs. After cutting	4.45		
Biosphere 2 rainforest				
Entire rainforest ^d	Extended pole, 1993	4.9		
Lowland rainforest	Extended pole, 1998	6.1		
^a Odum (1970).				
^b Jordan (1969).				
° Odum and Pigeon (1970). I-175.				
^d Odum et al. (1993).				

Table 3-17. Leaf-area indices of Puerto Rico tabonuco forest and Biosphere 2 rainforest. From Odum (1970), Jordan (1969), Odum and Pigeon (1970), and Odum et al. (1993).

Location	Seedlings per m ²	
Biosphere 2, Apr. 98	<0.1	
Puerto Ricoª		
Control Center	5.12	
Cut Center	11.2	
Radiation Ctr, Oct. 64	2.25	
Radiation Ctr, Dec. 64	3.95	
^a Odum (1970), D-139, for 20-1 m ⁻² plots in each center.		

Table 3-18. Seedling density in Biosphere 2 and tabonuco rainforest. Tabonuco forest data from Odum (1970).

Table 3-19. Percent of hole	s in leaves in Bios	phere 2 rainforest
and tabonuco forest trees.	Tabonuco forest d	lata from Odum (1970b).

-

^a Data were recorded as ranges, <1, 1-5, etc. The midpoint of the ranges was used to calculate the mean value per tree, where
<1 = 0.5, 1-5 = 2.5, etc.
^b Data from field notes by Odum et al. (1993) on file at Biosphere 2.
^c Data from Odum (1970b).

yearly value. The average disappearance rate of leaf material for the Biosphere was higher than that measured for tabonuco forest, Table 3-21. Nutrient content of leaves

Nutrient content of leaves for the two forests are given in Table 3-22. Values overlap for all elements except phosphorus, which was an order of magnitude higher in the Biosphere rainforest than the tabonuco. Both potassium and nitrogen in the leaves of the Biosphere were closer to the maximum value of the ranges given for tabonuco.

Carbon exchange

Soil respiration and canopy assimilation were both lower in the Biosphere 2 rainforest tabonuco forest, shown in Table 3-23. Carbon assimilation in the Biosphere (measured in summer) was 56 to 76 percent that of the tabonuco forest, and soil respiration was 40% that of the tabonuco forest.

Aboveground biomass density

The aboveground biomass density values for different sites in the tabonuco rainforest vary between 8 and 24.6 kg m⁻², Table 3-24. The Biosphere 2 rainforest was 4.2 kg m⁻² in July, 1993, and beyond that value later.

Overview Simulation Models

Two different overview simulation models were used to consider processes affecting diversity and production in these ecological systems. The first model simulates production, consumption and biomass, the resource basis for diversity. The second model relates plant diversity to resources,

Location	Rate, $g m^{-2} yr^{-1}$
Biosphere 2ª	
Bamboo belt	578 <u>+</u> 81
Terraces	466 <u>+</u> 70
Lowland	1317 <u>+</u> 283
W. Ginger belt	492 <u>+</u> 46
Varzea	641 <u>+</u> 89
All habitats, mean	723 <u>+</u> 158
Puerto Rico ^b	
Radiation Center	623
So. Control Ctr.	571
Secondary forest ^c	820 ± 100
Mature secondary forest ^d	970
Bisley and El Verde, mean	^e 856
^a Nelson (1999). Data from o	collections made monthly

Table 3-20. Litterfall rates in Biosphere 2 rainforest habitats and tabonuco forests. From Nelson (1999), Wiegert (1970), Cuevas et al. (1991), Lugo (1992), and Lodge (1991).

^a Nelson (1999). Data from collections made monthly Oct. '92 - Sept. 93, mean and standard error.

^b Data from Wiegert (1970), H-92, for litter collections made 2/64 - 12/64 extrapolated for one year.

- ^c Cuevas et al. (1991).
- ^d Lugo (1992).
- ^e Lodge (1991).

		Rate of disappearance	
Location	Material	g g ⁻¹ yr ⁻¹	Annual, g m ⁻²
Biosphere 2 ^a	Leucaena sp.	1.00	
-	Cecropia schreberiana	1.00	
	Musa	0.90	
	Average		1024
Puerto Rico ^b	·		
Radiation Center		0.850	705
So. Control Ctr.		0.519	265

Table 3-21. Decomposition rates of litter in Biosphere 2 rainforest and El Verde forest in Puerto Rico. From Nelson (1999) and Wiegert (1970).

^a Data from Nelson (1999).

^b Data from Wiegert (1970) p. H-95.

Table 3-22. Nutrient content of leaves in percent of dry weight in Biosphere 2 and El Verde forests. From Odum (1970a), Ovington (1970), Medina et al. (1981), and Lin et al. (1999).

	Puerto Rico ^{a,b,c}			Biosphere 2 ^d		
Element	minmax.			31-May-96	16-Jun-96	15-Jul-96
Nitrogen	1.606	0.61-3.37	1.04-2.02	3.47 <u>+</u> 0.33	3.68 <u>+</u> 0.29	3.52 <u>+</u> 0.29
Calcium	0.999	0.23-2.92		1.08 <u>+</u> 0.23	1.26 <u>+</u> 0.21	1.46 <u>+</u> 0.29
Magnesium	0.366	0.01-1.04		0.39 <u>+</u> 0.08	0.36 <u>+</u> 0.06	0.41 <u>+</u> 0.07
Potassium	1.035	0.24-2.96		2.62 <u>+</u> 0.22	2.90 <u>+</u> 0.71	2.93 <u>+</u> 0.70
Phosphorus	0.03	0.003-0.045	0.042-0.068	0.26 <u>±</u> 0.02	0.32 <u>+</u> 0.05	0.26 <u>+</u> 0.12

^a Data from Odum (1970a), I-236. Attributed to Ovington 1970.

^b Nutrient ranges - Ovington (1970), H-59.

^c Medina et al. (1981). Range of nutrient contents for individual leaves of selected tabonuco species.

^d Data from Lin et al. (1999). Samples made taken at different atmospheric CO₂ levels; values between dates are not significantly different at P<0.05. Leaves sampled from 5 most common species.

Table 3-23. Carbon exchange in Biosphere 2 (summer) and tabonuco rainforests. R_s = Soil respiration, A_c = Canopy assimilation. From Lin et al. (1999) and Odum (1970b).

		Total R _s	Total A _c
Location	Date & time	g C m ⁻² hr ⁻¹	g C m ⁻² hr ⁻¹
Biosphere 2	June-July 1996		
rainforesta	Day (13.5 hours)	-0.28	0.38
	Night (10.5 hours)	-0.267	
El Verde ^b	·		
Giant cylinder	1963	-0.68	0.68
Ten prisms		-	0.53

^a Lin et al. (1999).

^b Odum (1970b).

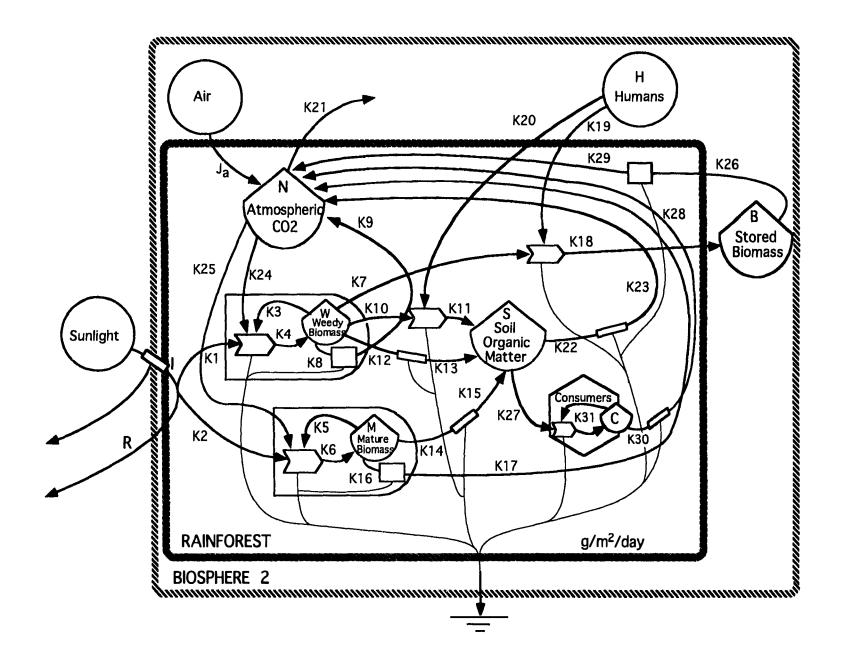
Table 3-24. Estimates of aboveground biomass density in Biosphere 2 and tabonuco forests. From Haberstock (1991), Bierner (1993), Ovington and Odum (1970), Scatena et al. (1993), and Lugo (1992).

Location	Biomass density, kg m ⁻²	
Biosphere 2		
1991ª	1.0	
1993 ^b	4.2	
Puerto Rico		
Primary forests:		
Radiation center ^c	24.6	
South Control Center ^c	14.5	
North Cut ^c	19.8	
Bisley ^d	22.6	
Secondary forests:		
Mature ^e	8.0	
Mahogany plantation ^e	12.5	
^a Haberstock (1991).		
^b Bierner (1993).		
C Orrington and Odum (107	0)	

^c Ovington and Odum (1970).

^d Scatena et al. (1993).

^e Lugo (1992).


mechanisms of interaction and management, where diversity is measured as the total number of species (species richness).

Production and Biomass Minimodel Description

Figure 3-19 is a model of relationships believed important to metabolism, a systems hypothesis. Included are the parts and processes of the Biosphere 2 rainforest that affected production and biomass. The outer window of the systems diagram shows the material isolation of Biosphere 2 from the earth as it was operated during 1991-1993. The inner window defines the rainforest biome as a separate system of the Biosphere 2 mesocosm, with air, humans, consumers and biomass moving across the biome boundaries. Labels on the flow pathways (K1, etc.) are the coefficients used to calculate the rates of flow between storages.

Main pathways in the model are described as follows: Approximately half of the energy from the sun reaching Biosphere 2 is reflected from the external glass or absorbed by the stainless steel spaceframe structure, represented by an arrow from the sunlight pathway deflected from the outer window. Most of the sunlight entering the glass is used by the production process, which has been split between two producer groups of different physiological types, weedy plants (generally eutrophic vines and herbaceous perennials) and plants of a more mature forest. The flow pathway to the weedy plants is labeled K1 and the flow K2 to mature plants. The sunlight which is not used by the production process (R) is re-radiated out of the rainforest. Figure 3-19. Systems diagram for simulating production and biomass in Biosphere 2 rainforest showing storages, pathway coefficients and equations.

I = Im+Ir*SIN(.017*T) R = I/(1+K1*N*W+K2*N*M) DW = K4*N*R*W-K3*N*R*W-K7*W*H-K10*W*H-K12*W-K8*W DM = K6*N*R*M-K5*N*R*M-K14*M-K16*M DN = K9*W+K17*M+K23*S+K28*C+Ja+K29*B-K25*N*R*M-K24*N*R*W-K21*N DS = K11*H*W+K13*W+K15*M-K27*S*C-K22*S DB = K18*H*W-K26*B DC = K31*S*C-K30*C Pg = K4*R*N*W+K6*R*N*M Rp = K3*R*N*W+K6*R*N*M+K8*W+K16*M+K22*S+K27*S*CPR = Pg/Rp

The 2 producer units (bullet-shaped symbols) receive flows of sunlight, atmospheric CO_2 (K24 and K25), and feedback from the living biomass (K3 and K5). The 3 flows interact with producers in the process of photosynthesis. The pathway K4 is the gross productivity of weedy biomass; K6 the gross productivity of mature biomass.

The respiratory functions from plant biomass (K8 and K16) show biomass conversion to carbon dioxide by microconsumers (boxes along the pathway), which flows (K9 and K17) into the atmospheric CO_2 storage, N. Pathways K12 and K14 leading from the plant biomass storage tanks represent natural litterfall feeding into the soil organic matter storage, and K10 and K7 from the weedy biomass storage are for the litterfall created by humans through pruning, passing into either the soil organic matter storage or stored as dried biomass in the basement of the rainforest biome. Though dried, the stored organic matter still had a slow respiration rate, hence the pathway K26 from stored biomass (B) to the atmospheric CO, storage (N).

The soil organic matter is consumed by detritivores such as earthworms and arthropods on one pathway (K27) where a storage of macroconsumer biomass (C) accumulates. The feedback from macroconsumer storage to the production process (K31) works to increase macroconsumer production. Some of the organic biomass consumed is returned to the atmosphere along the respiration pathway (K30 to K28). On another pathway (K22) soil organic matter is decomposed by microconsumers (represented by a rectangle along the pathway) and returned to atmospheric CO_2 along another respiration pathway (K23). The calibration values shown in Figure 3-20 were estimated by extrapolating storages for the steady state condition that could be expected in the Biosphere 2 rainforest, projected to occur after 20 years of similar operation (year 2011). Many of the pathway coefficients were calculated using rates measured inside the Biosphere 2 rainforest. An EXCEL spreadsheet, Table C-1, shows the initial calibration values for storages and rates and details the values used in the calibration.

A minimodel (B2METAB) was written using QUICKBASIC, Appendix C-2, for simulation of the production and biomass model described above. Baseline simulation runs are presented in the text, and other runs where conditions are varied are in Appendix C.

<u>Results of Simulating the Production and Biomass Minimodel</u>

Baseline simulations of the minimodel for 10 and 100 years were set with initial storage values that were close to the Biosphere 2 rainforest values at the start of the first closure in September 1991. The 10-year simulation (Figure 3-21) shows atmospheric CO_2 , soil organic matter and consumer storages declining at first with a rapid increase in plant biomass. Initially, the net ecosystem production (Pr = Pg/Rs) was greater than 1, which reflects the initial fast growth of primary producers. Over 100 years, shown in Figure 3-22, the soil organic matter increases, and as it reaches its maximum storage value the system is able to support more macroconsumers, which increase in a pulse. This pattern is repeated, showing the switch to a heterotrophic system (Pr<1) when consumers pulse, CO2 increases, and the soil organic matter decreases. The amplitude of the pulses decreases over

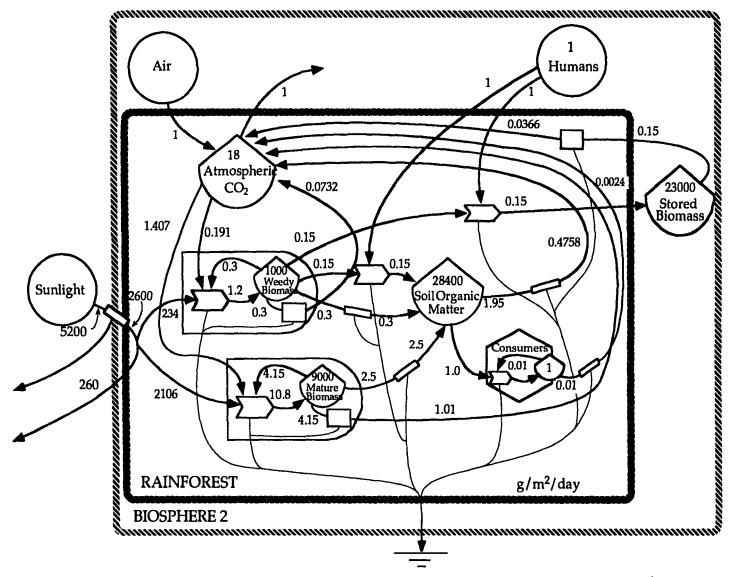


Figure 3-20. Systems diagram for simulating production and biomass in Biosphere 2 rainforest showing calibration values projected for steady state after 20 years of operation.

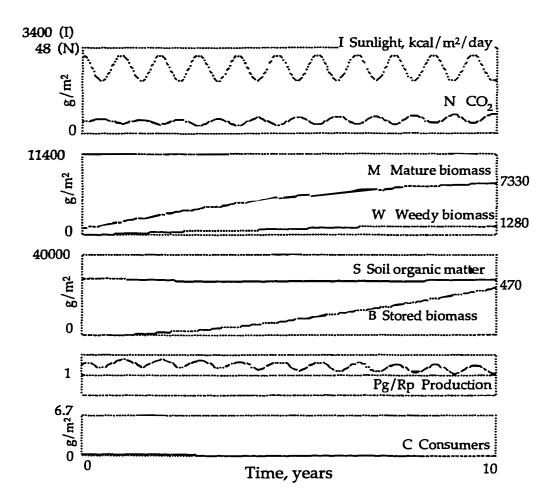


Figure 3-21. Ten-year simulation of production and biomass minimodel, B2METAB in Figure 3-19. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

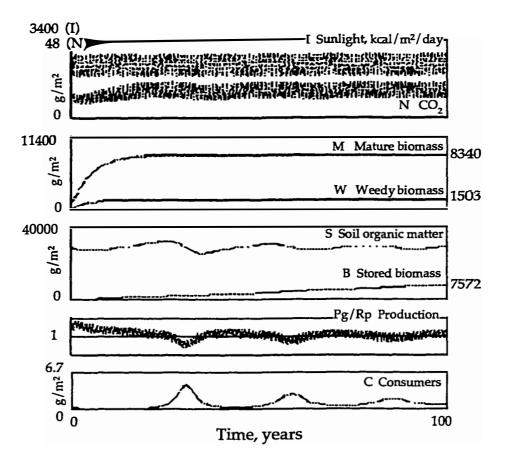


Figure 3-22. One-hundred-year baseline simulation of production and biomass in the minimodel B2METAB in Figure 3-19. Final values for plant biomassare on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

time as macroconsumers assimilate plant biomass and build a storage. The system sustains a stable population of macroconsumers over time (centuries) where the mean value of Pr is 1. All storages move towards a stable value with the exception of stored biomass, which continues to increase due to a continuous harvest.

The following alterations to the baseline simulation, such as increased light or reduced pruning, demonstrate the effects of changes on the developing ecosystem. Figures 3-23 and 3-24 compare the effects of each alteration of the system on biomass or production.

Increased sunlight (I = 3120)

When sunlight entering the Biosphere was increased by 20% biomass storages (B, M, W, C, S) built more quickly than at the lower light levels (Figure 3-23), amplitudes of the consumer pulses were higher, and stable values of net production, soil organic matter, and macroconsumer storage were approached more quickly than with less light (Figure 3-24). The mean value of carbon dioxide in the air was lower, and the sum of plant biomass storages after 100 years was greater than with lower light.

No weedy biomass (W=0)

When the minimodel is started and run without weedy biomass, the mature plant species biomass increases faster and has a higher steady-state value than the baseline simulation value. Total plant biomass accumulation is less since there are neither weedy plants nor stored weedy biomass. Consumer and soil organic matter storages grow more slowly, and consumer pulses are smaller. Though the effect of no weedy species is to increase

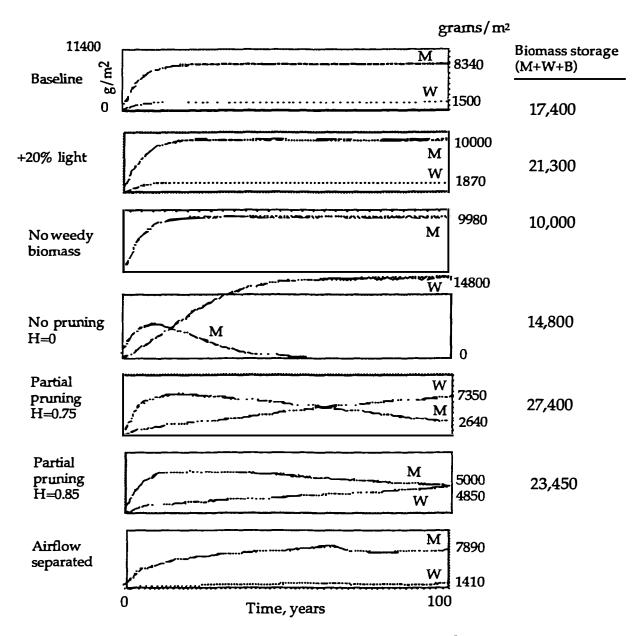


Figure 3-23. Comparison of simulations of biomass by the model in Figure 3-19 showing effects of light, elimination of weedy biomass, limited pruning, and altered airflow on mature and weedy plant biomass. Values for biomass at 100 years are given on the right side of the graphs in grams of dry biomass per square meter. Scales are the same for each box. M=Mature plants, W=Weedy plants.

Production-Respiration Ratio (Pr)

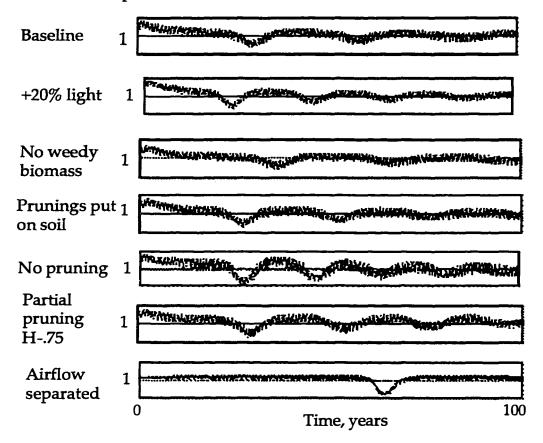


Figure 3-24. Comparison of effects of light, elimination of weedy biomass, limited pruning, and altered airflow on production-respiration ratio, Pg/Rp, from simulations of the model B2METAB in Figure 3-19. Scales are the same for each box, with the center line = 1.

mature species biomass, total ecosystem development is slowed and total storages are less after 100 years.

All pruned biomass added to soil (K18*H*W added to DS, B removed)

With diversion of the pruned biomass from dry storage to the soil (additional litterfall), consumer storages build more rapidly and are larger. Biomass storages and CO_2 are virtually unchanged.

No removal of weedy biomass (H = 0)

Pruning of weedy biomass during the start-up of Biosphere 2 was thought to be important for the survival of some of the key mature species by releasing them from light competition with the weedy species. The simulation of the system with no pruning shows the increased growth of weedy species and eventual total decline of mature species. A larger plant biomass storage occurs with only weedy species than with only mature species (Figure 3-23), since the weedy plant type has the higher ratio of Pg/Rp. However, the runs with both weedy and mature plants with weedy plant pruning show the largest combined plant biomass storage over time. The rapid increase of plant biomass when no pruning occurs promotes much more rapid storage and cycling of soil organic matter and consumer pulsing than the baseline run.

Whether weedy plant biomass could reach this amount with climbers or herbaceous perennial growth forms depends on the ability of vines to use the superstructure of Biosphere 2 to overgrow other species. To achieve the biomass storage without well-developed vertical structure is unlikely. Inside Biosphere 2 the spaceframe structure was used by climbers for support, and to increase the volume in which they were able to produce biomass.

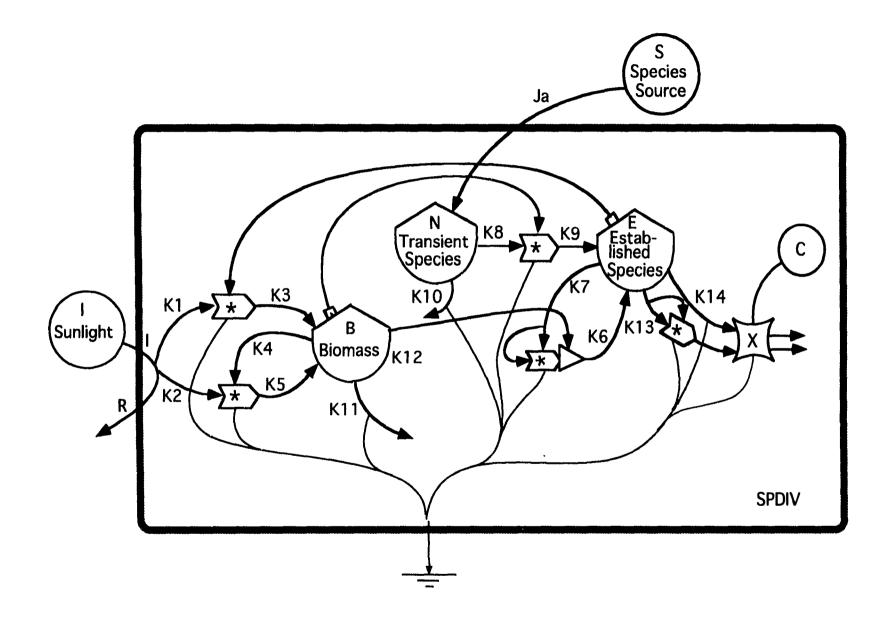
Reduction of human effort in removing weedy biomass (H = .75)

A reduction of human effort in removing weedy species was simulated to see whether the amount of pruning would change total plant biomass production – the sum of live plant biomass and dried, stored biomass – and lower the atmospheric CO_2 concentration. Figure 3-23 shows that combined plant biomass storages would be increased over the baseline values and CO_2 reduced when H is reduced. Weedy biomass increases and stored biomass increases, though mature biomass decreases, with lower CO_2 compared with the baseline simulations where H=1. However, below a certain level of human intervention, mature species will be out-competed by the weeds. No airflow between biomes (Ja = 0 and K21 = 0)

The atmosphere of the Biosphere 2 rainforest connected to the atmosphere of the other biomes within the structure. Without airflow between the different areas, atmospheric CO_2 level increased, plant growth increased, soil organic matter increased, and consumers increased. The Pr ratio of the system was greater than one until the pulse of consumers occurred, when it switched to a heterotrophic system (Figure 3-24). After consumers used up the organic matter resource, they crashed and the Pr ratio of the system returned to the pre-pulse condition.

Production and Diversity Minimodel Description

That diversity and structure of an ecosystem compete for energy is especially evident during the early stages of ecosystem development. In a system with limited resources, amount and quality of energy may determine the extent to which diversity, structure and their connections can be supported.


A model SPDIV was developed to represent the main factors supporting biodiversity in the rainforest study areas (Figure 3-25). The number of species at any time is the balance between species introduced and those becoming extinct. Species are in two categories, those just planted (N) but not yet interacting with the surrounding ecosystem and those which have become established (E). The latter species cause additional productivity in proportion to their number by drawing energy from the main plant biomass in proportion to the interactions of species (E^2).

The main pathways in the model are as follows: Sunlight and species are the two outside sources that pass from the outside to inside the boundary of the Biosphere structure. About half of the ambient sunlight (I) enters the rainforest, most of it used for the production process with a small re-radiated portion labeled R. The production process is shown with 2 pathways. The flow of sunlight labeled K1 interacts with the diversity of established species (an interaction of flow K1 and force from E), and the flow labeled K2 interacts with a flow which is fed back from biomass, K4, in the process of photosynthesis. The result of those interactions is the gross productivity of the system, pathways K3 and K5. The 2 gross productivity pathways flow into a common biomass tank, with the respiratory costs and consumer losses associated with maintaining the system shown as a drain from biomass labeled K11.

Major plantings of new species to the Biosphere 2 rainforest occurred twice, one with the initial planting of about 300 species during 1990-1991, and

Figure 3-25. Systems diagram for simulating diversity and production in Biosphere 2 rainforest showing storages, pathway coefficients and equations.

R = I/(1+K1*E+K2*B) DB = K3*E*R+K5*B*R-K4*B*R-K11*B-K12*E*E*B DE = K9*N*B-K6*E-K13*E*E*X-K14*E*X DN = Ja-K10*N-K8*N*BIF E>C THEN X = 1 IF E<C THEN X = 0

another with about 92 species (50 of them were new to the system) after the first closure period, 1993-1994. The pathway of species introductions is labeled Ja. The value of Ja was 0 in the first two years after the initial planting. After planting, species were considered transient since they lacked connections and interactions which normally develop with surrounding organisms and environment as an ecosystem matures. In proportion to organic habitat (B) some of the planted species developed those connections and interactions and became established. The transfer of species is shown as pathway K8 which interacts with a force from biomass storage and enters the established species tank as flow K9. The number of species becoming established depends on the biomass (representing suitable habitat and soils). Some species became extinct, as shown with the pathway K10 draining the transient species storage.

When a transient species (N) becomes established (E), it has additional opportunities for extinction and maintenance. As part of the species assemblage, it consumes energy through competitive interactions with other species, through the work of strategies that prevent competition, or through other interactions with the environment. Some established species become extinct, shown as linear pathway K13 and quadratic K14 that represents effect of competition from the established species tank. The energy used to maintain the species information flows from biomass, K12, which interacts with established species. Given the time and opportunity for evolution, K6 is the pathway along which new species would be added (K6 > K7).

In microcosms that have been sealed for long periods without species being added, life appears to persist. Examples were not found where last species or several species went extinct. Apparently some species are capable of

operating an ecosystem with low diversity. The model has a provision so that extinctions do not continue once the species number is less than the threshold C. This is diagrammed as a switch X. The switch is set to 1 when the number of established species is greater than C, and to zero when the number of established species is less than C, preventing further extinctions while still using energy from biomass storage for maintenance of extant species.

The calibration values shown in Figure 3-26 were made from estimations of biomass from measurements made in Biosphere 2, productivity rates measured for the El Verde rainforest (adjusted at one-third of that value for the system inside Biosphere 2), and extinction rates experienced in the Biosphere 2 rainforest after the first 5 years of operation. Details of the calculations are presented as notes to the EXCEL spreadsheet used to make the calculations, Table D-1.

A minimodel was written using QUICKBASIC, Table D-2, for simulation of the production and diversity model described above.

Results of Simulating the Production and Diversity Minimodel

A baseline simulation of the minimodel was run for both 10 and 100 years, starting with values close the 1991 values of Biosphere 2 (biomass = 1000 grams dry weight per square meter, transient species = 300, established species = 60). Figure 3-27 shows that within the first 5 years, the transient species have all either become extinct or become established species using energy from the system to support the additional information. As the total

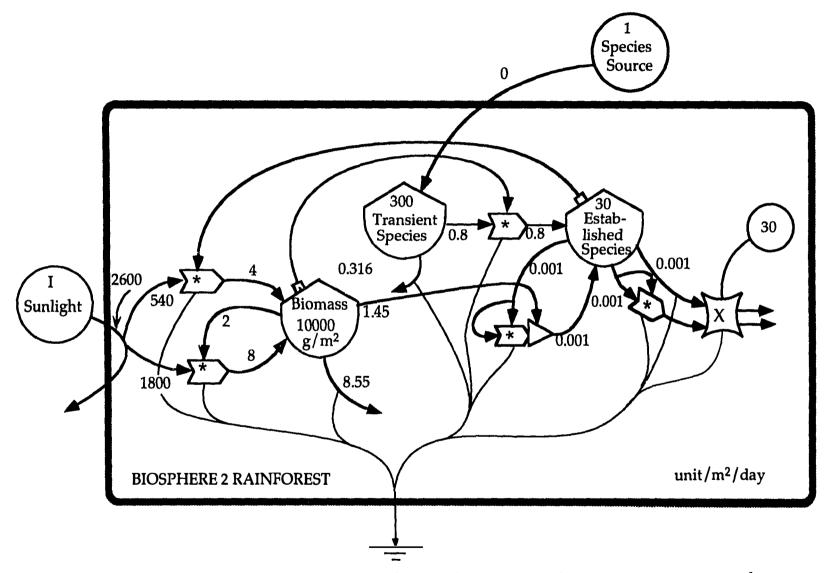


Figure 3-26. Systems diagram for simulating production and diversity in Biosphere 2 rainforest showing calibration values for storages and flows.

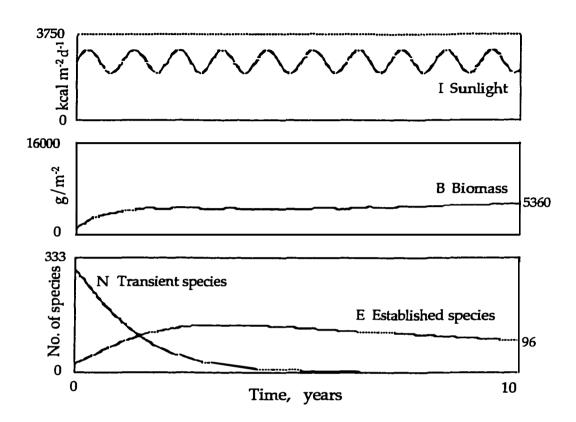


Figure 3-27. Baseline simulation of diversity and production minimodel, SPDIV, in Figure 3-25 for Biosphere 2 rainforest for 10 years. Final values for plant biomass and species are on the right side of their graphs. $g/m^2 = grams$ of dry biomass per square meter.

number of species in the system (transient plus established) declines during the first year, the biomass increases. As the number of species in the system reaches a relatively stable level after about 3 years, the biomass also approaches a stable value. When the established species begin to decline around year 5 due to interactions with other species and factors other than the amount of energy available, biomass increases, using the energy once used for species support for biomass production. The 100 year simulation, Figure 3-28, shows the continual increase of biomass as diversity declines. When there are only 10 species remaining, the switch in the model prevents further decline and biomass also remains stable, dividing energy between information support and biomass production.

<u>Continuous addition of species (5 or 20 per year)</u>

The simulation results show the effects of continuous additions of species to the system over 10 and 100 years. The 10 year simulation shows 5 and 20 species per year added to the system (Ja=5/365 and Ja=20/365), resulting in higher diversity after 10 years of both transient and established species and lower biomass as the diversity increases. The 100 year simulation with additions of 20 species per year shows higher final diversity than the baseline – 25 transient species rather than none, 150 established species rather than 10; and lower biomass, 4290 g/m² rather than 26000.

One-time addition of many species

A simulation was run with the addition of 50 new species after the first 2 years of operating Biosphere 2. After 10 years, the effect is to increase the number of established species to 112 above the baseline value of 96, with accompanying decrease of biomass from 5364 in the baseline run to 4920 with

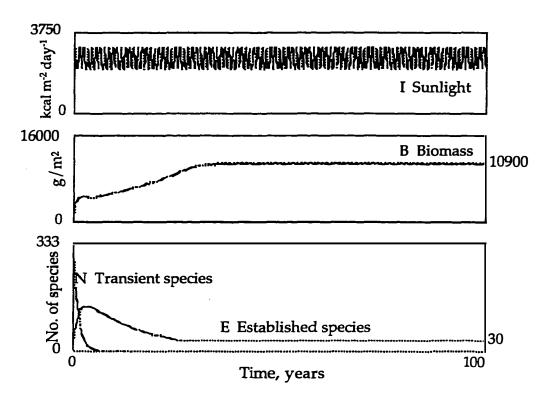


Figure 3-28. Baseline simulation of diversity and production minimodel SPDIV in Figure 3-25 for Biosphere 2 rainforest for 100 years. Final values for plant biomass and number of species are on the right side of their graphs. $g/m^2 = grams$ of dry biomass per square meter.

species additions. Over 100 years, the addition of 50 species in the second year had no apparent effect on biomass or number of species in the system.

Emergy Evaluation of Rainforest in Biosphere 2

The design and construction phase of Biosphere 2 lasted from 1985 until the first closure in September 1991. The costs accumulated during that phase were assembled so that the total could be annualized over the planned lifespan of the Biosphere. Figure 3-29 shows a summary diagram of inputs to the Biosphere 2 rainforest used in evaluating the emergy of system start-up. The start-up costs include costs of construction, intellectual capital invested in the design of structures and ecosystems, the stored emergy of soil and biotic collections made from both captive and wild sources, and the direct input of sun to plants and of wind for the evaporative cooling tower process used after the mechanical systems were in operation. Table 3-25 shows the values for each item, with notes explaining the origin of the values. The emergy value of design and construction, which included all goods and services of building and designing the structure, dwarfs that of the collection of ecosystem components during the start-up phase.

The emergy output of the Biosphere 2 system is information and tourism. Information is in the form of published scientific results, media coverage, web page usage, and the undergraduate program through Columbia University that has been in place since 1997. Tourism includes the visitation by a certain number of people yearly to see the Biosphere and learn about how the earth works.

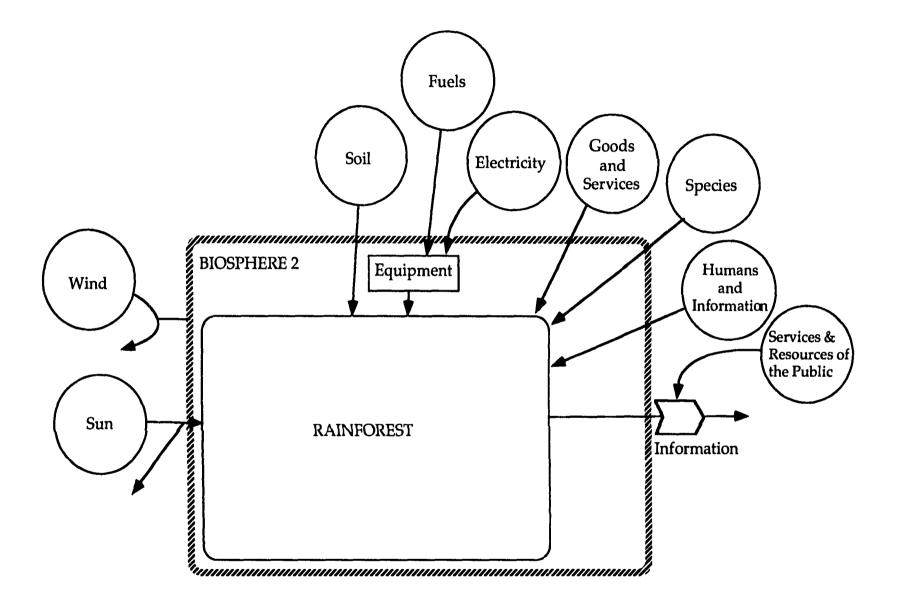


Figure 3-29. Emergy analysis summary diagram of Biosphere 2 rainforest.

Note	Item	Data & Units	Solar Transformity	Solar EMergy E13 sej	EM\$va lue
Enviro	nmental Sources				Iuc
1	Sun	5.66 E12 J	1 sej/J	0.566	3.45
2	Wind	1.75 E14 J	1.5 E3 sej/J	26,300	160,365
Ecosys	tern Components				
3	Plants at closure	4.18 E10 J	1.63 E7 sej/J	68,134	415,451
4	Plant collection	6.0 E5 \$	1.64 E12 sej/\$	98,400	600,000
5	Soil, mineral fraction	4.78 E9 g	1.0 E9 sej/g	47,762	291,231
6	Soil, organic fraction	1.32 E12 J	7.4 E4 sej/J	9,768	59,56 1
Design	, construction and o	perations			
7	Design and construction	22.5 E6 \$	1.64 E12 sej/\$	3,690,000	22,500,000
8	Electricity	5.4 E13J	2.0 E5	1,080,000	6,585,366

Table 3-25.	Accumulated emergy inputs to Biosphere 2 rainforest for start-up
	n prior to material closure in 1991.

Rainforest is approx. 15% (1900 $m^2/12,766 m^2$) of the total surface area and 17% (34,690 $m^3/204,000 m^3$) of the total volume of Biosphere 2. Transformity values from Odum (1996).

Environmental Sources

1 <u>Sun</u>

Average outside insolation for Tucson is $5200 \text{ kcal/m}^2/\text{day}$ (Romer 1985). Approximately 50% of the outside light enters the Biosphere and approximately 50% of the sun was intercepted by plant biomass. The rainforest biome is 1900 m². Planting began about 1.5 years before the 1991 closure.

 $(5200 \text{ kcal/m}^2/\text{day})(.5)(.5))(1900 \text{ m}^2)(1.5 \text{ years})(365 \text{ days/yr})(4184 \text{ J/kcal}) = 5.66 \text{ E12 J}$

2 <u>Wind</u>

Wind contributed 3.37 E14 J/yr of kinetic energy for evaporative water cooling external to the Biosphere (SBV data cited in Engel 1994). Cooling began in Sept. 1989. Wind energy assumed to have been contributed in proportion to volume. Solar transformity for wind from Odum (1996).

(3.37 E14 J/yr)(2 yrs)(.26) = 1.75 E14 J

Table 3-25--continued.

Notes

Ecosystem Components

3 Rainforest plants

Biomass at closure was approximately 2500 kg dry weight (Bierner (1994) estimate for July, 1991).

 $(2500 \text{ kg}^{1000 \text{ g/kg}})(4 \text{ kcal/gm})(4184 \text{ J/kcal}) = 4.18 \text{ E10 J}$

4 Plant collection

Emergy/money ratio for 1986-1991. The cost of collections, including labor, transportation, and permits, was approximately \$600,000. Average \$/sej ratio for the years 1987-1991 is 1.64 E12 sej/\$ (Odum 1996).

(\$6.0 E5)(1.64 E12 sej/\$) = 9.84 E17 sej

5 Soil, organic fraction.

Transformity of topsoil organic matter = 7.4 E4 sej/J (Odum 1996). Average organic matter content of topsoil is 3% (Scott 1999). Total amount of topsoil in rainforest is 1766 cubic meters. Avg. bulk density of topsoil = 1.1 g/cm^3 .

 $(.03)(1766 \text{ E6 cm}^3)(1.1 \text{ g/cm}^3)(5.4 \text{ kcal/g})(4184 \text{ J/kcal}) = 1.32 \text{ E12 J}$

6 Soil. mineral fraction

Solar transformity for world sedimentary cycle is 1.0 E9 sej/g (Odum 1996). Bulk density for subsoil is 1.43 g/cm³ and for topsoil = 1.1 g/cm^3 (Scott 1999). Volume of subsoil is 3340 cubic meters and for topsoil is 1766 cubic meters (Scarborough 1994). Mineral fraction of topsoil is 97%.

 $(3340 \text{ E6 cm}^3)(1.43 \text{ g/cm}^3) + (0.97)(1.1 \text{ g/cm}^3)(1766 \text{ E6 cm}^3) = 4.78 \text{ E9 g}$

Design, construction and operations

8 Overall design, construction and operation prior to 1991 closure

Total cost for Biosphere 2 of design, construction and operation prior to 1991 closure was \$150,000,000 (SBV, personal communication). The rainforest surface area is approx. 15% of the total Biosphere 2 area. Average \$/sej ratio for the years 1987-1991 is 1.64 E12 sej/\$ (Odum 1996).

(\$150 E6)(.15)(1.64 E12 sej/\$) = 3.69 E19 sej

10 Electricity

Electrical consumption for Biosphere 2 is approximately 5 E6 kWh/yr. The energy center was supporting the Biosphere for 3 years prior to closure in 1991.

(5 E6 kWh/yr)(3.6E6 J/kWh)(3 yrs) = 5.4 E13 J

A comparison of emergy in the developing rainforest in Biosphere 2, including only start-up costs incurred before September 1991, and a 25 year old natural tabonuco forest are shown in Table 3-26.

.

.

Table 3-26. C	Comparison of emergy in developing rainforest in Biosphere 2 in
1991 and 25 y	vear old natural tabonuco forest.

Note	Location	Emergy/ha	Em\$*/ha	\$ cost/ha
1	Biosphere 2	2.64 E20	230,000,000	(147,400,000)
2	Tabonuco forest	1.15 E17	100,152	4050

^aEmergy/(1.15 E12 1995 sej/\$)

<u>Notes</u>

•

- See Table 3-27.
 Odum et al. (1999).

CHAPTER 4 DISCUSSION

Understanding the unusual process of ecological succession with declining species in Biosphere 2 was studied considering the species becoming established, species-individual relationships, models of mechanisms, and comparisons with early succession in the rainforest at El Verde, Puerto Rico.

Succession with Declining Diversity

The self-organization of a rainforest ecosystem in Biosphere 2 was the combination of human efforts to plant a rainforest and patterns of selforganization by the developing ecosystem. The process resembled previous efforts to establish small aquatic ecosystems in microcosms by seeding with many more species than could be supported, letting the system develop a compatible set by processes of reinforcement, selection, and extinction.

Multiple seeding of more species than could be supported provided a way to find the carrying capacity for diversity and its limits. The biota of the Biosphere 2 rainforest was assembled at the start in functional groups. In the case of the plants, species were chosen for the following attributes: early shade producers, food web species support, potential foods or medicines, evolutionary interest, shade-tolerant canopy trees, and others. In the case of animals, functional groups included the following: food web complexity, detritivores, pollinators, and prey items. Opportunities for a unique ecosystem existed as a result of the assembly of plants and animals from different regions of the world, and the packing of species into an area that in

nature would not normally support such high diversity. In the Biosphere 2 rainforest, the rate of species decline was expected to decrease as food webs became organized and vertical forest structure matured. For example, species that could not survive the open canopy of the first year of plant succession may have survived during later succession, when a more continuous canopy and more consistent humidity were established. The vascular epiphytes were an example.

Effect of First Arrivals

First arrivals, or colonizing species, in natural system may have either positive, negative, or neutral net effect on later species colonization (Connell et al. 1987). Walker et al. (1996) noted that first arrival on landslides may slow the rate of plant succession, largely due to effects of shading. This was noted especially for a landslide-colonizing fern that formed dense thickets in highlight areas.

Comparison of survival data over the two planting dates in the Biosphere 2 rainforest suggests that individuals planted earlier (1990-1991) had a survival advantage over those planted later (1993-1994). Between 1993 and 1996, 75% of the individuals from the second group (total=339) died, whereas only 39% of the first group individuals (total=872) died; and about 60% of the species from the second group (total=92) and 30% of the species from the first group (total=192) went extinct over the same period. An exception was epiphytes, where the second group had the higher survival rate. Mueller-Dombois and Ellenberg (1974) have noted that vascular epiphytes are usually the last plant growth form to establish in a tropical rainforest, presumably due to their need for structure providing moist microsites (Kohyama 1997).

Limited Access to Genes

Most systems do lose species, but they are constantly replaced by other species. Though the number of species may appear constant, the composition of species may change.

With succession in a closed system, the species will not be replaced by species from outside the present system. Unless there are species with unusual plasticity of genetic change, the organization of the species that are in place will not be improved by addition of genetic information above the microorganism scale. Selection by competition will eliminate species but there will be no new species unless planned and implemented by managers. Without seeding, plant diversity in the Biosphere 2 rainforest can either decrease or stay the same.

Figure 3-5 showed the decline in species. The 3 survey results over a 5 year period showed plant species decreasing through time as a log function of cumulative individual plant loss. A straight line in a semi-log graph means that the rate of loss was proportional to the number remaining, a linear rate of extinction. This suggests that the species losses at first did not involve many interactions or organization.

Declining Diversity and a Species Plateau

As expected and as shown in Figures 3- 5 and Tables A-1 and A-2, the diversity in the Biosphere 2 rainforest declined from the initial condition in which an excess of plant species was introduced. Many of the species were not

adapted to the unique conditions of soil (amended desert grassland soil), atmosphere (elevated CO_2 and lowered O_2), and rainwater composition (varying salinity and nutrients). Also, after time, the Biosphere supported few animals to aid pollination and seeding. Although no example of an isolated terrestrial mesocosm was found to suggest the species diversity that could prevail, studies of sealed aquatic microcosms showed that a few species were supported for years in small volumes (Folsome and Hanson 1986). Some models of species would predict no species surviving without some introductions, but the microcosm studies suggest that there are species adapted to survive indefinitely in low diversity situations. Figure 3-5 shows the rate of extinction is slowing down. The central question is when would the species decline stop and how many species would be sustained.

Imagine if, as in recent management of the Biosphere 2 rainforest, no species were added. Where would extinction stop? Hubbell (1979) described single species dominance when there is no addition of species. Experience with sealed microcosms over long periods of time does not reveal cases where life disappeared.

After initial organization to maximize energy intake from its limited gene pool, the Biosphere 2 system can go no further in addition of plant species without additional seeding. Evolution among the vascular plants may not occur at all over the 100-year life of the Biosphere. However, evolution could take place in microorganisms, affecting the organization and feedbacks of the overall ecosystem. For example, two previously undescribed species were described from the Biosphere, an amoeba in the ocean and a nematode in the agriculture area. It is possible that these species existed elsewhere before their discovery in Biosphere 2, but were able to achieve

noticeable densities inside the Biosphere in the unusual conditions there that had not been seen before.

For the plants, however, further self-organization required building forest structure with fewer species and limited reproduction. Growth in the Biosphere 2 rainforest may build similar age structure to El Verde, thus the number of individuals within similar areas may be similar. Trees in the Biosphere 2 rainforest will continue to close the canopy, shading the plants beneath. The decline in species may be the result of both senescence and failure to reproduce.

Figure 4-1 compares the patterns for species and individuals at the start in 1991 with the condition in 1998 (Figures 3-3 and 3-4). By 1998 the number of individuals from the original plantings of 1890 and 339 species had decreased, but new individuals had developed mostly from vegetative propagation rather than seeds. Defining an individual as a new stem or stem cluster, there were about 90 species per 1000 individuals based on the 1998 counts. As Figure 4-1 shows, the self-organizational process had a typical species-individual curve made up of original plants and the asexually developed plants.

An analysis follows of the species remaining to estimate the possible long term species diversity that could be sustained under the 1998 conditions where the animals needed for normal propagation were absent.

Extrapolation of Species Composition According to Reproduction

An examination of species growing in the rainforest in 1998 showed some species reproducing, some not reproducing, and many spreading clonally. Based on the survey in Table B-2, the list of plant species was

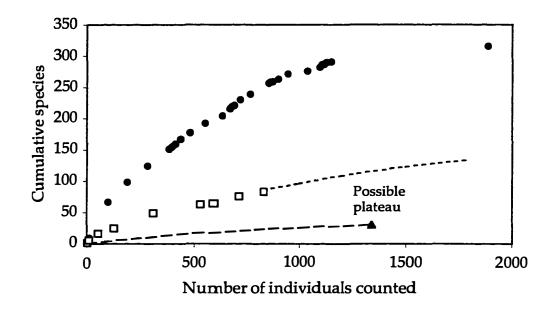


Figure 4-1. Extrapolation of number of plants in El Verde rainforest to a possible diversity plateau (solid triangle) for the Biosphere 2 rainforest. Measured data from Biosphere 2 are shown with solid circles (1991) and open squares (1998).

modified to predict species that might be part of the eventual composition if there is little further seeding from outside and all the non-reproducers and short-lived species have lived and died.

Some of the species expected to live for 100 years are the trees that form the canopy layer. Those that do not senesce earlier will be part of the later flora. *Cecropia*, for example, is part of the current canopy but will eventually either be overshaded by other species or, since it is a short-lived species, it will die. Additionally, several *Cecropia* treefalls have occurred during the first 3 years of forest development, but the fallen trees sprouted. If sprouting occurs, *Cecropia* will persist as part of the flora. Other species, such as *Heliconia* and *Strelitzia*, may flower yet not set seed, propagating by extending underground organs which sprout culms a distance from the original plant. The extrapolated composition, Table 4-1, shows a potential species pool of 30 species for the 0.19 ha area. See the species-individual curve (Figure 4-1) for an extrapolation of the number of individual plants.

Simulation of Species Decline

A simulation of the diversity decline was made with the model in Figure 3-25 with a one-time addition of 50 species after 2 years of development. The model was run for 10 years (Figure D-3). After 10 years, diversity was increased over the baseline simulation with no additions. The addition had no effect on diversity at 100 years. A simulation with yearly additions of 20 species, Figure C-2, resulted in 175 species at 100 years compared to the minimum species number of 30 established when no additions were made. Extrapolations made from the actual measurements

		Growth	Reproductive mode	
Family	Species	form	in Biosphere 2	
Amaryllidaceae	Eucharis grandiflora	H	Clonal	
гасеае	Colocasia sp.	н	Clonal	
	Dieffenbachia sp.	Н	Clonal	
	Monstera deliciosa	С	Clonal	
	Scindapsus aureus	С	Clonal	
	Zamioculcas zamiifolia	Н	Seed	
Bignoniaceae	Spathodea campanulata	Т	Long-lived	
Bombacaceae	Ceiba pentandra	Т	Will survive if long-lived	
	Pachira aquatica	Т	Seed, needs high light to	
	1		reproduce	
Cecropiaceae	Cecropia schreberiana	Т	Sprouting	
Cyclanthaceae	Carludovica palmata	G	Seed	
Euphorbiaceae	Hura crepitans	Т	Long-lived	
Heliconiaceae	Heliconia sp.	G	Clonal	
Malvaceae	Hibiscus rosa-sinensis	S	Clonal	
Moraceae	Ficus pumila	С	Long-lived	
Musaceae	Musa textilis	G	Clonal	
	Musa paradisiaca	G	Clonal	
Phytolaccaceae	Phytolacca dioica	Т	Long-lived	
Poaceae	Bambusa multiplex	А	Clonal	
	Bambusa tuldoides	Α	Clonal	
Rubiaceae	Coffea arabica	S	Seed	
Solanaceae	Brugmansia suaveolens	S	Clonal, sprouts	
Strelitziaceae	Phenakospermum guyanense	G	Clonal	
	Strelitzia reginae	G	Clonal	

Table 4-1. Extrapolation of species composition of Biosphere 2 rainforest to 100 years with 30 species. H=Herb, T=Tree, P=Palm, G=Giant herb, A=Bamboo, C=Climber, S=Shrub.

Table 4-1-continued.

		Growth	Reproductive mode
Family	Species	form	in Biosphere 2
Vitaceae	Cissus sicyoides	С	Clonal
Zamiaceae	Zamia furfuracea	S	Long-lived
Zingiberaceae	Alpinia purpurata	G	Clonal
0	Costus sp.	Н	Clonal
	Hedychium coronarium	G	Clonal
	Zingiber spectabile	G	Clonal

also showed that the addition of 50 species after 2 years will have little effect on the diversity of the rainforest at 100 years.

The turn-over times of species within geographic areas varies with internal and external processes. The extinction rate declined over time (Figure 3-5), from about 60 species per year from 1991-1993 to about 30 species per year from 1993-1996. A total of 366 species were added during that period, averaging 73 per year. Species seeding on a continuous basis may be required to maintain the diversity of the system above the approximately 30 species that are expected to survive. Most of the additions may be considered the "transient species" in the model (Figure 3-25).

Mechanisms Affecting Diversity in Biosphere 2

In the introduction many mechanisms affecting diversity were cited from published literature. The following seemed to be operating in Biosphere 2.

Excess Resources and Diversity

When nutrients and/or light are in excess, diversity is often reduced by competitive overgrowth by a few species. This concept was applied to the ecosystem in Silver Springs by Yount (1956). For example, Kent (1996) found species diversity lower in fertilized pond plots in Puerto Rico over his clear water controls, and vegetation came in more quickly to the fertilized plots. Odum and Odum (in press) used a model NUTRSPEC, and Odum (1999) used a more complex version PIONINFO to show the mechanisms.

In 1991-1995 in Biosphere 2 one of the most obvious resource excesses was CO₂. Growth of 'weedy' species, and in particular vines was observed,

helping sequester carbon dioxide rapidly. These species were aided by the large amount of structure for climbing provided by the stainless steel spaceframe. The result was a dense weedy canopy above the upper tree canopy of the rainforest. This diversity-reducing factor was at least partly counteracted by the frequent pruning of the weeds by the author and others.

Effect of Trimming Weedy Growth

A major effort was made to trim out rapidly growing vines and other successional weeds in Biosphere 2 during the first two years after seeding and thereafter. During the first two years, most of the pruned biomass was removed from the rainforest and stored and air dried in the underground stainless steel and concrete passageways. A fraction of the fresh biomass was fed to the domestic livestock. Thus, human effort was directed to truncate early successional processes and to accelerate the development of the climax state. Pruning was analagous to a large herbivore or a large pulse of herbivorous insects. The total number of person hours pruning was about 22 hours per month during the first 2-year closure.

Alternatively, a different climax state may have developed had early successional processes not been arrested. Removal of the early successional biomass may have altered the relative frequencies of species in the rainforest. Those species that were adapted to conditions of higher light may have been favored over shade-adapted species. The result may have been loss of species that were adapted to shading. An extreme possibility is that over a longer period, when the light-adapted species formed a continuous canopy, no species would remain to grow in the shaded conditions.

Additionally, removal of biomass that may have contributed to the litter accumulation could have an effect on nutrient cycles, nutrient availability and productivity of the rainforest as has been suggested for the rainforest of Puerto Rico (Lodge et al. 1991).

An effect of removing the two most abundant species from the data and replotting the graph, Figures 3-12, is a higher species diversity number of individuals counted. The species diversity graphs during this were steeper than they might have been without the pruning, partly reversing the effect of high nutrient overgrowths.

The production and biomass model in Figure 3-19 was run with and without pruning (Figure 3-23) to see whether possible effects of pruning were indicated. The simulation results of the minimodel suggest that without pruning, diversity would have been reduced through loss of mature species. Over 100 years, no mature species remained and the simulated system was composed of only weedy species.

Pulsing Disruption

Many ecologists offer the theory that disruption increases diversity by preventing competitive exclusion overgrowths between species. Where disruptions create open patches of successional vegetation in formerly closed canopy forest, diversity is augmented by the successional colonizers. Hurricanes and landslides at El Verde create patches in various seasons. Disturbances in Biosphere 2 include those by pruning, trampling by visitors, and the shift to lower CO2 regime with throughflow of air in 1995. Some shocks obviously reduce diversity such as transplant shock and excessive heat on the tops of trees in summer. A more recent management strategy (starting in 1997) for the Biosphere 2 rainforest has been to trim trees that are touching the glass boundary and to deposit all of the biomass on the forest floor. Pruning is scheduled cyclically, and creates a pulse of organic matter added to certain areas. An interesting question would be what effect the pulsed pruning and pulsed biomass deposition has on forest productivity, and to what extent this would vary from normal leaf and branch fall and litter accumulation.

<u>Consumers</u>

Several hundred insect species were either intentionally introduced, accidentally introduced, or became established in Biosphere 2 before the structure was completed. By 1997, the most conspicuous insects in Biosphere 2 were ants, homopterans, katydids, and cockroaches (Wetterer et al. in press) The ecologically dominant species is the ant *Paratrechina longicornis*, a species which has spread from the Old World throughout disturbed areas in the tropics and subtropics. It is the same tramp ant species that has taken over nests normally occupied by native species in the Dry Tortugas in the Florida Keys (Wetterer et al. in press).

The lack of herbivorous insects is shown by the low percentage of leaf holes in Biosphere 2 compared to the tabonuco forest (Table 3-21). Canopy arthropods may have a significant effect on primary productivity, nutrient cycling and hydrology.

Graphical Representation of Cumulative Species-Individual Counts

To help understand patterns of diversity, species-individual counts were represented on several coordinates with linear scales, with semi-

logarithmic plot, and double logarithmic plot. See the example of the study sites in Figures 3-18a-c. Consider the kind of graphs that some hypotheses might predict.

First, suppose there were many species available for seeding in a large area so that each individual added was a different species. In that case the species added would increase in a straight line on the linear plot, but curve sharply up on the semi-log plot.

Next, suppose there was a great excess of individuals of one or two species, a situation sometimes occurring where nutrients are in excess and there is competitive exclusion or the seeding from a low diversity source. In that case the graph will be shifted to the right, and will increase very slowly.

Third, suppose that there are interactions among species so that the species are being organized in systems relationships with resource use of the organization increasing as the square of the number of kinds. In that case the number of individuals required to support each additional species increases as the square of the species. Lines are added to the graphs to show the situation where S is proportional to N² or conversely that N is proportional to the square root of species S. Hierarchical relationships are suggested when there are many of a few species and few of many species.

Fourth, loss of pollinators in a system would show a loss of certain species that can no longer reproduce. The number of individuals of species that do not require pollinators or of clonal species would increase, reducing the number of species while not necessarily reducing the number of individuals where an individual was defined as a separate stem.

Another characteristic curve-shape reflects extremes of available energy such as in both shallow tropical seas (high energy inputs from currents,

sunlight, etc.) and deep ocean bottoms (low energy inputs), both with many species and individuals per 1000 count, but in the former they are concentrated in less area compared to the latter, where there is a larger distance between individuals.

The shapes of curves of cumulative species versus cumulative individuals observed in Biosphere 2 and in the colonization in the rainforest were compared with the theoretical patterns. Initial patterns of seeding in Biosphere 2 and in natural seeding of landslide openings within the complex forest turned up on semi-log plot suggesting less organizational interactions. Slopes of species curves from the natural forest were not so steep or declining with increased individuals--suggesting more hierarchy or organization.

If when species are first added, there is one new species for each individual, the line is straight on the linear plot and sharply curving upward on semi-log. As more individuals are seeded, duplications occur either on purpose as in Biosphere 2 or out of probabilities of seeding access as in the landslides. The curve bends to the right on linear plot and develops as a straight zoned beyond the first few individuals on a semi-log plot.

The effect of many individuals of a few species was demonstrated by removing two abundant species and replotting (Figure 3-12). The effect is to shift the curve to the left. Adding an excess of species that dilute the others shifts the straight zone of the graph to the right. In the Radiation Center 23 years after radiation (before hurricanes) there was a predominance of a few species with many seedlings making the linear curve flat and the semilog irregular.

The graphs for Biosphere 2 were compared with the El Verde and Bisley graphs used as a reference of normal organization of diversity. In the

semi-log graph, the Biosphere 2 curve turns up at the end whereas the natural forest line is straighter. This curvature can be interpreted as an indicator that the species are less organized. See Table 4-2 for comparison of the slopes on the double log plot.

Effect of Spatial Characteristics of Plants in Biosphere 2

With the exception of *Leucaena spp.* trees, the plants at the time of placement in the Biosphere 2 rainforest were between approximately 0.5 meters and 3 meters tall. A comparison of the horizontal distribution of plants in their initial configuration suggests a regular distribution of plants (Figure 3-10). This departure from successional pathways that are found in nature — beginning with a seed pool rather than uneven size classes of plants and regular rather than clumped distributions — could have an effect on survival of species as related to shading. In particular, species that were not shade-tolerant may have been planted in the shade of other species, without an opportunity to overgrow other species. Resulting composition of the rainforest may have been shaped by such differences.

Comparisons with El Verde

With the passage of time, the rainforest in Biosphere 2 developed properties similar to those at El Verde. There were similarities between early self-organization and the successional stages at El Verde.

Comparisons Between Rainforest Structure in Biosphere 2 and El Verde

A visual survey of the Biosphere 2 and El Verde rainforests showed differences and similarities. In the tabonuco forest, a deep organic mat of fine roots forms above the heavy clay soil. In Biosphere 2 the roots were deeper in the ground with no mat at the surface. Previous authors accounted the mat of small roots at El Verde as an adaptation to low transpiration rates and low soil nutrients (Odum 1970). Saturation deficit aiding transpiration was 6 to 9 millibars in Biosphere 2 compared to 1.8 to 6 mb at El Verde. Nutrients were higher in Biosphere 2, especially phosphorus. Root adaptations were consistent with the theory. Wind velocity was lower in the Biosphere 2 rainforest breeze. Another striking difference was the greater density of certain growth forms, and in particular of epiphytes, both vascular and nonvascular, in the tabonuco forest (Figure 3-14). Most of the vascular epiphytes had perished from the Biosphere 2 rainforest by Sept., 1993. There were no mosses, liverworts, and filamentous algae species covering leaves, trunks and rocks.

Soil Structure

The soils in the Biosphere 2 rainforest had a coarser texture than the clays and organics at El Verde. Scott (1999) found some differentiation of soil profiles in his 1993 measurements. Earthworms were processing clays and organic matter. However the pH was still above 7 below the litter, compared to the normally acid conditions in El Verde. Whereas soil was generating carbon dioxide from high levels of organic matter, some was being absorbed by the basic substances.

In a study by Gonzalez et al. (1999), the tabonuco forest was compared with wet areas dominated by palms and *Heliconia*. Litterfall in the two areas studied was similar. The tabonuco had lower pH, with a mean value of 4.8 (4.5 - 6.5), and twice as many earthworms. The palm area had more soil water and higher pH (5.1-5.9). The earthworm *Pontoscolex corethrurus* was dominant in both, with 20 to 160 grams/m² and 30 to 400 individuals/m².

Absence of Most Animals and Simplification of Food Web

Most of the animals of typical rainforests either died or were never seeded in Biosphere 2. The hundreds of insect species at El Verde were absent from Biosphere 2, yet decomposition was slightly faster in Biosphere 2 (Nelson 1999). Litter fall developed values like those at El Verde and organic differentiation of the soil was accelerated (Scott 1999). Earthworm populations were present and the numerous tiny ants, *Paratrechina longicornis* (Latreille), became the dominant ant species.

The effect of the lack of animals in the Biosphere 2 rainforest can be related to the possible effects of the loss of animal diversity in increasingly fragmented ecosystems.

Plant Reproduction

Minimal plant reproduction by seed has occurred in the Biosphere 2 rainforest since the 1991 closure. Since most potential pollinators perished during the first 2-year closure, a lack of pollen dispersal vectors along with low light and other environmental factors would prevent both pollination of flowers or flowering of plants. Most of the species that reproduce sexually were located in sunnier locations, such as the ginger belt. Species that fruited at first stopped producing after they were shaded later. The most conspicuous characteristic of the forest floor in Biosphere 2 was the many stems of plants emerging from asexual growth from runners of several species.

In contrast, most of the species in the El Verde rainforest reproduce by seed. In disturbed areas, clonal taxa such as *Heliconia* may be part of the early successional flora, but they are not a dominant species of the forest. The energy involved in normal reproduction (formation of fruits) in the El Verde forest was 0.075 kcal m⁻² d⁻¹ (Odum 1970). By favoring vegetative reproduction in Biosphere 2, this energy was saved for growth, but genetic diversity was lost increasing risk of epidemic mortalities later. The species that flowered without setting seed, either due to lack of pollinators or light quantity or quality, were using energy for reproduction that will not be manifest, taking the energy from growth.

Species and Individuals

At El Verde, in mature forest there were 7063 plants per hectare (average of pre-radiation center, south control center (Rushing 1970), and counts by R. F. Smith (1970)). For the equivalent area of Biosphere 2 (0.19 ha) there were 1342 plants.

The species-individual count in the successional development of bare areas of landslides after 11 years (Figure 3-16) was 60 species per 1000 individuals compared to about 80 species in Biosphere 2 in 1998 after 8 years. Extrapolating the extinction rate, diversity in Biosphere 2 will be similar to that in succession at El Verde in 1999. At El Verde, diversity may plateau at a lower level, while developing more vegetative structure among those species

Table 4-2. Comparison of diversity indices: species/1000 individuals and slope of log-log graphs (K).

	Species/			
Site name	1000	K		
Biosphere 2				
1991	273	0.621		
1998-subset	115	0.486		
1998-all	96	0.413		
Bisley grid	63	0.364		
Landslide	60	0.339		
Radiation Center	41	0.276		

K=slope of the graph of log of number of species as a function of log of number of individuals. that prevail. Figure 4-1 shows a possible future with 1342 plants and 30 species.

Table 4-2 compares Biosphere 2 with tabonuco forests and introduces another diversity index, where the slope of the log-log curve of species/1000 individuals is measured. The index may indicate the amount of organization that exists in the ecosystems measured. Margalef (1997) used this double logarithmic index to contrast low diversity plankton blooms with mature high diversity populations.

General Implications

Comparison of Biosphere 2 with Role and Trends of Global Diversity

Biosphere 2 is useful to help understand the global biosphere. Earth is also a closed system whereby seeding of species does not occur from outside the system. On a much larger scale, much like the Biosphere, the process of diversity on earth includes only extinction and evolution. Because evolution occurs over a relatively long time scale, it probably will not occur in Biosphere 2 for macroorganisms, but could feasibly occur for microorganisms. There is controversy now in determining if diversity on earth is downsizing as in Biosphere 2. Species extinction may be occurring faster than species evolution. Adding 1 species per hectare per year in rainforest systems at El Verde, Puerto Rico (Scatena, personal communication) may be enough to replace species and maintain the current diversity. The diversity minimodels can indicate the number needed if the extinction rate is known.

Declining Diversity and Downsizing

The decrease of diversity in Biosphere 2 may have parallels with a civilization which is downsizing. Many specialized jobs (analogues to species) only have few or no species who can do them, as a more generalist way of making a living prevails. In a civilization which is downsizing - the many specialized jobs now only have one person who can do them, as others have had to find another more generalist way of making a living. The ethnic diversity in colonizing systems and the costs of organization may be like a forest.

Comparing Succession of Diversity in Biosphere 2 with Global Cultural Change

On a different scale there may be analogy between diversity in ecosystems and in human cultural change. Diversity includes the number of species and patterns of their distribution. Higher levels of organization might be expected to increase ethnic diversity of occupations, cultures and social differences.

The Balkan war of 1999 started with separation of cultures with destructive competition (ethnic cleansing). At first this was a loss of diversity. The patterns that developed through interactions with the larger, developed system appeared to be diminishing competition and increasing diversity in 1999.

Carrying Capacity of Systems for Diversity

There is growing evidence that there is a carrying capacity for diversity for a given system at a given time. For instance, Ashton (1977) states: "We now have growing evidence . . . that there is a maximum number of species that a forest can accommodate, that this varies with site conditions and that it has already been approached in west Malesian forests." Diversity indices on an area basis measure the carrying capacity.

Carrying capacity is the diversity that is eventually stabilized in Biosphere 2. According to some models such as the one in Figure 3-28, the diversity achieved coming down should be similar to that achieved by gradually adding species – typical of natural succession, such as the landslide at El Verde. Even now the diversities are similar.

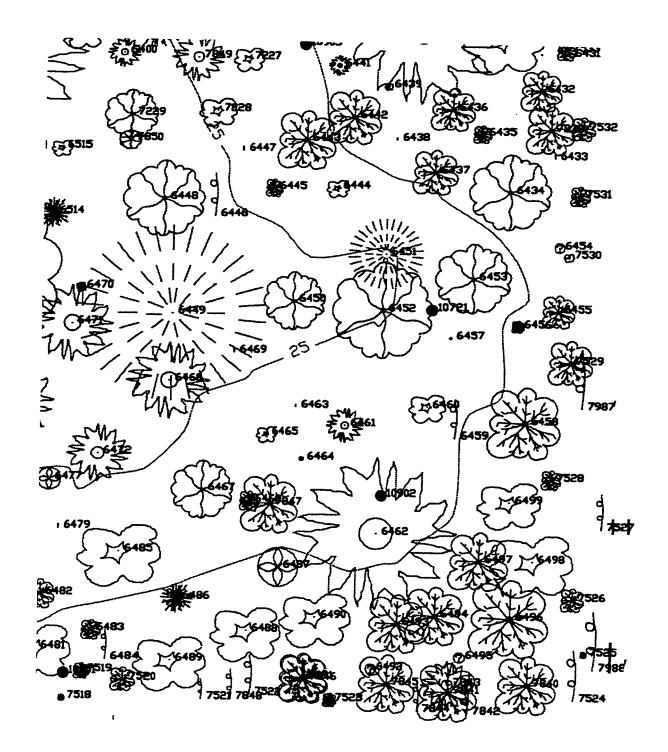
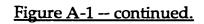
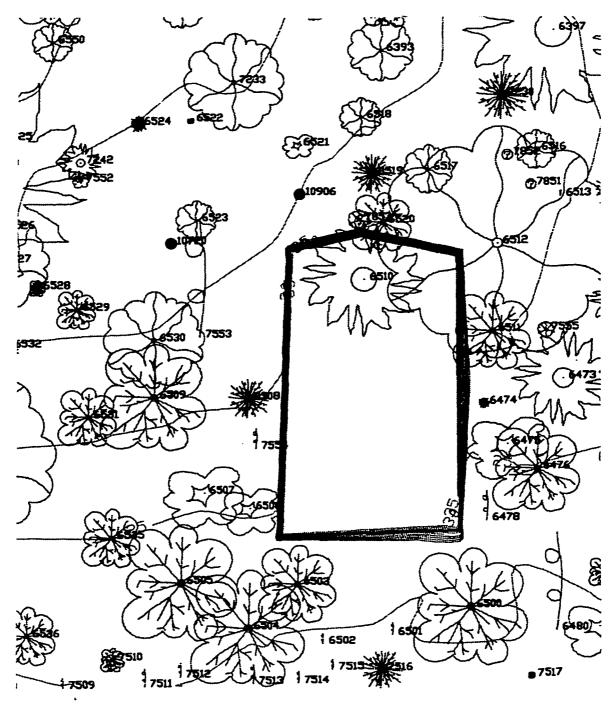
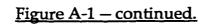

APPENDIX A BIOSPHERE 2 RAINFOREST MAPS

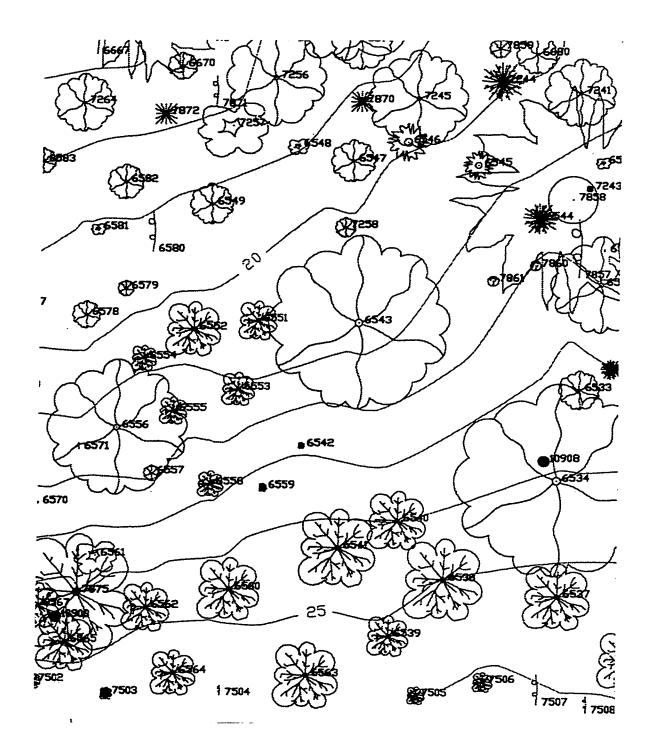
Figure A-1. Map cells showing the location of individual plants in the Biosphere 2 rainforest. See Table A-1 for corresponding list of species and survey of individuals. a) Key to the location of individual map cells within the rainforest; b) Cell 1; c) Cell 2; d) Cell 3; e) Cell 4; f) Cell 5; g) Cell 6; h) Cell 7; i) Cell 8; j) Cell 9; k) Cell 10; l) Cell 11; m) Cell 12; n) Cell 13; o) Cell 14; p) Cell 15; q) Cell 16; r) Cell 17; s) Cell 18; t) Cell 19; u) Cell 20. Surveying and original graphics by Teague and Co., Tucson, AZ. Approximate scale: 1 cm = 0.6 m.

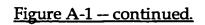

Cell 20	Cell 19	Cell 18	Cell 17	Cell 16
Cell 15	Cell 14	Cell 13	Cell 12	Cell 11
Cell 10	Cell 9	Cell 8	Cell 7	Cell 6
Cell 5	Cell 4	Cell 3	Cell 2	Cell 1

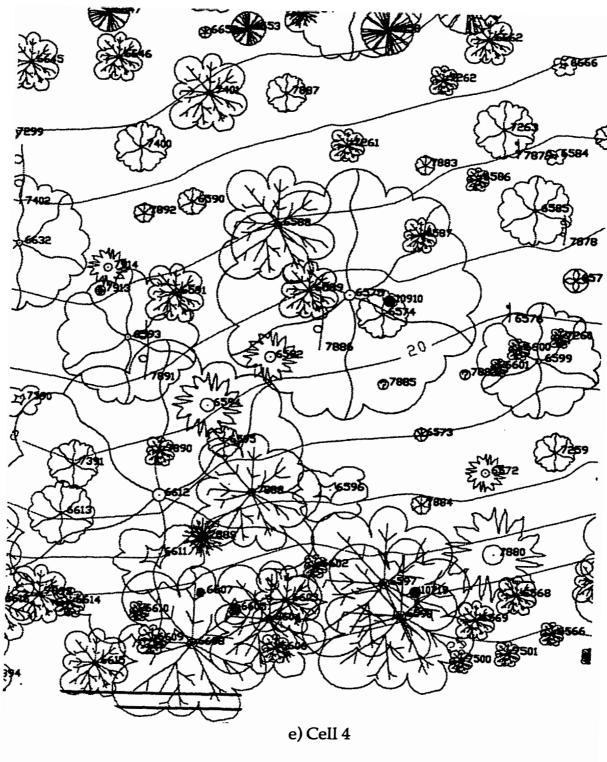

Figure A-1. Map cells showing the location of individual plants in the Biosphere 2 rainforest. See Table A-1 for corresponding list of species and survey of individuals. a) Key to the location of individual map cells within the rainforest; b) Cell 1; c) Cell 2; d) Cell 3; e) Cell 4; f) Cell 5; g) Cell 6; h) Cell 7; i) Cell 8; j) Cell 9; k) Cell 10; l) Cell 11; m) Cell 12; n) Cell 13; o) Cell 14; p) Cell 15; q) Cell 16; r) Cell 17; s) Cell 18; t) Cell 19; u) Cell 20. Surveying and original graphics by Teague and Co., Tucson, AZ. Approximate scale: 1 cm = 0.6 m.

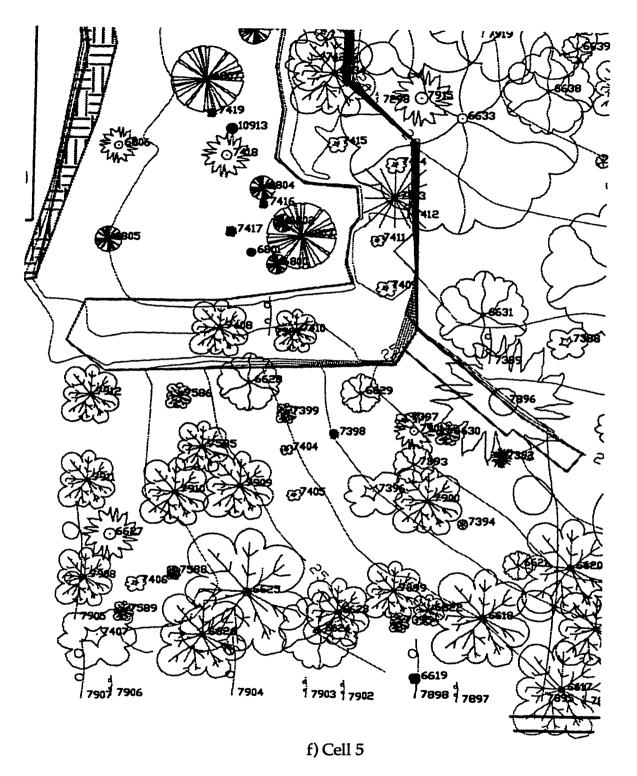
→ N

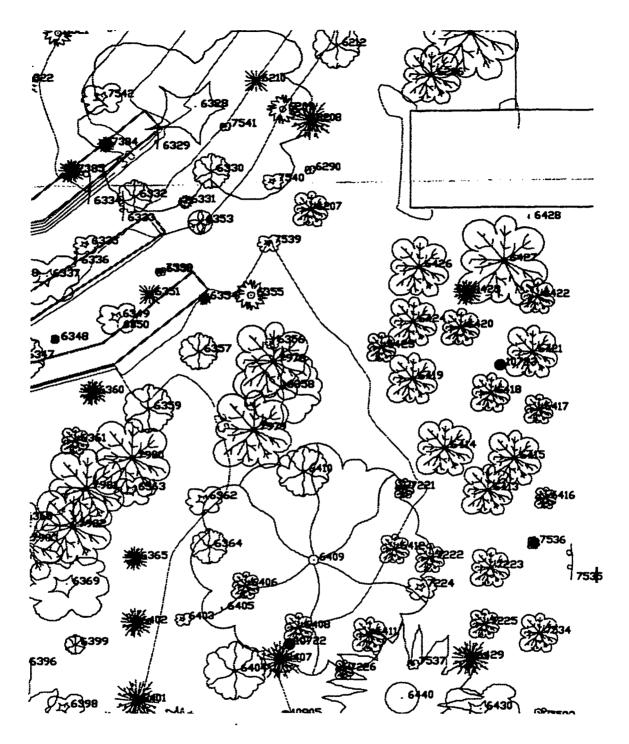


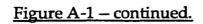


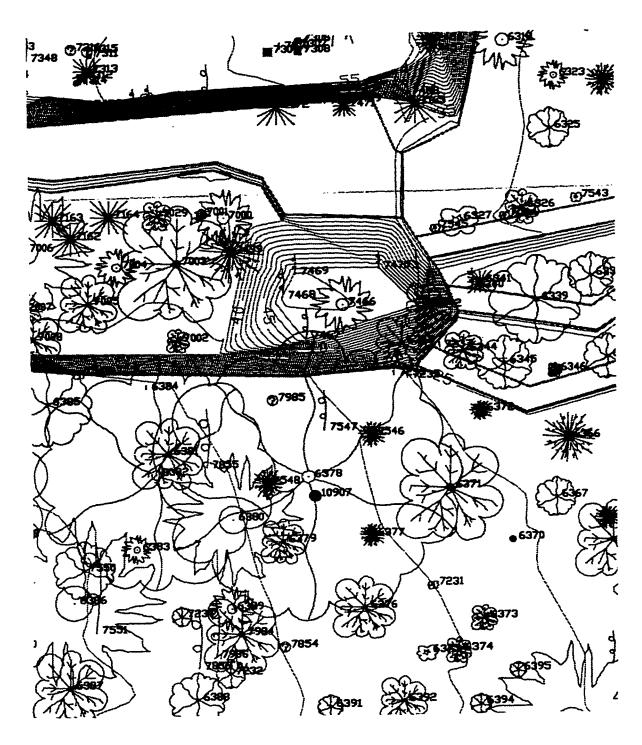



c) Cell 2



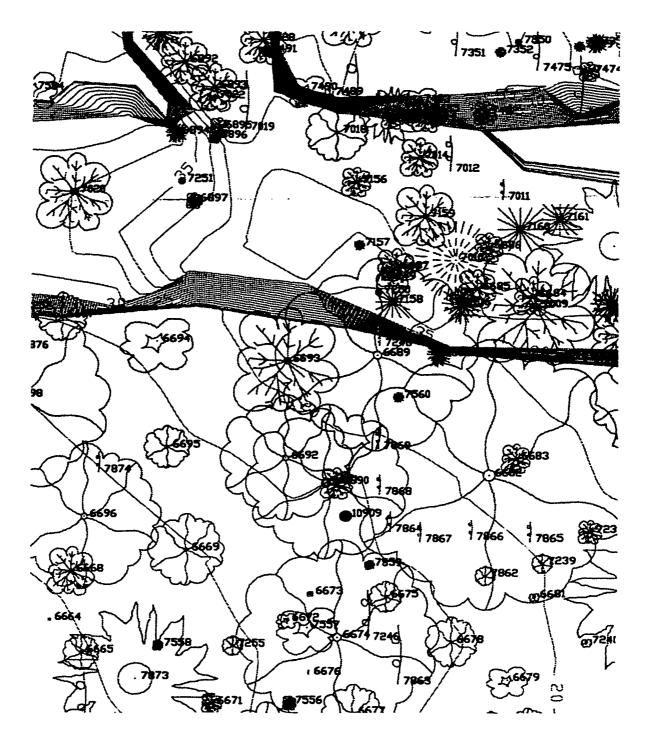




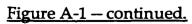


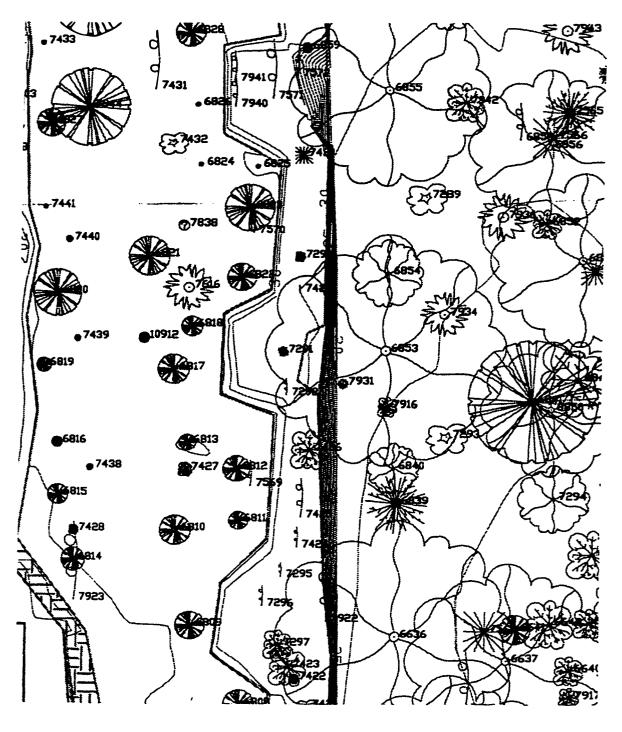
.



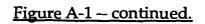


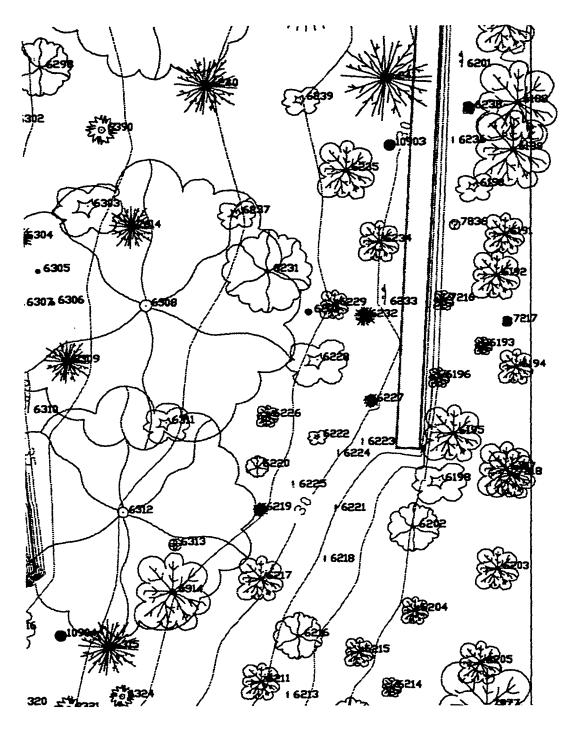


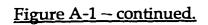


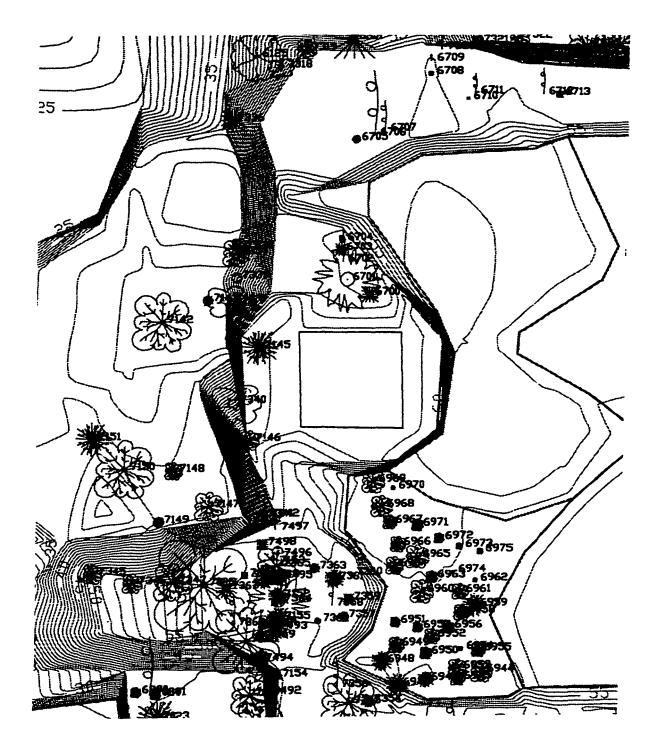


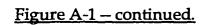
i) Cell 8

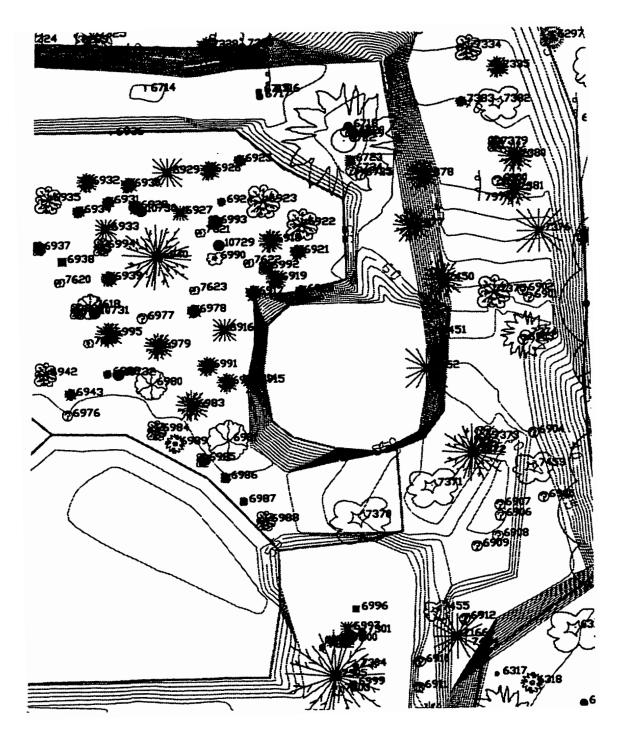


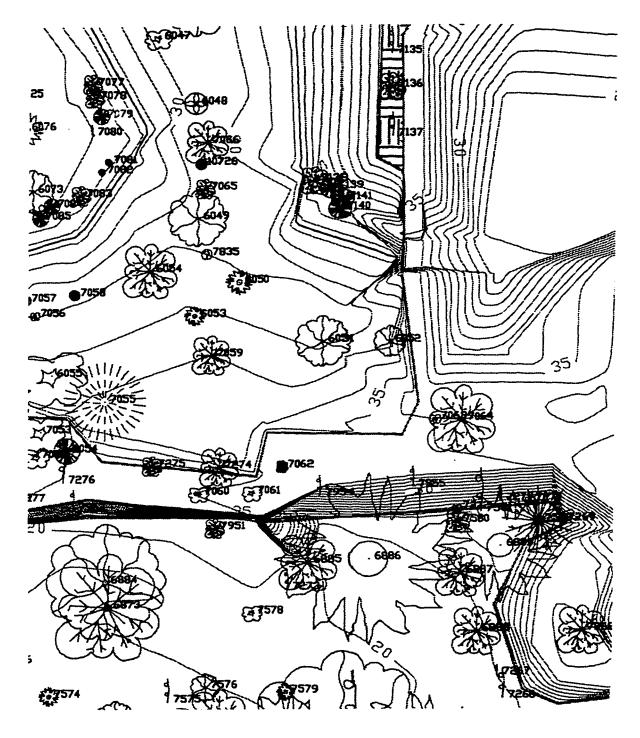


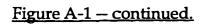


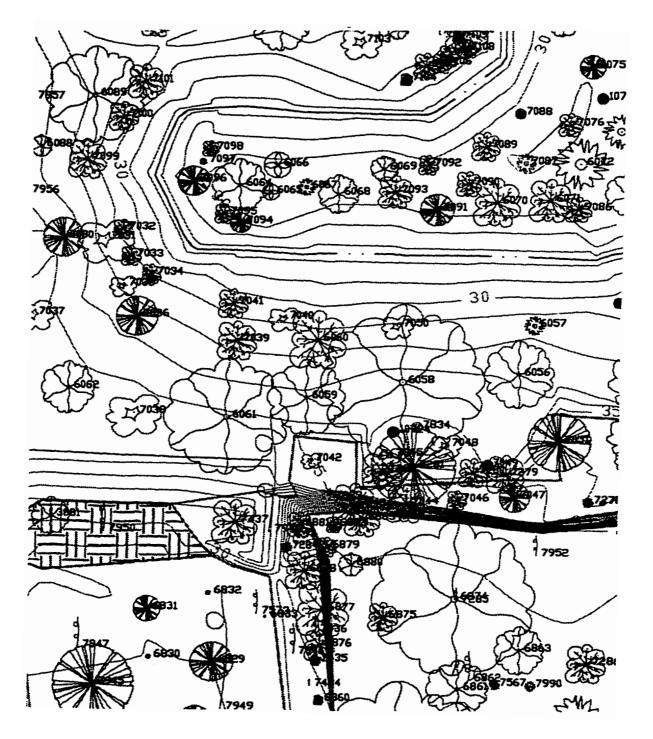

k) Cell 10

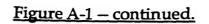


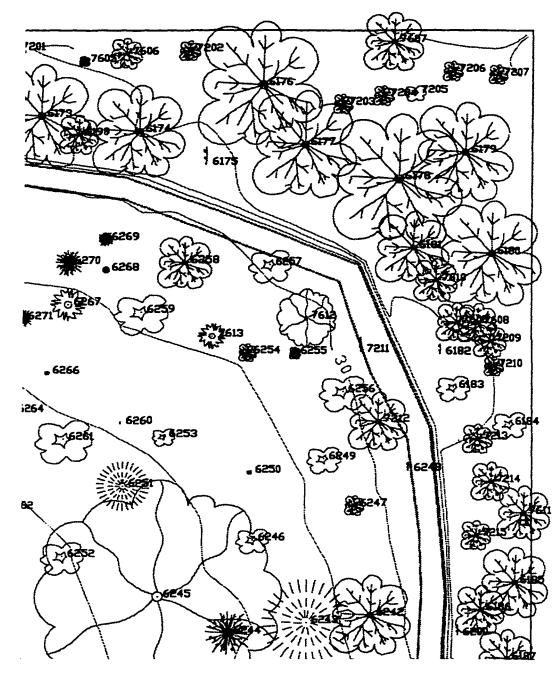

I) Cell 11


m) Cell 12

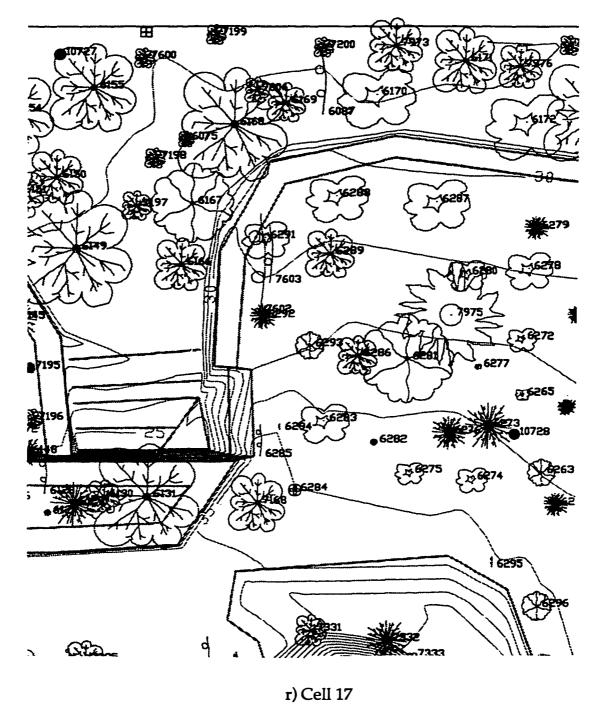


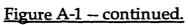

n) Cell 13


o) Cell 14



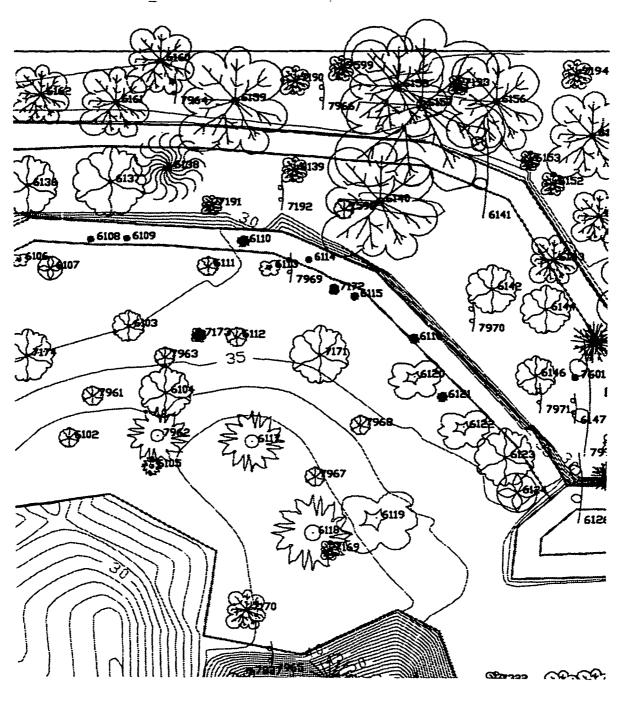
÷

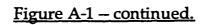


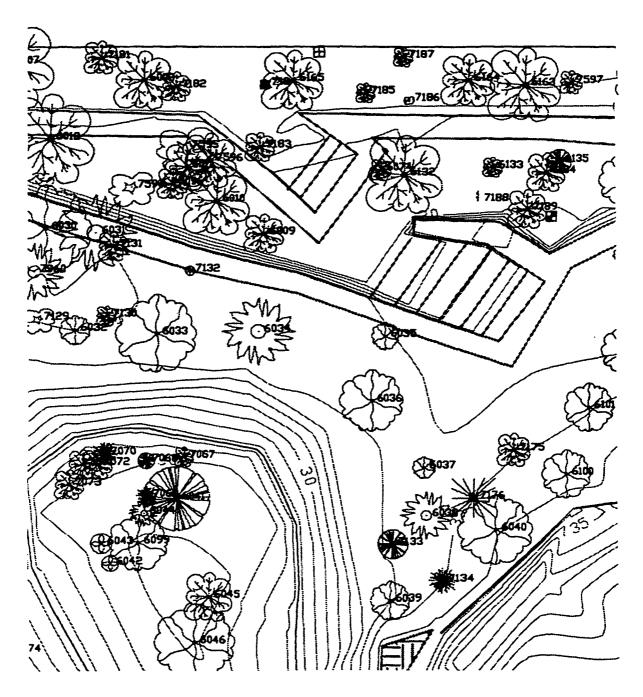


q) Cell 16

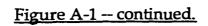
Figure A-1 -- continued.

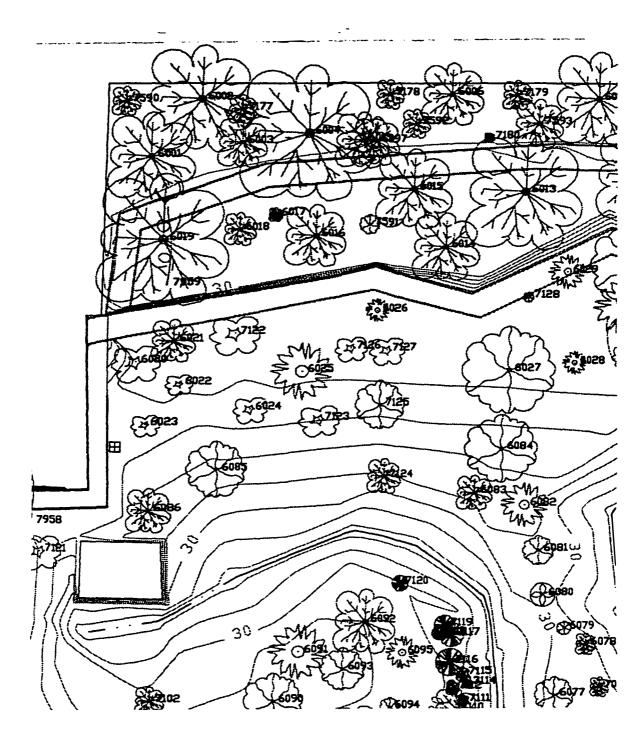

. -

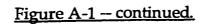



195

. -







. -

u) Cell 20

APPENDIX B BIOSPHERE 2 RAINFOREST PLANT LISTS

Table B-1. Biosphere 2 rainforest plant survey list. Planting: 1=pre-1991; 2=Oct.-Dec. 1993. GF=Growth form: T=Tree, S=Shrub, C=Climber, G=Giant Herb, P=Arboreal palm, R=Graminoid, A=Woody graminoid, such as bamboo, H=Herb, E=Epiphyte. A=Alive, D=Dead. Blank cells indicate information available.

Table B-2. Species from the first planting of the Biosphere 2 rainforest, with inventorieS from 1991, 1993, and 1996. T=Tree, S=Shrub, C=Climber, G=Giant Herb, P=Arboreal palm, R=Graminoid, A=Woody graminoid, such as bamboo, H=Herb, E=Epiphyte.

Table B-3. Species from the second planting of the Biosphere 2 rainforest, with inventories from 1993 and 1996, or self-propagated. T=Tree, S=Shrub, C=Climber, G=Giant Herb, P=Arboreal palm, R=Graminoid, A=Woody graminoid, such as bamboo, H=Herb, E=Epiphyte.

Table B-1. Biosphere 2 rainforest plant survey list. Planting: 1= pre-1991; 2 = Oct.-Dec. 1993. T=Tree, GF = Growth form: S=Shrub, C=Climber, G=Giant Herb, P=Arboreal palm, R=Graminoid, A=Woody graminoid, such as bamboo, H=Herb, E=Epiphyte. A=Alive, D=Dead. Blank cells indicate no information available.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C81	3199	ANNONA	MURICATA	ANNONACEAE	T	6-Dec-93	Α	D
2	C74	3209	ANNONA	MURICATA	ANNONACEAE	Т	6-Dec-93	Α	D
2	C86	3326	INGA	EDULIS	FABACEAE	Т	6-Dec-93	Α	NF
2	C69	3440	CARICA	SP.	CARICACEAE	Т			NF
1	C80	3441	COSTUS	SP.	ZINGIBERACEAE	Η	26-Sep-92	Α	Α
1	C80	3442	COSTUS	SP.	ZINGIBERACEAE	Η	26-Sep-92	Α	Α
2	C87	3443	GARCINIA	MANGOSTANA	CLUSIACEAE	Т	6-Dec-93	D	D
2	C86	3444	GARCINIA	MANGOSTANA	CLUSIACEAE	Т	6-Dec-93	Α	D
2	C86	3445	SYZYGIUM	AQUEUM	MYRTACEAE	Т	6-Dec-93	Α	NF
2	C80	3446	GARCINIA	MANGOSTANA	CLUSIACEAE	Т	6-Dec-93	Α	NF
2	C81	3447	AECHMEA	FASCIATA	BROMELIACEAE	Ε	7-Dec-93	Α	NF
2	C72	3448	INGA	EDULIS	FABACEAE	Т	6-Dec-93	Α	NF
2	C86	3449	GARCINIA	MANGOSTANA	CLUSIACEAE	Т	6-Dec-93	NF	NF
1	C64	3881	PSIDIUM	GUAJAVA	MYRTACEAE	Т	29-Nov-90	Α	Α
1	C78	4401	UNKNOWN	UNKNOWN	UNKNOWN	U	26-Sep-92	Α	NF
2	C93	4409	THEOBROMA	CACAO	STERCULIACEAE	S	6-Dec-93	Α	D
2	C94	4410	THEOBROMA	CACAO	STERCULIACEAE	S	7-Dec-93	Α	NF
2	C88	4411	SYZYGIUM	MALACCENSE	MYRTACEAE	Т	6-Dec-93	Α	Α
2	C79	4412	PSIDIUM	GUAJAVA	MYRTACEAE	Т	8-Dec-93	Α	NF
2	C80	4413	ANNONA	MURICATA	ANNONACEAE	Т	6-Dec-93	Α	NF
2	C79	4414	ANNONA	MURICATA	ANNONACEAE	Т	6-Dec-93	Α	NF
1	C72	4439	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	26-Sep-92	D	NF
2	C74	4449	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C73	4450	CALATHEA	ORNATA	MARANTACEAE	Η	20-Nov-93	Α	NF
2	C72	4451	CALATHEA	ORNATA	MARANTACEAE	Н	20-Nov-93	Α	Α
2	C80	4452	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Н	20-Nov-93	Α	NF
2	C93	4453	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	D

Table B-1-- continued.

Planting	Cell	Survey No.	معدماها بالمستعاكا ومستقلقا الجزاعات الجزاعات الجرا	Specific epithet	Family	GF	Intro Date	93-4	96
2	C94	4454	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	D
2	C73	4455	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C71	4456	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C71	4457	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C79	4458	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C86	4459	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C95	4460	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C87	4461	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	Α	NF
2	C79	4462	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	20-Nov-93	D	NF
2	C72	4463	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C87	4464	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C74	4465	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C79	4466	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C73	4467	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C72	4468	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C72	4469	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	Α
2	C92	4470	MONSTERA	DELICIOSA	ARACEAE	С	20-Nov-93	Α	Α
2	C87	4471	MONSTERA	DELICIOSA	ARACEAE	С	20-Nov-93	Α	NF
2	C87	4472	MARANTA	ARUNDINACEA	MARANTACEAE	Η	20-Nov-93	Α	NF
2	C87	4473	PASSIFLORA	DIGITATA	PASSIFLORACEAE	С	20-Nov-93	D	D
2	C72	4474	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Н	20-Nov-93	Α	D
2	C81	4475	QUASSIA	TULAE	SIMAROUBACEAE	U	20-Nov-93	Α	D
2	C87	4476	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C80	4477	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C88	4478	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C80	4479	CALATHEA	PICTURATA	MARANTACEAE	Н	20-Nov-93	Α	NF
2	C80	4480	CALATHEA	PICTURATA	MARANTACEAE	Н	20-Nov-93	Α	Α
2	C80	4481	CALATHEA	PICTURATA	MARANTACEAE	Н	20-Nov-93	Α	D

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C87	4482	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	A	D
2	C95	4483	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C79	448 4	CALATHEA	SP.	MARANTACEAE	Η	20-Nov-93	Α	D
2	C80	4487	CALATHEA	ALLOUIA	MARANTACEAE	Η	20-Nov-93	Α	NF
2	C87	4488	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C94	4489	SYZYGIUM	JAMBOS	MYRTACEAE	Т	20-Nov-93	Α	NF
2	C79	4490	MARANTA	ARUNDINACEA	MARANTACEAE	Η	20-Nov-93	Α	D
2	C79	4491	CALATHEA	PICTURATA	MARANTACEAE	Н	20-Nov-93	Α	D
2	C87	4492	MARANTA	ARUNDINACEA	MARANTACEAE	Н	20-Nov-93	Α	D
2	C74	4493	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Н	20-Nov-93	Α	NF
2	C87	4494	MARANTA	ARUNDINACEA	MARANTACEAE	Η	20-Nov-93	Α	D
2	C87	4495	MARANTA	ARUNDINACEA	MARANTACEAE	Η	20-Nov-93	Α	D
2	C87	4496	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Η	20-Nov-93	Α	D
2	C71	4497	QUASSIA	TULAE	SIMAROUBACEAE	U	20-Nov-93	Α	D
2	C80	4498	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C87	4499	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	D
2	C71	4754	DIOSCOREA	SP.	DIOSCOREACEAE	С	20-Nov-93	Α	D
2	C69	4755	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	Α
2	C94	4756	COCOS	NUCIFERA	ARECACEAE	Р	5-Dec-93	Α	D
2	C74	4758	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C83	4759	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	Α
2	C83	4760	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	Α
2	C88	4761	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	NF
2	C83	4762	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C87	4763	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C94	4763	MUSA	SP.	MUSACEAE	G			NF
2	C93	4764	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	Α
2	C91	4765	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C93	4766	MUSA	SP.	MUSACEAE	G	20-Nov-93	A	A
2	C90	4767	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C81	4769	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C81	4770	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C83	4771	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C83	4773	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	Α
2	C69	4774	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	NF
2	C90	4775	COCOS	NUCIFERA	ARECACEAE	Р	5-Dec-93	Α	D
2	C88	4776	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C68	4777	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	NF
2	C83	4778	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C88	4779	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C74	4781	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C87	4782	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C94	4783	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	NF
2	C76	4784	MUSA	SP.	MUSACEAE	G	20-Nov-93	Α	D
2	C91	4785	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	D
2	C83	4786	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C83	4787	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C69	4788	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	NF
2	C74	4789	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	D
2	C81	4790	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C88	4791	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C81	4792	MUSA	SP.	MUSACEAE	G	5-Dec-93	Α	Α
2	C78	4794	DIOSCOREA	SP.	DIOSCOREACEAE	С	20-Nov-93	Α	NF
2	C71	4796	DIOSCOREA	SP.	DIOSCOREACEAE	С	20-Nov-93	Α	D
2	C78	4797	DIOSCOREA	SP.	DIOSCOREACEAE	С	20-Nov-93	Α	Α
2	C71	4798	DIOSCOREA	ALATA	DIOSCOREACEAE	С	20-Nov-93	Α	N

Table B-1-- continued.

Planting		Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
Planting	C78	4799	DIOSCOREA	SP.	DIOSCOREACEAE	C	20-Nov-93	<u> </u>	<u>90</u>
2	C78 C71	4799	DIOSCOREA	SP.	DIOSCOREACEAE	C C	20-Nov-93 20-Nov-93		
2								A	NF
2	C93	5001	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	T	20-Nov-93	Α	D
2	C93	5002	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	Τ	20-Nov-93	Α	D
2	C9 0	5004	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н			??
2	C71	5005	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	Α
2	C7 0	5007	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C70	5008	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	NF
2	C94	5009	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	NF
2	C70	5010	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C93	5011	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	D
2	C70	5012	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C93	5013	COLOCASIA	ESCULENTA	ARACEAE	Η	20-Nov-93	Α	D
2	C70	5014	COLOCASIA	ESCULENTA	ARACEAE	Η	20-Nov-93	Α	NF
2	C70	5016	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C70	5017	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C88	5021	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C72	5022	COUROUPITA	GUIANENSIS	LECYTHIDACEAE	Т	20-Nov-93	Α	Α
2	C87	5023	RHAPIS	EXCELSA	ARECACEAE	Р	20-Nov-93	Α	Α
2	C80	5024	SWIETENIA	MACROPHYLLA	MELIACEAE	Т	20-Nov-93	Α	D
2	C73	5025	FICUS	NITIDA	MORACEAE	С	20-Nov-93	Α	Α
2	C79	5026	PSYCHOTRIA	SP.	RUBIACEAE	Т	20-Nov-93	Α	Α
2	C74	5027	BRUNFELSIA	SP.	SOLANACEAE	S	20-Nov-93	Α	NF
2	C72	5064	UNKNOWN	UNKNOWN	MYRTACEAE	U	20-Nov-93	Α	D
2	C85	5073	SYZYGIUM	MALACCENSE	MYRTACEAE	T	20-Nov-93	A	D
2	C86	5074	PIMENTA	DIOICA	MYRTACEAE	T	20-Nov-93	A	A
2	C76	5075	COFFEA	ARABICA	RUBIACEAE	S	20-Nov-93	A	D
2	C91	5076	AVERRHOA	CARAMBOLA	OXALIDACEAE	T	20-Nov-93	A	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C92	5077	ARTOCARPUS	SP.	MORACEAE	Т	20-Nov-93	A	NF
2	C85	5078	MALPIGHIA	EMARGINATA	MALPIGHIACEAE	Т	20-Nov-93	Α	NF
2	C86	5079	MALPIGHIA	EMARGINATA	MALPIGHIACEAE	Т	20-Nov-93	Α	NF
2	C91	5080	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	20-Nov-93	D	D
2	C81	5082	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	20-Nov-93	Α	D
2	C87	5083	COFFEA	ARABICA	RUBIACEAE	S	20-Nov-93	Α	Α
2	C95	5084	CINNAMOMUM	ZEYLANICUM	LAURACEAE	Т	20-Nov-93	Α	NF
2	C87	5085	THEOBROMA	CACAO	STERCULIACEAE	S	20-Nov-93	Α	D
2	C84	5086	SPONDIAS	MOMBIN	ANACARDIACEAE	Т	20-Nov-93	Α	NF
2	C92	5087	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	20-Nov-93	Α	NF
2	C88	5088	PARMENTIERA	EDULIS	BIGNONIACEAE	Т	20-Nov-93	Α	Α
2	C86	5089	CHRYSOPHYLLUM	SP.	SAPOTACEAE	Т	20-Nov-93	Α	Α
2	C78	5091	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	Т	20-Nov-93	Α	Α
2	C80	5092	THEOBROMA	CACAO	STERCULIACEAE	S	20-Nov-93	Α	NF
2	C73	5093	CAMELLIA	SINENSIS	THEACEAE	S	20-Nov-93	Α	NF
2	C80	5094	HIBISCUS	ELATUS	MALVACEAE	S	20-Nov-93	Α	Α
2	C72	5095	BIXA	ORELLANA	BIXACEAE	Т	20-Nov-93	Α	Α
2	C74	5096	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	D
2	C80	5097	HIBISCUS	ELATUS	MALVACEAE	S	20-Nov-93	Α	Α
2	C72	5098	PSYCHOTRIA	VIRIDIS	RUBIACEAE	Т	20-Nov-93	Α	Α
2	C79	5099	COUROUPITA	GUIANENSIS	LECYTHIDACEAE	Т	20-Nov-93	Α	D
2	C80	51 00	HIBISCUS	ELATUS	MALVACEAE	S	20-Nov-93	Α	Α
2	C71	5401	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C88	5402	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C78	5403	COLOCASIA	ESCULENTA	ARACEAE	Η	20-Nov-93	Α	D
2	C80	5404	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C88	5405	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	Α
2	C93	5406	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	Α

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C72	5407	COLOCASIA	ESCULENTA	ARACEAE	H	20-Nov-93	Α	A
2	C79	5408	HIBISCUS	ELATUS	MALVACEAE	S	20-Nov-93	Α	NF
2	C81	5409	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	Α
2	C72	5410	HIBISCUS	ELATUS	MALVACEAE	S	20-Nov-93	Α	Α
2	C71	5412	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	D
2	C71	5413	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C73	5414	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	Α
2	C85	5415	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	??	??	Α
2	C84	5416	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	Α
2	C91	5417	ANNONA	SQUAMOSA	ANNONACEAE	Т	20-Nov-93	Α	NF
2	C83	5418	CARICA	РАРАҮА	CARICACEAE	Т	20-Nov-93	Α	NF
2	C91	5419	INGA	SP.	FABACEAE	Т	20-Nov-93	Α	D
2	C83	5420	CARICA	PAPAYA	CARICACEAE	Т	20-Nov-93	Α	NF
2	C84	5421	CARICA	PAPAYA	CARICACEAE	Т	20-Nov-93	Α	NF
2	C90	5422	ANNONA	MURICATA	ANNONACEAE	Т	20-Nov-93	Α	D
2	C85	5423	ANNONA	MURICATA	ANNONACEAE	Т	20-Nov-93	Α	D
2	C83	5424	CARICA	РАРАҮА	CARICACEAE	Т	20-Nov-93	Α	NF
2	C83	5425	CARICA	РАРАҮА	CARICACEAE	Т	20-Nov-93	Α	NF
2	C83	5426	CARICA	РАРАҮА	CARICACEAE	Т	20-Nov-93	Α	NF
2	C71	5427	MUSA	SP.	MUSACEAE	G	1-Jan-94	Α	Α
2	C72	5428	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	NF
2	C76	5429	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	20-Nov-93	Α	Α
1	C84	5431	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C69	5432	CAESALPINIA	SP.	FABACEAE	Т	26-Sep-91	Α	Α
2	C76	5433	CARICA	SP.	CARICACEAE	Т	26-Sep-93	Α	NF
1	C76	5434	CARICA	SP.	CARICACEAE	Т	26-Sep-92	Α	NF
2	C86	5451	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	20-Nov-93	Α	NF
2	C77	5452	PIMENTA	DIOICA	MYRTACEAE	Т	20-Nov-93	Α	D

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C87	5453	THEOBROMA	CACAO	STERCULIACEAE	S	20-Nov-93	Α	D
2	C72	5454	EUTERPE	PRECATORIA	ARECACEAE	Р			D
2	C71	5455	EUTERPE	PRECATORIA	ARECACEAE	Р	20-Nov-93	Α	NF
2	C95	5457	THEOBROMA	CACAO	STERCULIACEAE	S	20-Nov-93	Α	NF
2	C79	5458	SYNSEPALUM	DULCIFICUM	SAPOTACEAE	Т	20-Nov-93	Α	
2	C72	5459	SYZYGIUM	JAMBOS	MYRTACEAE	Т	20-Nov-93	Α	Α
2	C74	5460	QUASSIA	TULAE	SIMAROUBACEAE	U	20-Nov-93	Α	NF
2	C92	5461	CANNA	EDULIS	CANNACEAE	G	20-Nov-93	Α	NF
2	C87	5462	CALATHEA	ORNATA	MARANTACEAE	Н	20-Nov-93	Α	D
2	C78	5463	CYMBOPOGON	CITRATUS	POACEAE	R	20-Nov-93	Α	NF
2	C79	5464	CYMBOPOGON	CITRATUS	POACEAE	R	20-Nov-93	Α	D
2	C74	5465	ANNONA	SQUAMOSA	ANNONACEAE	Т	20-Nov-93	Α	NF
2	C83	5467	CAMELLIA	SINENSIS	THEACEAE	S	20-Nov-93	Α	D
2	C79	5468	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Η	20-Nov-93	Α	NF
2	C87	5497	MARANTA	ARUNDINACEA	MARANTACEAE	Η	20-Nov-93	Α	NF
2	C92	5498	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	NF
2	C69	5499	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	Α
1	C62	6001	HELICONIA	LONGIFLORA	HELICONIACEAE	G	12-Oct-90	NF	NF
1	C61	6002	MUSA	SP.	MUSACEAE	G	12-Oct-90	Α	Α
1	C62	6003	COPAIFERA	SP.	FABACEAE	Т	12-Oct-90	NF	NF
1	C69	6004	MUSA	TEXTILIS	MUSACEAE	G	12-Oct-90	Α	Α
1	C69	6005	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C68	6006	HELICONIA	BOURGAEANA	HELICONIACEAE	G	12-Oct-90		NF
1	C68	6007	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	Α	NF
1	C69	6008	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Н	12-Oct-90	NF	NF
1	C69	6009	SPATHOGLOTTIS	PLICATA	ORCHIDACEAE	Н	12-Oct-90	NF	NF
1	C69	6010	HELICONIA	LONGIFLORA	HELICONIACEAE	G	12-Oct-90	Α	NF
1	C69	6011	CURCUMA	DOMESTICA	ZINGIBERACEAE	Н	12-Oct-90	NF	NF

Table B-1-- continued.

1 1	C69	6012					Intro Date		96
1	010		ALPINIA	ZERUMBET	ZINGIBERACEAE	G	12-Oct-90	Α	Α
	C69	6013	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	D	NF
1	C69	6014	MUSA	SP.	MUSACEAE	G	12-Oct-90	Α	NF
1	C69	6015	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	12-Oct-90	Α	NF
1	C69	6016	HELICONIA	BOURGAEANA	HELICONIACEAE	G	12-Oct-90	Α	NF
1	C62	6017	CURCUMA	ROSCOEANA	ZINGIBERACEAE	Η	12-Oct-90	NF	NF
1	C62	6018	COSTUS	BARBATUS	ZINGIBERACEAE	Η	12-Oct-90	D	D
1	C62	6019	CANNA	INDICA	CANNACEAE	G	12-Oct-90	Α	Α
1	C62	6020	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S	12-Oct-90	Α	Α
1	C62	6021	DIEFFENBACHIA	SP.	ARACEAE	Η	12-Oct-90	NF	NF
1	C62	6022	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	12-Oct-90	Α	NF
1	C62	6023	WITHANIA	SOMNIFERA	SOLANACEAE	S	12-Oct-90	NF	NF
1	C62	6024	WITHANIA	SOMNIFERA	SOLANACEAE	S	12-Oct-90	NF	NF
1	C69	6025	EUTERPE	SP.	ARECACEAE	Р	12-Oct-90	Α	Α
1	C69	6026	OENOCARPUS	MAPORA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C69	6027	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	Α	Α
1	C69	6028	ARENGA	PINNATA	ARECACEAE	Р	12-Oct-90	Α	Α
1	C69	6029	MAURITIA	FLEXUOSA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C69	6030	INGA	SP.	FABACEAE	Т	12-Oct-90	Α	NF
1	C69	6031	WODYETIA	BIFURCATA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C69	6032	MAURITIA	FLEXUOSA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C69	6033	INGA	SP.	FABACEAE	Т	12-Oct-90	Α	Α
1	C69	6034	WODYETIA	BIFURCATA	ARECACEAE	Р	12-Oct-90	Α	Α
1	C69	6035	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	Α	NF
1	C69	6036	SPATHODEA	CAMPANULATA	BIGNONIACEAE	Т	12-Oct-90	Α	Α
1	C76	6037	MANGIFERA	INDICA	ANACARDIACEAE	Т	12-Oct-90	Α	D
1	C76	6038	JESSENIA	BATAUA	ARECACEAE	Р	12-Oct-90	Α	NF
1	C70	6039	SYZYGIUM	JAMBOS	MYRTACEAE	Т	12-Oct-90	Α	NF

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C77	6040	INGA	SP.	FABACEAE	T	12-Oct-90	Α	A
1	C69	6041	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	12-Oct-90	Α	Α
1	C70	6042	UNKNOWN	UNKNOWN	LILIACEAE	U	12-Oct-90	NF	NF
1	C70	6043	UNKNOWN	UNKNOWN	LILIACEAE	U	12-Oct-90	NF	NF
1	C69	6044	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	12-Oct-90	NF	NF
1	C70	6045	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	Α	NF
1	C70	6046	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	Α	Α
1	C70	6047	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	12-Oct-90	Α	Α
1	C70	6048	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	12-Oct-90	NF	NF
1	C70	6049	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	Α
1	C70	6050	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	12-Oct-90	NF	NF
1	C71	6051	EUGENIA	AGGREGATA	MYRTACEAE	Т	12-Oct-90	D	NF
1	C71	6052	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	D	NF
1	C70	6053	JESSENIA	BATAUA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C70	6054	COLOCASIA	ESCULENTA	ARACEAE	Η	12-Oct-90	Α	Α
1	C71	6055	PHILLYREA	AUGUSTIFOLIA	OLEACEAE	Т	12-Oct-90	D	NF
1	C71	6056	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	Α	Α
1	C70	6057	JESSENIA	BATAUA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C71	6058	PTEROCARPUS	INDICUS	FABACEAE	Т	12-Oct-90	Α	Α
1	C71	6059	PSYCHOTRIA	SP.	RUBIACEAE	Т	12-Oct-90	Α	Α
1	C71	6060	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	Α	NF
1	C64	6061	PSIDIUM	GUAJAVA	MYRTACEAE	Т	12-Oct-90	Α	Α
1	C64	6062	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	Α	Α
1	C64	6063	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	12-Oct-90	NF	NF
1	C63	6064	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	D
1	C63	6065	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	12-Oct-90	NF	D
1	C63	6066	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	12-Oct-90	NF	D
1	C70	6067	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	12-Oct-90	NF	D

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C70	6068	SYZYGIUM	JAMBOS	MYRTACEAE	T	12-Oct-90	Α	D
1	C70	6069	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	Α
1	C70	6070	COSTUS	SP.	ZINGIBERACEAE	Η	12-Oct-90	Α	Α
1	C70	6071	SPARTINA	SP.	POACEAE	R	12-Oct-90	NF	NF
1	C70	6072	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	Α
1	C70	6073	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	Α
1	C69	6074	CURCUMA	DOMESTICA	ZINGIBERACEAE	Η	12-Oct-90	NF	Α
1	C83	6075	COSTUS	SCABER	ZINGIBERACEAE	Η	12-Oct-90	NF	Α
1	C70	6076	MAURITIA	FLEXUOSA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C70	6077	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	Α
1	C70	6078	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	12-Oct-90	Α	Α
1	C70	6079	PTEROCARPUS	INDICUS	FABACEAE	Т	12-Oct-90	Α	Α
1	C70	6080	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C69	6081	PACHIRA	AQUATICA	BOMBACACEAE	Т	12-Oct-90	Α	Α
1	C69	6082	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	12-Oct-90	Α	Α
1	C69	6083	DIEFFENBACHIA	SP.	ARACEAE	Η	12-Oct-90	Α	Α
1	C69	6084	SYZYGIUM	JAMBOS	MYRTACEAE	Т	12-Oct-90	Α	D
1	C62	6085	EUGENIA	AGGREGATA	MYRTACEAE	Т	12-Oct-90	NF	NF
1	C62	6086	DIEFFENBACHIA	SP.	ARACEAE	Η	12-Oct-90	Α	NF
1	C83	6087	PASSIFLORA	MALIFORMIS	PASSIFLORACEAE	С	12-Oct-90	NF	D
1	C63	6088	MANGIFERA	INDICA	ANACARDIACEAE	Т	12-Oct-90	Α	D
1	C63	6089	BIXA	ORELLANA	BIXACEAE	Т	12-Oct-90	Α	Α
1	C63	6090	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	Α	Α
1	C70	6091	SOCRATEA	EXORRHIZA	ARECACEAE	Р	12-Oct-90	Α	NF
1	C70	6092	SPATHIPHYLLUM	SP.	ARACEAE	Н	12-Oct-90	Α	Α
1	C7 0	6093	SYZYGIUM	JAMBOS	MYRTACEAE	Т	12-Oct-90	Α	Α
1	C70	6094	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	Α	Α
1	C7 0	6095	JESSENIA	BATAUA	ARECACEAE	Р	12-Oct-90	NF	NI

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C69	6096	GLOBBA	SP.	ZINGIBERACEAE	H	12-Oct-90	NF	NF
1	C69	6097	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C70	6099	SYZYGIUM	JAMBOS	MYRTACEAE	Т	12-Oct-90	NF	NF
1	C76	6100	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	12-Oct-90	NF	NF
1	C76	6101	MALPIGHIA	GLABRA	MALPIGHIACEAE	S	12-Oct-90	Α	Α
1	C76	6102	TABEBUIA	HETEROPHYLLA	BIGNONIACEAE	Т	12-Oct-90	Α	NF
1	C76	6103	MANILKARA	ZAPOTA	SAPOTACEAE	Т	12-Oct-90	Α	Α
1	C76	6104	ELAEAGNUS	PHILIPPENSIS	ELAEAGNACEAE	Т	12-Oct-90	Α	NF
1	C76	6105	OENOCARPUS	BACABA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C76	6106	BRUNFELSIA	UNDULATA	SOLANACEAE	S	12-Oct-90	Α	Α
1	C76	6107	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	12-Oct-90	D	NF
1	C76	6108	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	12-Oct-90	Α	NF
1	C76	6109	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	D
1	C76	6110	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C76	6111	TABEBUIA	HETEROPHYLLA	BIGNONIACEAE	Т	12-Oct-90	Α	D
1	C76	6112	GARCINIA	TINCTORIA	CLUSIACEAE	Т	12-Oct-90	Α	Α
1	C76	6113	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S	12-Oct-90	Α	Α
1	C76	6114	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C76	6115	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C76	6116	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C76	6117	BACTRIS	GASIPAES	ARECACEAE	Р	12-Oct-90	NF	NF
1	C77	6118	BACTRIS	GASIPAES	ARECACEAE	Р	12-Oct-90	NF	D
1	C76	6119	PHILLYREA	AUGUSTIFOLIA	OLEACEAE	Т	12-Oct-90	Α	D
1	C76	6120	COFFEA	ARABICA	RUBIACEAE	S	12-Oct-90	Α	Α
1	C76	6121	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	12-Oct-90		NF
1	C76	6122	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	12-Oct-90	Α	Α
1	C76	6123	CEDRELA	SP.	MELIACEAE	Т	12-Oct-90	Α	D
1	C76	6124	ASPARAGUS	DENSIFLORUS	ASPARAGACEAE	Н	12-Oct-90	NF	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C77	6125	SYZYGIUM	JAMBOS	MYRTACEAE	Т	12-Oct-90	NF	D
1	C83	6126	CISSUS	GONGYLODES	VITACEAE	С	12-Oct-90	Α	Α
1	C84	6127	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	12-Oct-90	Α	NF
1	C83	6128	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Η	12-Oct-90	NF	D
1	C83	6129	PTERIS	LONGIFOLIA	ADIANTACEAE	Η	12-Oct-90	NF	D
1	C83	6130	SCINDAPSUS	AUREUS	ARACEAE	С	12-Oct-90	NF	Α
1	C83	6131	PHILODENDRON	SP.	ARACEAE	С	12-Oct-90	Α	Α
1	C69	6132	HELICONIA	BOURGAEANA	HELICONIACEAE	G	12-Oct-90	Α	Α
1	C76	6133	RHAPIS	EXCELSA	ARECACEAE	Р	12-Oct-90	NF	NF
1	C76	6134	COSTUS	SP.	ZINGIBERACEAE	Η	12-Oct-90	NF	
1	C76	6135	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Oct-90	NF	NF
1	C76	6136	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	12-Oct-90	NF	D
1	C76	6137	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	12-Oct-90	Α	Α
1	C76	6138	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	NF	D
1	C76	6139	COSTUS	SCABER	ZINGIBERACEAE	Н	12-Oct-90	Α	Α
1	C76	6140	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	NF	NF
1	C76	6141	PALISOTA	SCHWEINFURTHII	COMMELINACEAE	Η	12-Oct-90	NF	NF
1	C76	6142	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	12-Oct-90	Α	D
1	C83	6143	REBUTIA	SP.	CACTACEAE	Ε	12-Oct-90	NF	D
1	C83	6144	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	12-Oct-90	Α	Α
1	C83	6145	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C83	6146	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	12-Oct-90	Α	Α
1	C83	6147	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	12-Oct-90	NF	D
1	C83	6148	UNKNOWN	UNKNOWN	FABACEAE	Η	12-Oct-90	NF	D
1	C83	6149	HELICONIA	LONGIFLORA	HELICONIACEAE	G	12-Oct-90	NF	D
1	C83	6150	HELICONIA	SP.	HELICONIACEAE	G	12-Oct-90	NF	NF
1	C83	6151	CURCUMA	ROSCOEANA	ZINGIBERACEAE	Н	12-Oct-90	NF	D
1	C83	6152	CURCUMA	ROSCOEANA	ZINGIBERACEAE	Н	12-Oct-90	NF	D

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C76	6153	GLOBBA	SP.	ZINGIBERACEAE	Η	12-Oct-90	NF	NF
1	C83	6154	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	Α	D
1	C83	6155	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C76	6156	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	12-Oct-90	Α	NF
1	C76	6157	MUSA	SAPIENTUM	MUSACEAE	G	12-Oct-90	Α	Α
1	C76	6158	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	NF
1	C76	6159	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	NF
1	C75	6160	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	NF
1	C76	6161	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C76	6162	HELICONIA	LONGIFLORA	HELICONIACEAE	G	12-Oct-90	Α	D
1	C76	6163	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	12-Oct-90	Α	NF
1	C76	6164	CURCUMA	DOMESTICA	ZINGIBERACEAE	Η	12-Oct-90	NF	NF
1	C69	6165	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Н	12-Oct-90	NF	NF
1	C83	6166	MUSA	SP.	MUSACEAE	G	12-Oct-90	NF	NF
1	C83	6167	MALPIGHIA	GLABRA	MALPIGHIACEAE	S	12-Oct-90	NF	NF
1	C83	6168	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C83	6169	GLOBBA	SP.	ZINGIBERACEAE	Н	12-Oct-90	NF	NF
1	C83	6170	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	12-Oct-90	Α	Α
1	C83	6171	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C83	6172	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	12-Oct-90	Α	Α
1	C83	6173	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	NF	NF
1	C90	6174	CURCUMA	DOMESTICA	ZINGIBERACEAE	Н	12-Oct-90		NF
1	C9 0	6175	PASSIFLORA	MALIFORMIS	PASSIFLORACEAE	С	12-Oct-90	D	NF
1	C90	6176	CANNA	EDULIS	CANNACEAE	G	12-Oct-90	Α	Α
1	C90	6177	MUSA	SP.	MUSACEAE	G	12-Oct-90	Α	Α
1	C90	6178	THALIA	GENICULATA	MARANTACEAE	Н	12-Oct-90	D	NF
1	C90	6179	MUSA	TEXTILIS	MUSACEAE	G	12-Oct-90	D	Α
1	C90	6180	MUSA	TEXTILIS	MUSACEAE	G	12-Oct-90	Α	Α

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C90	6181	UNKNOWN	UNKNOWN	UNKNOWN	Ŭ	12-Oct-90	NF	NF
1	C90	6182	PASSIFLORA	EDULIS	PASSIFLORACEAE	С	12-Oct-90	D	NF
1	C90	6183	CARICA	SP.	CARICACEAE	Т	12-Oct-90	NF	NF
1	C90	6184	CARICA	SP.	CARICACEAE	Т	12-Oct-90	NF	NF
1	C91	6185	HEDYCHIUM	SP.	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C91	6186	ZINGIBER	SPECTABILE	ZINGIBERACEAE	G	12-Oct-90	Α	Α
1	C91	6187	HEDYCHIUM	CORNATUM	ZINGIBERACEAE	G	12-Oct-90	NF	Α
1	C91	6188	HEDYCHIUM	CORNATUM	ZINGIBERACEAE	G	13-Oct-90	Α	Α
1	C91	6189	HEDYCHIUM	SP.	ZINGIBERACEAE	G	13-Oct-90	NF	NF
1	C91	6190	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	13-Oct-90	NF	D
1	C91	6191	ZINGIBER	SPECTABILE	ZINGIBERACEAE	G	13-Oct-90	NF	D
1	C91	6192	COSTUS	SP.	ZINGIBERACEAE	Η	13-Oct-90	Α	Α
1	C92	6193	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	NF	NF
1	C92	6194	HELICONIA	CARIBAEA	HELICONIACEAE	G	13-Oct-90	Α	Α
1	C92	6195	COSTUS	SP.	ZINGIBERACEAE	Η	13-Oct-90	Α	NF
1	C92	6196	HELICONIA	SP.	HELICONIACEAE	G	13-Oct-90	NF	Α
1	C92	6197	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	Α	D
1	C92	6198	NORANTEA	GUIANENSIS	MARCGRAVIACEAE	С	13-Oct-90	NF	NF
1	C83	6199	CURCUMA	DOMESTICA	ZINGIBERACEAE	Η	12-Oct-90	NF	D
1	C91	62 00	PASSIFLORA	MALIFORMIS	PASSIFLORACEAE	С	13-Oct-90	NF	D
1	C91	6201	BASELLA	ALBA	BASELLACEAE	С	13-Oct-90	NF	D
1	C92	6202	CERATONIA	SILIQUA	FABACEAE	Т	13-Oct-90	D	NF
1	C92	6203	MUSA	SP.	MUSACEAE	G	13-Oct-90	Α	Α
1	C92	6204	MUSA	SP.	MUSACEAE	G	13-Oct-90	NF	Α
1	C92	6205	MUSA	SP.	MUSACEAE	G	13-Oct-90	NF	Α
1	C92	6206	ALPINIA	SANDERAE	ZINGIBERACEAE	G	13-Oct-90	Α	Α
1	C93	6207	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	13-Oct-90	Α	Α
1	C93	6208	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	NF	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C93	6209	ROYSTONEA	REGIA	ARECACEAE	P	13-Oct-90	A	Α
1	C92	621 0	ANANAS	SP.	BROMELIACEAE	Η	13-Oct-90	NF	NF
1	C92	6211	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	13-Oct-90	Α	NF
1	C92	6212	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	13-Oct-90	Α	Α
1	C92	6213	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Η	13-Oct-90	NF	NF
1	C92	6214	HELICONIA	BICOLOR	HELICONIACEAE	G	13-Oct-90	Α	NF
1	C92	6215	HELICONIA	BICOLOR	HELICONIACEAE	G	13-Oct-90	Α	D
1	C92	6216	PHYTOLACCA	DIOICA	PHYTOLACCACEAE	Т	13-Oct-90	Α	Α
1	C92	6217	ALPINIA	PURPURATA	ZINGIBERACEAE	G	13-Oct-90	Α	Α
1	C92	6218	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Η	13-Oct-90	NF	NF
1	C92	6219	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	13-Oct-90	NF	NF
1	C92	6220	ANNONA	MURICATA	ANNONACEAE	Т	13-Oct-90	NF	D
1	C92	6221	UNKNOWN	UNKNOWN	ARACEAE	U	13-Oct-90		NF
1	C92	6222	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	13-Oct-90	Α	Α
1	C92	6223	UNKNOWN	UNKNOWN	ARACEAE	U	13-Oct-90		NF
1	C92	6224	UNKNOWN	UNKNOWN	ARACEAE	U	13-Oct-90		NF
1	C92	6225	UNKNOWN	UNKNOWN	ARACEAE	U	13-Oct-90		NF
1	C92	6226	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	13-Oct-90	Α	D
1	C92	6227	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	13-Oct-90	D	NF
1	C92	6228	MELIA	AZEDARACH	MELIACEAE	Т	13-Oct-90	D	NF
1	C91	6229	HEDYCHIUM	CORNATUM	ZINGIBERACEAE	G	13-Oct-90	Α	D
1	C91	6230	ANNONA	MURICATA	ANNONACEAE	Т	13-Oct-90	Α	D
1	C91	6231	CORDIA	ALLIODORA	BORAGINACEAE	Т	13-Oct-90	D	D
1	C91	6232	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	13-Oct-90	NF	D
1	C91	6233	BASELLA	ALBA	BASELLACEAE	С	13-Oct-90	NF	D
1	C91	6234	COSTUS	SP.	ZINGIBERACEAE	Н	13-Oct-90	NF	Α
1	C91	6235	COSTUS	SP.	ZINGIBERACEAE	Н	13-Oct-90	Α	Α
1	C91	6236	PASSIFLORA	MALIFORMIS	PASSIFLORACEAE	С	13-Oct-90	NF	D

Table B-1-- continued.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C91	6237	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S	13-Oct-90	A	D
1	C91	6238	HEDYCHIUM	AURANTIACA	ZINGIBERACEAE	G	13-Oct-90	NF	NF
1	C91	6239	BIXA	ORELLANA	BIXACEAE	Т	13-Oct-90	Α	D
1	C91	6240	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	D	D
1	C91	6241	ASPLENIUM	NIDUS	ASPLENIACEAE	Ε	13-Oct-90	D	D
1	C91	6242	COSTUS	SP.	ZINGIBERACEAE	Η	12-Oct-90	Α	Α
1	C91	6243	CYATHEA	COOPERI	CYATHEACEAE	Р	12-Oct-90	NF	NF
1	C91	6244	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	12-Oct-90	NF	NF
1	C91	6245	LEUCAENA	GLAUCA	FABACEAE	Т	12-Oct-90	Α	Α
1	C91	6246	PSIDIUM	GUAJAVA	MYRTACEAE	Т	12-Oct-90	NF	D
1	C90	6247	HELICONIA	SP.	HELICONIACEAE	G	12-Oct-90	NF	NF
1	C90	6248	BASELLA	ALBA	BASELLACEAE	С	12-Oct-90	NF	NF
1	C90	6249	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	12-Oct-90	Α	D
1	C90	6250	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	12-Oct-90	NF	NF
1	C90	6251	CARLUDOVICA	PALMATA	CYCLANTHACEAE	Р	12-Oct-90	Α	Α
1	C84	6252	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	12-Oct-90	Α	Α
1	C90	6253	ANNONA	MURICATA	ANNONACEAE	Т	12-Oct-90	Α	NF
1	C90	6254	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	12-Oct-90	Α	Α
1	C9 0	6255	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	12-Oct-90	Α	D
1	C9 0	6256	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	12-Oct-90	Α	NF
1	C90	6257	PSIDIUM	GUAJAVA	MYRTACEAE	Т	12-Oct-90	NF	NF
1	C9 0	6258	COSTUS	GLOBOSUS	ZINGIBERACEAE	Η	12-Oct-90	Α	D
1	C90	6259	BIXA	ORELLANA	BIXACEAE	Т	12-Oct-90	D	NF
1	C9 0	6260	PHILODENDRON	ANGUSTATUM	ARACEAE	С	12-Oct-90	NF	NF
1	C83	6261	ANNONA	MURICATA	ANNONACEAE	Т	12-Oct-90	Α	Α
1	C83	6262	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	12-Oct-90	NF	D
1	C83	6263	PERSEA	AMERICANA	LAURACEAE	Т	12-Oct-90	D	D
1	C83	6264	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C83	6265	CRESCENTIA	CUJETE	BIGNONIACEAE	T	12-Oct-90	A	Α
1	C83	6266	CARICA	PENTAGONA	CARICACEAE	Т	12-Oct-90	NF	D
1	C83	6267	CARLUDOVICA	PALMATA	CYCLANTHACEAE	Р	12-Oct-90	Α	Α
1	C83	6268	HYMENAEA	COURBARIL	FABACEAE	Т	12-Oct-90	NF	D
1	C83	6269	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	12-Oct-90	NF	D
1	C83	6270	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	12-Oct-90	NF	D
1	C83	6271	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	D
1	C83	6272	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	12-Oct-90	NF	NF
1	C83	6273	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C83	6274	TIBOUCHINA	INTEROMALLA	MELASTOMATACEA	ES	12-Oct-90	NF	D
1	C83	6275	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	12-Oct-90	NF	NF
1	C83	6276	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	NF
1	C83	6277	CARICA	PENTAGONA	CARICACEAE	Т	12-Oct-90	NF	D
1	C83	6278	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	12-Oct-90	Α	D
1	C83	6279	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	NF	D
1	C83	6280	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	12-Oct-90	Α	D
1	C83	6281	CEDRELA	SP.	MELIACEAE	Т	12-Oct-90	Α	Α
1	C83	6282	BUCHENAVIA	CAPITATA	COMBRETACEAE	Т	12-Oct-90	NF	D
1	C83	6283	CASIMIROA	EDULIS	RUTACEAE	Т	12-Oct-90	D	D
1	C83	6284	WITHANIA	SOMNIFERA	SOLANACEAE	S	12-Oct-90	NF	NF
1	C83	6285	DERRIS	ELLIPTICA	FABACEAE	С	12-Oct-90	Α	Α
1	C83	6286	MUSA	PARADISIACA	MUSACEAE	G	12-Oct-90	Α	Α
1	C83	6287	MELIA	AZEDARACH	MELIACEAE	Т	12-Oct-90	Α	Α
1	C83	6288	UNKNOWN	UNKNOWN	UNKNOWN	U	12-Oct-90	Α	Α
1	C83	6289	MUSA	PARADISIACA	MUSACEAE	G	12-Oct-90	Α	Α
1	C93	6290	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	12-Oct-90	Α	D
1	C83	6291	MELIA	AZEDARACH	MELIACEAE	Т	12-Oct-90	Α	Α
1	C83	6292	BAUHINIA	SP.	FABACEAE	Т	12-Oct-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C83	6293	PERSEA	AMERICANA	LAURACEAE	T	12-Oct-90	A	A
1	C83	6294	PHILODENDRON	ANGUSTATUM	ARACEAE	С	12-Oct-90	NF	Α
1	C84	6295	GNETUM	SP.	GNETACEAE	Т	12-Oct-90	NF	NF
1	C84	6296	ANNONA	MURICATA	ANNONACEAE	Т	12-Oct-90	Α	Α
1	C84	6297	CYATHEA	ARBOREA	CYATHEACEAE	Р	12-Oct-90	NF	NF
1	C84	6298	INGA	SP.	FABACEAE	Т	12-Oct-90	Α	Α
1	C84	6299	CALLISIA	FRAGRANS	COMMELINACEAE	Η	12-Oct-90	NF	F
1	C84	6300	CALLISIA	FRAGRANS	COMMELINACEAE	Η	12-Oct-90	NF	NF
1	C77	6301	UNKNOWN	UNKNOWN	FABACEAE	Η	12-Oct-90	NF	D
1	C84	6302	MARCGRAVIA	RECTIFLORA	MARCGRAVIACEAE	С	13-Oct-90	NF	NF
1	C84	6303	CRESCENTIA	CUJETE	BIGNONIACEAE	Т	13-Oct-90	Α	Α
1	C84	6304	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	NF	NF
1	C84	6305	CNEMIDARIA	HORRIDA	CYATHEACEAE	Р	13-Oct-90	NF	NF
1	C84	6306	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	NF	NF
1	C84	6307	BEGONIA	SP.	BEGONIACEAE	Η	13-Oct-90	NF	NF
1	C91	6308	LEUCAENA	GLAUCA	FABACEAE	Т	13-Oct-90	Α	Α
1	C85	6309	UNKNOWN	UNKNOWN	UNKNOWN	U	13-Oct-90	NF	D
1	C85	6310	BASELLA	ALBA	BASELLACEAE	С	13-Oct-90	NF	NF
1	C92	6311	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S	13-Oct-90	Α	Α
1	C92	6312	CLITORIA	RACEMOSA	FABACEAE	Т	13-Oct-90	Α	Α
1	C92	6313	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	13-Oct-90	NF	NF
1	C92	6314	PHILODENDRON	CV 'WEND-IMBE'	ARACEAE	С	13-Oct-90	Α	Α
1	C85	6315	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	Α	NI
1	C85	6316	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	Α	Α
1	C85	6317	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	14-Oct-90	NF	D
1	C85	6318	MAURITIA	FLEXUOSA	ARECACEAE	Р	14-Oct-90	NF	NF
1	C85	6319	CAJANUS	CAJAN	FABACEAE	Н	14-Oct-90	NF	D
1	C85	6320	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	14-Oct-90	Α	Α

Table B-1-- continued.

Planting	Cell	Survey No.	· · · · · · · · · · · · · · · · · · ·	Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	6321	MAURITIA	FLEXUOSA	ARECACEAE	Р	14-Oct-90	NF	NF
1	C85	6322	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	NF
1	C85	6323	MAURITIA	FLEXUOSA	ARECACEAE	Р	14-Oct-90	NF	NF
1	C92	6324	ROYSTONEA	REGIA	ARECACEAE	Р	14-Oct-90	Α	Α
1	C86	6325	LEUCAENA	GLAUCA	FABACEAE	Т	14-Oct-90	Α	D
1	C86	6326	PHILODENDRON	RUBENS	ARACEAE	С	14-Oct-90	Α	Α
1	C86	6327	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	NF
1	C93	6328	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	D
1	C93	6329	PHILODENDRON	GRAZIELAE	ARACEAE	С	14-Oct-90	NF	D
1	C93	6330	PERSEA	AMERICANA	LAURACEAE	Т	14-Oct-90	NF	D
1	C93	6331	ROYSTONEA	REGIA	ARECACEAE	Р	14-Oct-90	Α	Α
1	C93	6332	CARICA	PAPAYA	CARICACEAE	Т	14-Oct-90	NF	D
1	C93	6333	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	14-Oct-90	NF	D
1	C86	6334	DIOSCOREA	ALATA	DIOSCOREACEAE	С	14-Oct-90	NF	NF
1	C86	6335	CARICA	PAPAYA	CARICACEAE	Т	14-Oct-90	NF	NF
1	C86	6336	EPHEDRA	SP.	EPHEDRACEAE	S	14-Oct-90	NF	NF
1	C86	6337	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	14-Oct-90	Α	Α
1	C86	6338	ANNONA	MURICATA	ANNONACEAE	Т	14-Oct-90	Α	NF
1	C86	6339	CEIBA	PENTANDRA	BOMBACACEAE	Т	14-Oct-90	Α	Α
1	C86	6340	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Η	14-Oct-90	NF	NF
1	C86	6341	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	14-Oct-90	NF	NF
1	C86	6342	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	NF
1	C86	6343	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	NF
1	C86	6344	PHILODENDRON	RUBENS	ARACEAE	С	14-Oct-90	Α	D
1	C86	6345	ANNONA	MURICATA	ANNONACEAE	Т	14-Oct-90	Α	D
1	C86	6346	PHILODENDRON	ANGUSTATUM	ARACEAE	С	14-Oct-90	NF	NF
1	C86	6347	ANNONA	MURICATA	ANNONACEAE	Т	14-Oct-90	Α	D
1	C86	6348	PHILODENDRON	GRAZIELAE	ARACEAE	С	14-Oct-90	NF	NF

Table B-1-- continued.

Table D		<u>manuca.</u>			. <u></u>				
Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C93	6349	UNKNOWN	UNKNOWN	UNKNOWN	Ū	14-Oct-90	NF	D
1	C93	6350	PHILODENDRON	ANGUSTATUM	ARACEAE	С	14-Oct-90	NF	D
1	C93	6351	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	14-Oct-90	NF	D
1	[·] C93	6352	CARICA	РАРАҮА	CARICACEAE	Т	14-Oct-90	NF	D
1	C93	6353	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Н	14-Oct-90		D
1	C93	6354	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	14-Oct-90	NF	D
1	C93	6355	OENOCARPUS	BACABA	ARECACEAE	Р	14-Oct-90	Α	Α
1	C93	6356	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	14-Oct-90	NF	Α
1	C93	6357	ENTEROLOBIUM	CYCLOCARPUM	FABACEAE	Т	14-Oct-90	Α	Α
1	C93	6358	CLITORIA	RACEMOSA	FABACEAE	Т	14-Oct-90	Α	D
1	C93	6359	ANACARDIUM	OCCIDENTALE	ANACARDIACEAE	Т	14-Oct-90	Α	D
1	C86	6360	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	14-Oct-90	NF	NF
1	C86	6361	ZAMIOCULCAS	ZAMIIFOLIA	ARACEAE	Η	14-Oct-90	Α	Α
1	C93	6362	CERATONIA	SILIQUA	FABACEAE	Т	14-Oct-90	NF	D
1	C93	6363	BRUNFELSIA	UNDULATA	SOLANACEAE	S	14-Oct-90	D	D
1	C94	6364	MANGIFERA	INDICA	ANACARDIACEAE	Т	14-Oct-90	D	NF
1	C94	6365	UNKNOWN	UNKNOWN	UNKNOWN	U	14-Oct-90	NF	NF
1	C86	6366	ASPLENIUM	NIDUS	ASPLENIACEAE	Ε	14-Oct-90	Α	D
1	C86	6367	PERSEA	AMERICANA	LAURACEAE	Т	14-Oct-90	Α	NF
1	C86	6368	ASPLENIUM	NIDUS	ASPLENIACEAE	Ε	14-Oct-90	NF	NF
1	C87	6369	PSIDIUM	GUAJAVA	MYRTACEAE	Т	14-Oct-90	D	D
1	C86	6370	CEIBA	PENTANDRA	BOMBACACEAE	Т	14-Oct-90	Α	Α
1	C86	6371	PHILODENDRON	SELLOUM	ARACEAE	С	14-Oct-90	Α	D
1	C86	6372	PTERIS	CRETICA	ADIANTACEAE	Η	14-Oct-90	NF	NF
1	C87	6373	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	14-Oct-90	Α	Α
1	C87	6374	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	14-Oct-90	Α	Α
1	C87	6375	PITHECOCTENIUM	SP.	BIGNONIACEAE	С	14-Oct-90	Α	D
1	C87	6376	POGOSTEMON	HEYNEANUS	LAMIACEAE	S	14-Oct-90	NF	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C86	6377	PTERIS	CRETICA	ADIANTACEAE	H	14-Oct-90	NF	D
1	C86	6378	CLITORIA	RACEMOSA	FABACEAE	Т	15-Oct-90	Α	Α
1	C86	6379	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	15-Oct-90	Α	Α
1	C86	6380	UNKNOWN	UNKNOWN	ARECACEAE	Р	15-Oct-90	Α	Α
1	C86	6381	PHILODENDRON	CV 'WEND-IMBE'	ARACEAE	С	15-Oct-90	Α	Α
1	C86	6382	UNKNOWN	UNKNOWN	FABACEAE	Н	15-Oct-90	Α	D
1	C87	6383	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	15-Oct-90	Α	Α
1	C86	6384	PANICUM	SP.	POACEAE	R	15-Oct-90	NF	NF
1	C86	6385	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	15-Oct-90	D	NF
1	C87	6386	CYATHEA	COOPERI	CYATHEACEAE	Р	15-Oct-90	D	D
1	C87	6387	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	15-Oct-90	Α	Α
1	C87	6388	HAMELIA	PATENS	RUBIACEAE	S	15-Oct-90	D	D
1	C87	6389	UNKNOWN	UNKNOWN	FABACEAE	Н	15-Oct-90	Α	NF
1	C84	6390	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	15-Oct-90	NF	NF
1	C87	6391	PERSEA	AMERICANA	LAURACEAE	Т	15-Oct-90	Α	Α
1	C87	6392	POGOSTEMON	CABLIN	LAMIACEAE	S	15-Oct-90	NF	NF
1	C87	6393	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	15-Oct-90	Α	Α
1	C87	6394	PERSEA	AMERICANA	LAURACEAE	Т	15-Oct-90	NF	NF
1	C87	6395	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C87	6396	BAUHINIA	SP.	FABACEAE	S	15-Oct-90	NF	NF
1	C87	6397	ARENGA	PINNATA	ARECACEAE	Р	15-Oct-90	Α	Α
1	C87	6398	PRUNUS	TOMENTOSA	ROSACEAE	Т	15-Oct-90	NF	NF
1	C87	6399	LEUCAENA	GLAUCA	FABACEAE	Т	15-Oct-90	Α	D
1	C87	6400	ARENGA	PINNATA	ARECACEAE	Р	15-Oct-90	Α	Α
1	C94	6401	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	D	NF
1	C94	6402	ASPLENIUM	NIDUS	ASPLENIACEAE	Ε	15-Oct-90	NF	NF
1	C94	6403	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	15-Oct-90	Α	Α
1	C94	6404	ROLLINIA	MUCOSA	ANNONACEAE	Т	15-Oct-90	А	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C94	6405	PEPEROMIA	SP.	PIPERACEAE	Н	15-Oct-90	NF	NF
1	C94	6406	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C94	6407	ALPINIA	PURPURATA	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C94	6408	HELICONIA	PSITTACORUM	HELICONIACEAE	G	15-Oct-90	Α	D
1	C94	6409	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	Α
1	C93	6410	ROLLINIA	MUCOSA	ANNONACEAE	Т	15-Oct-90	Α	D
1	C94	6411	CALATHEA	ZEBRINA	MARANTACEAE	Η	15-Oct-90	Α	NF
1	C94	6412	ALPINIA	SANDERAE	ZINGIBERACEAE	G	15-Oct-90	NF	NF
1	C93	6413	CALATHEA	PANAMENSIS	MARANTACEAE	Н	15-Oct-90	Α	Α
1	C93	6414	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C93	6415	UNKNOWN	UNKNOWN	MARANTACEAE		15-Oct-90	NF	D
1	C93	6416	UNKNOWN	UNKNOWN	MARANTACEAE	Н	15-Oct-90	Α	Α
1	C93	6417	HELICONIA	BICOLOR	HELICONIACEAE	G	15-Oct-90	NF	D
1	C93	6418	CALATHEA	PANAMENSIS	MARANTACEAE	Η	15-Oct-90	Α	Α
1	C93	6419	CALATHEA	PANAMENSIS	MARANTACEAE	Н	15-Oct-90	Α	Α
1	C93	6420	UNKNOWN	UNKNOWN	MARANTACEAE		15-Oct-90	Α	D
1	C93	6421	COSTUS	SP.	ZINGIBERACEAE	Н	15-Oct-90	Α	Α
1	C93	6422	RENEALMIA	BATTENBERGIANA	ZINGIBERACEAE	Н	15-Oct-90	NF	D
1	C93	6423	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	15-Oct-90	NF	D
1	C93	6424	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	D
1	C93	6425	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	15-Oct-90	NF	D
1	C93	6426	CANNA	INDICA	CANNACEAE	G	15-Oct-90	NF	D
1	C93	6427	MUSA	TEXTILIS	MUSACEAE	G	15-Oct-90	Α	Α
1	C93	6428	PHILODENDRON	SP.	ARACEAE	С	15-Oct-90	Α	D
1	C94	6429	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C94	6430	LYCIANTHES	RANTONNETII	SOLANACEAE	S	15-Oct-90	Α	Α
1	C94	6431	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	15-Oct-90	NF	NF
1	C94	6432	RENEALMIA	ALPINIA	ZINGIBERACEAE	G	15-Oct-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C94	6433	PASSIFLORA	EDULIS	PASSIFLORACEAE	С	15-Oct-90	NF	NF
1	C94	6434	COUROUPITA	GUIANENSIS	LECYTHIDACEAE	Т	15-Oct-90	Α	Α
1	C94	6435	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Η	15-Oct-90	NF	NF
1	C94	6436	CANNA	INDICA	CANNACEAE	G	15-Oct-90	NF	NF
1	C94	6437	ZAMIOCULCAS	ZAMIIFOLIA	ARACEAE	Η	15-Oct-90	Α	Α
1	C94	6438	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	15-Oct-90	NF	NF
1	C94	6439	MANILKARA	ZAPOTA	SAPOTACEAE	Т	15-Oct-90	NF	NF
1	C94	6440	ARENGA	PINNATA	ARECACEAE	Р	15-Oct-90	Α	Α
1	C94	6441	OENOCARPUS	MAPORA	ARECACEAE	Р	15-Oct-90	Α	NF
1	C94	6442	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	D	NF
1	C94	6443	RICINUS	COMMUNIS	EUPHORBIACEAE	Т	15-Oct-90	Α	NF
1	C94	6444	ILEX	PARAGUARIENSIS	AQUIFOLIACEAE	Т	15-Oct-90	NF	NF
1	C94	6445	HYDROCOTYLE	ASIATICA	APIACEAE	Η	15-Oct-90	NF	NF
1	C94	6446	ANTHURIUM	DIGITATUM	ARACEAE	Н	15-Oct-90	Α	Α
1	C94	6447	COMMELINA	TUBEROSA	COMMELINACEAE	Η	15-Oct-90		NF
1	C94	6448	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	15-Oct-90	Α	Α
1	C94	6449	ARENGA	PINNATA	ARECACEAE	Р	15-Oct-90	Α	Α
1	C94	6450	CEIBA	PENTANDRA	BOMBACACEAE	Т	15-Oct-90	Α	Α
1	C94	6451	MAURITIA	FLEXUOSA	ARECACEAE	Р	15-Oct-90	Α	Α
1	C94	6452	ANNONA	SP.	ANNONACEAE	Т	15-Oct-90	NF	NF
1	C94	6453	CEDRELA	SP.	MELIACEAE	Т	15-Oct-90	Α	Α
1	C94	6454	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	D
1	C94	6455	COMMELINA	TUBEROSA	COMMELINACEAE	Η	15-Oct-90		NF
1	C95	6456	COSTUS	ELATUS	ZINGIBERACEAE	Н	15-Oct-90	NF	D
1	C95	6457	CARICA	PENTAGONA	CARICACEAE	Т	15-Oct-90	NF	NF
1	C95	6458	HELICONIA	SP.	HELICONIACEAE	G	15-Oct-90	Α	Α
1	C95	6459	PIPER	NIGRUM	PIPERACEAE	С	15-Oct-90	NF	D
1	C95	6460	BIXA	ORELLANA	BIXACEAE	Т	15-Oct-90	Α	D

Table B-1-- <u>continued</u>,

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C95	6461	CARICA	PENTAGONA	CARICACEAE	T	15-Oct-90	NF	NF
1	C95	6462	PHOENIX	ROEBELENII	ARECACEAE	Р	15-Oct-90	Α	Α
1	C95	6463	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Η	15-Oct-90	NF	NF
1	C95	6464	COSTUS	ELATUS	ZINGIBERACEAE	Η	15-Oct-90	NF	NF
1	C95	6465	BIXA	ORELLANA	BIXACEAE	Т	15-Oct-90	Α	D
1	C95	6466	KAEMPFERIA	ELEGANS	ZINGIBERACEAE	Н	15-Oct-90	NF	NF
1	C95	6467	CINNAMOMUM	ZEYLANICUM	LAURACEAE	Т	15-Oct-90	Α	Α
1	C95	6468	CYATHEA	COOPERI	CYATHEACEAE	Р	15-Oct-90	NF	NF
1	C95	6469	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	15-Oct-90	NF	NF
1	C87	6470	PTERIS	CRETICA	ADIANTACEAE	Н	15-Oct-90	NF	NF
1	C88	6471	BACTRIS	GASIPAES	ARECACEAE	Р	15-Oct-90	Α	NF
1	C88	6472	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	15-Oct-90	Α	Α
1	C88	6473	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	15-Oct-90	Α	Α
1	C88	6474	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C88	6475	PITHECOCTENIUM	SP.	BIGNONIACEAE	С	15-Oct-90	Α	D
1	C88	6476	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C88	6477	HYDROCOTYLE	ASIATICA	APIACEAE	Н	15-Oct-90	NF	NF
1	C88	6478	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	15-Oct-90	Α	NF
1	C88	6479	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	15-Oct-90	NF	NF
1	C88	6480	PASSIFLORA	EDULIS	PASSIFLORACEAE	С	15-Oct-90	Α	NF
1	C88	6481	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	15-Oct-90	Α	Α
1	C88	6482	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Η	15-Oct-90	NF	NF
1	C88	6483	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C88	6484	DIOSCOREA	ALATA	DIOSCOREACEAE	С	15-Oct-90	NF	Α
1	C95	6485	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	15-Oct-90	NF	NF
1	C95	6486	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	15-Oct-90	NF	NF
1	C95	6487	HYDROCOTYLE	ASIATICA	APIACEAE	Η	15-Oct-90	NF	NF
1	C95	6488	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	15-Oct-90	Α	Α

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C95	6489	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	15-Oct-90	Α	Α
1	C95	6490	MANIHOT	ESCULENTA	EUPHORBIACEAE	S	15-Oct-90	Α	Α
1	C95	6491	STRELITZIA	REGINAE	STRELITZIACEAE	G	15-Oct-90	Α	Α
1	C95	6492	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C95	6493	STRELITZIA	REGINAE	STRELITZIACEAE	G	15-Oct-90	Α	Α
1	C95	6494	STRELITZIA	REGINAE	STRELITZIACEAE	G	15-Oct-90	Α	Α
1	C95	6495	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C95	6496	STRELITZIA	REGINAE	STRELITZIACEAE	G	15-Oct-90	Α	Α
1	C95	6497	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C95	6498	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	15-Oct-90	Α	Α
1	C95	6499	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	15-Oct-90	Α	Α
1	C88	6500	HELICONIA	LONGIFLORA	HELICONIACEAE	G	15-Oct-90	Α	NF
1	C88	6501	PASSIFLORA	MALIFORMIS	PASSIFLORACEAE	С	15-Oct-90	NF	NF
1	C88	6502	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	15-Oct-90	NF	NF
1	C88	6503	MUSA	SP.	MUSACEAE	G	15-Oct-90	D	NF
1	C88	6504	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C88	6505	HELICONIA	CARIBAEA	HELICONIACEAE	G	15-Oct-90	Α	Α
1	C88	6506	CATHARANTHUS	ROSEUS	APOCYNACEAE	Η	15-Oct-90	NF	NF
1	C88	6507	PITHECOCTENIUM	SP.	BIGNONIACEAE	С	15-Oct-90	D	NF
1	C88	6508	PTERIS	LONGIFOLIA	ADIANTACEAE	Н	15-Oct-90	NF	NF
1	C88	6509	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C87	6510	CHRYSALIDOCARPL	IS LUTESCENS	ARECACEAE	S	18-Oct-90	D	D
1	C88	6511	MONSTERA	DELICIOSA	ARACEAE	С	15-Oct-90	Α	NF
1	C87	6512	LEUCAENA	GLAUCA	FABACEAE	Т	18-Oct-90	Α	D
1	C87	6513	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	18-Oct-90	NF	NF
1	C87	6514	PTERIS	CRETICA	ADIANTACEAE	Н	18-Oct-90	NF	NF
1	C87	6515	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	18-Oct-90	Α	D
1	C87	6516	PERSEA	AMERICANA	LAURACEAE	Т	18-Oct-90	NF	D
1	C87	6516	PERSEA	AMERICANA	LAURACEAE	Т	18-Oct-90	NF	

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C87	6517	PERSEA	AMERICANA	LAURACEAE	T	18-Oct-90	NF	D
1	C87	6518	DILLENIA	INDICA	DILLENIACEAE	Т	18-Oct-90	NF	D
1	C87	6519	UNKNOWN	UNKNOWN	UNKNOWN	U	18-Oct-90	Α	NF
1	C87	6520	MONSTERA	DELICIOSA	ARACEAE	С	18-Oct-90	Α	NF
1	C87	6521	PSIDIUM	GUAJAVA	MYRTACEAE	Т	18-Oct-90	D	D
1	C87	6522	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	15-Oct-90	Α	Α
1	C87	6523	MALPIGHIA	EMARGINATA	MALPIGHIACEAE	Т	15-Oct-90	Α	D
1	C87	6524	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	15-Oct-90	NF	NF
1	C87	6525	QUASSIA	AMARA	SIMAROUBACEAE	S	15-Oct-90	NF	NF
1	C87	6526	PANICUM	SP.	POACEAE	R	15-Oct-90	NF	D
1	C87	6527	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	15-Oct-90	Α	D
1	C87	6528	ETLINGERA	ELATIOR	ZINGIBERACEAE	Η	15-Oct-90	NF	NF
1	C88	6529	ETLINGERA	ELATIOR	ZINGIBERACEAE	Н	15-Oct-90	Α	NF
1	C88	6530	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	15-Oct-90	Α	Α
1	C88	6531	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	D
1	C88	6532	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C88	6533	PERSEA	AMERICANA	LAURACEAE	Т	15-Oct-90	NF	D
1	C81	6534	LEUCAENA	GLAUCA	FABACEAE	Т	15-Oct-90	Α	D
1	C88	6535	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	NF	D
1	C88	6536	CANNA	EDULIS	CANNACEAE	G	15-Oct-90	NF	Α
1	C81	6537	HELICONIA	SP.	HELICONIACEAE	G	15-Oct-90	Α	Α
1	C81	6538	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C81	6539	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	NF	D
1	C81	6540	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C81	6541	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C81	6542	MUSA	PARADISIACA	MUSACEAE	G	15-Oct-90	NF	D
1	C81	6543	CLITORIA	RACEMOSA	FABACEAE	Т	15-Oct-90	Α	Α
1	C80	6544	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C80	6545	ARCHONTOPHOENIX	SP.	ARECACEAE	Р	15-Oct-90	Α	Α
1	C80	6546	BLECHNUM	BRASILIENSE	BLECHNACEAE	Н	15-Oct-90	NF	NF
1	C80	6547	TECTONA	GRANDIS	VERBENACEAE	Т	15-Oct-90	NF	NF
1	C80	6548	DIOSPYROS	DIGYNA	EBENACEAE	Т	15-Oct-90	Α	NF
1	C80	6549	CASIMIROA	EDULIS	RUTACEAE	Т	15-Oct-90	NF	NF
1	C87	6550	LEUCAENA	GLAUCA	FABACEAE	Т	15-Oct-90	Α	D
1	C81	6551	HELICONIA	BICOLOR	HELICONIACEAE	G	15-Oct-90	NF	D
1	C81	6552	HELICONIA	BICOLOR	HELICONIACEAE	G	15-Oct-90	NF	D
1	C81	6553	HELICONIA	BICOLOR	HELICONIACEAE	G	15-Oct-90	NF	D
1	C81	6554	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	NF	D
1	C81	6555	HELICONIA	BICOLOR	HELICONIACEAE	G	15-Oct-90	NF	D
1	C81	6556	LEUCAENA	GLAUCA	FABACEAE	Т	15-Oct-90	NF	D
1	C81	6557	HEVEA	BRASILIENSIS	EUPHORBIACEAE	Т	15-Oct-90	NF	D
1	C81	6558	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	NF	Α
1	C81	6559	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C81	6560	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	NF	D
1	C81	6561	BIXA	ORELLANA	BIXACEAE	Т	15-Oct-90	Α	NF
1	C81	6562	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	15-Oct-90	NF	D
1	C81	6563	CANNA	INDICA	CANNACEAE	G	15-Oct-90	Α	Α
1	C81	6564	UNKNOWN	UNKNOWN	FABACEAE	Η	15-Oct-90	NF	D
1	C81	6565	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	15-Oct-90	Α	D
1	C81	6566	ZINGIBER	SPECTABILE	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C81	6567	ZINGIBER	SPECTABILE	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C81	6568	ZINGIBER	SPECTABILE	ZINGIBERACEAE	G	15-Oct-90	Α	D
1	C81	6569	UNKNOWN	UNKNOWN	MARANTACEAE	Н	15-Oct-90	NF	D
1	C81	6570	MUSA	PARADISIACA	MUSACEAE	G	15-Oct-90	NF	Α
1	C81	6571	BAUHINIA	SP.	FABACEAE	S	15-Oct-90	NF	D
1	C81	6572	CARLUDOVICA	PALMATA	CYCLANTHACEAE	Р	15-Oct-90	Α	Α

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C81	6573	MANGIFERA	INDICA	ANACARDIACEAE	T	15-Oct-90	NF	NF
1	C74	6574	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	15-Oct-90	D	D
1	C74	6575	CLITORIA	RACEMOSA	FABACEAE	Т	15-Oct-90	Α	Α
1	C81	6576	PHILODENDRON	RUBENS	ARACEAE	С	15-Oct-90	NF	NF
1	C80	6577	WITHANIA	SOMNIFERA	SOLANACEAE	S	15-Oct-90	NF	NF
1	C80	6578	HYMENAEA	COURBARIL	FABACEAE	Т	15-Oct-90	Α	Α
1	C80	6579	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	15-Oct-90	Α	Α
1	C80	6580	JUSTICIA	CALIFORNICA	ACANTHACEAE	S	15-Oct-90	NF	NF
1	C80	6581	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	15-Oct-90	D	NF
1	C80	6582	CASIMIROA	EDULIS	RUTACEAE	Т	15-Oct-90	NF	NF
1	C80	6583	BARRINGTONIA	ASIATICA	LECYTHIDACEAE	Т	15-Oct-90	Α	Α
1	C80	6584	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	15-Oct-90	NF	NF
1	C80	6585	CEIBA	PENTANDRA	BOMBACACEAE	Т	15-Oct-90	Α	Α
1	C80	6586	COSTUS	SP.	ZINGIBERACEAE	Н	15-Oct-90	NF	Α
1	C80	6587	AGLAONEMA	SP.	ARACEAE	Η	15-Oct-90	Α	Α
1	C73	6588	PHILODENDRON	SELLOUM	ARACEAE	С	15-Oct-90	Α	D
1	C74	6589	CALATHEA	GIGANTEA	MARANTACEAE	Н	15-Oct-90	Α	Α
1	C73	6590	HURA	CREPITANS	EUPHORBIACEAE	Т	15-Oct-90	Α	D
1	C74	6591	CALATHEA	GIGANTEA	MARANTACEAE	Н	15-Oct-90	Α	Α
1	C74	6592	APHANES	CARYOTAEFOLIAE	ROSACEAE	U	15-Oct-90	Α	Α
1	C74	6593	HURA	CREPITANS	EUPHORBIACEAE	Т	15-Oct-90	Α	Α
1	C74	6594	APHANES	CARYOTAEFOLIAE	ROSACEAE	U	15-Oct-90	Α	Α
1	C74	6595	TAMARINDUS	INDICA	FABACEAE	Т	15-Oct-90	NF	NF
1	C74	6596	BIXA	ORELLANA	BIXACEAE	Т	15-Oct-90	NF	NF
1	C74	6597	MUSA	SP.	MUSACEAE	G	15-Oct-90	NF	Α
1	C81	6598	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C81	6599	PHYLLANTHUS	PULCHER	EUPHORBIACEAE	Т	15-Oct-90	Α	Α
1	C81	6600	PHILODENDRON	TRIPARTITUM	ARACEAE	С	15-Oct-90	NF	D

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C81	6601	HELICONIA	PSITTACORUM	HELICONIACEAE	G	15-Oct-90	NF	D
1	C74	6602	CURCUMA	DOMESTICA	ZINGIBERACEAE	Η	15-Oct-90	NF	NF
1	C74	6603	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C74	6604	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C74	6605	PELLIONIA	DAVEAUANA	URTICACEAE	Η	15-Oct-90	NF	NF
1	C74	6606	CURCUMA	DOMESTICA	ZINGIBERACEAE	Η	15-Oct-90	Α	NF
1	C74	6607	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	15-Oct-90	Α	Α
1	C74	6608	MUSA	SP.	MUSACEAE	G	15-Oct-90	Α	Α
1	C74	6609	HEDYCHIUM	AURANTIACA	ZINGIBERACEAE	G	15-Oct-90	NF	NF
1	C74	6610	HEDYCHIUM	SP.	ZINGIBERACEAE	G	15-Oct-90	NF	NF
1	C74	6611	BIXA	ORELLANA	BIXACEAE	Т	15-Oct-90	Α	NF
1	C74	6612	LEUCAENA	GLAUCA	FABACEAE	Т	15-Oct-90	Α	D
1	C74	6613	CAESALPINIA	SP.	FABACEAE	Т	15-Oct-90	NF	NF
1	C74	6614	CURCUMA	DOMESTICA	ZINGIBERACEAE	Н	15-Oct-90	NF	NF
1	C74	6615	COSTUS	ELATUS	ZINGIBERACEAE	Н	15-Oct-90	Α	Α
1	C74	6616	HELICONIA	LONGIFLORA	HELICONIACEAE	G	15-Oct-90	Α	Α
1	C74	6617	THALIA	GENICULATA	MARANTACEAE	Н	15-Oct-90	Α	NF
1	C74	6618	ETLINGERA	ELATIOR	ZINGIBERACEAE	Н	18-Oct-90	Α	Α
1	C74	6619	CURCUMA	DOMESTICA	ZINGIBERACEAE	Н	18-Oct-90	Α	NF
1	C74	6620	HELICONIA	SP.	HELICONIACEAE	G	18-Oct-90	NF	NF
1	C74	6621	HURA	CREPITANS	EUPHORBIACEAE	Т	18-Oct-90	Α	NF
1	C74	6622	CURCUMA	ROSCOEANA	ZINGIBERACEAE	Н	18-Oct-90	NF	NF
1	C74	6623	MUSA	SP.	MUSACEAE	G	18-Oct-90	Α	Α
1	C74	6624	LEUCAENA	GLAUCA	FABACEAE	Т	18-Oct-90	Α	Α
1	C67	6625	MUSA	SP.	MUSACEAE	G	18-Oct-90	Α	Α
1	C67	6626	MUSA	TEXTILIS	MUSACEAE	G	18-Oct-90	Α	Α
1	C67	6627	CHRYSALIDOCARPU	S LUTESCENS	ARECACEAE	S	18-Oct-90	Α	Α
1	C67	6628	CAESALPINIA	SP.	FABACEAE	Т	18-Oct-90	Α	NF

Table B-1-- <u>continued</u>.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C74	6629	CAESALPINIA	SP.	FABACEAE	T	18-Oct-90	NF	NF
1	C74	6630	UNKNOWN	UNKNOWN	UNKNOWN	U	18-Oct-90	NF	NF
1	C74	6631	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	18-Oct-90	Α	Α
1	C73	6632	CLITORIA	RACEMOSA	FABACEAE	Т	18-Oct-90	Α	Α
1	C73	6633	MORINGA	OLEIFERA	MORINGACEAE	Т	18-Oct-90	D	D
1	C73	6634	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	17-Oct-90	NF	NF
1	C73	6636	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	D	D
1	C73	6637	INGA	FEUILLEI	FABACEAE	Т	17-Oct-90	Α	Α
1	C73	6638	PACHIRA	AQUATICA	BOMBACACEAE	Т	17-Oct-90	Α	Α
1	C73	6639	PACHIRA	AQUATICA	BOMBACACEAE	Т	17-Oct-90	Α	Α
1	C73	6640	HELICONIA	BICOLOR	HELICONIACEAE	G	17-Oct-90	NF	NF
1	C73	6641	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	17-Oct-90	Α	Α
1	C73	6642	HELICONIA	BICOLOR	HELICONIACEAE	G	17-Oct-90	NF	NF
1	C73	6643	HELICONIA	BICOLOR	HELICONIACEAE	G	17-Oct-90	NF	NF
1	C73	6644	CANNA	EDULIS	CANNACEAE	G	17-Oct-90	NF	NF
1	C73	6645	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C73	6646	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	Α	Α
1	C73	6647	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	17-Oct-90	NF	NF
1	C73	6648	PTEROCARPUS	INDICUS	FABACEAE	Т	17-Oct-90	NF	NF
1	C73	6649	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	Α	NF
1	C73	6650	CANNA	EDULIS	CANNACEAE	G	17-Oct-90	Α	Α
1	C73	6651	CANNA	EDULIS	CANNACEAE	G	17-Oct-90	Α	Α
1	C73	6652	PTEROCARPUS	INDICUS	FABACEAE	Т	17-Oct-90	NF	NF
1	C73	6653	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	17-Oct-90	Α	Α
1	C73	6654	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	17-Oct-90	NF	NF
1	C73	6655	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C73	6656	CANNA	EDULIS	CANNACEAE	G	17-Oct-90	NF	NF
1	C73	6657	FICUS	BUXIFOLIA	MORACEAE	Т	17-Oct-90	Α	Α

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C73	6658	SETARIA	PALMIFOLIA	POACEAE	R	17-Oct-90	Α	NF
1	C73	6659	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C73	6660	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	17-Oct-90	Α	Α
1	C80	6661	SETARIA	PALMIFOLIA	POACEAE	R	17-Oct-90	Α	NF
1	C80	6662	DIEFFENBACHIA	SP.	ARACEAE	Н	17-Oct-90	Α	Α
1	C80	6663	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	Α	D
1	C80	6664	PTEROCARPUS	INDICUS	FABACEAE	Т	17-Oct-90	D	NF
1	C80	6665	PERSEA	AMERICANA	LAURACEAE	Т	17-Oct-90	D	NF
1	C80	6666	WITHANIA	SOMNIFERA	SOLANACEAE	S	17-Oct-90	NF	NF
1	C80	6667	BAUHINIA	SP.	FABACEAE	S	17-Oct-90	D	NF
1	C80	6668	ALPINIA	PURPURATA	ZINGIBERACEAE	G	17-Oct-90	Α	Α
1	C80	6669	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	D	NF
1	C80	6670	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	17-Oct-90		D
1	C80	6671	CANNA	INDICA	CANNACEAE	G	17-Oct-90	NF	NF
1	C80	6672	BRUNFELSIA	JAMAICENSIS	SOLANACEAE	S	17-Oct-90	NF	D
1	C80	6673	BRUNFELSIA	JAMAICENSIS	SOLANACEAE	S	17-Oct-90	NF	NF
1	C80	6674	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	Α	D
1	C80	6675	PAULLINIA	SP.	SAPINDACEAE	С	17-Oct-90	NF	NF
1	C80	6676	PASSIFLORA	COCCINEA	PASSIFLORACEAE	С	17-Oct-90	NF	NF
1	C80	6677	PASPALUM	PLICATULUM	POACEAE	R	17-Oct-90	Α	Α
1	C80	6678	ANNONA	MURICATA	ANNONACEAE	Т	17-Oct-90	Α	Α
1	C80	6679	BRUNFELSIA	JAMAICENSIS	SOLANACEAE	S	17-Oct-90	Α	NF
1	C80	6680	DILLENIA	INDICA	DILLENIACEAE	Т	17-Oct-90	NF	NF
1	C80	6681	PITHECOCTENIUM	SP.	BIGNONIACEAE	С	17-Oct-90	NF	NF
1	C79	6682	ENTEROLOBIUM	CYCLOCARPUM	FABACEAE	Т	17-Oct-90	Α	D
1	C79	6683	SCHOTIA	LATIFOLIA	FABACEAE	Т	17-Oct-90	NF	NF
1	C79	6684	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	NF	NF
1	C79	6685	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	NF	NF

Table B-1-- <u>continued.</u>

Planting		Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C79	6686	COLOCASIA	ANTIQUORUM	ARAČEAE	Н	17-Oct-90	NF	NF
1	C79	6687	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	NF	NF
1	C79	6688	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C79	6689	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	17-Oct-90	D	NF
1	C79	6690	HELICONIA	PSITTACORUM	HELICONIACEAE	G	17-Oct-90	NF	NF
1	C79	6691	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	17-Oct-90	D	D
1	C79	6692	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	D	NF
1	C79	6693	PHILODENDRON	SELLOUM	ARACEAE	С	17-Oct-90	Α	Α
1	C79	6694	BRUNFELSIA	AMERICANA	SOLANACEAE	S	17-Oct-90	Α	Α
1	C79	6695	TECTONA	GRANDIS	VERBENACEAE	Т	17-Oct-90	NF	NF
1	C79	6696	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	17-Oct-90	Α	Α
1	C79	6697	HEVEA	BRASILIENSIS	EUPHORBIACEAE	Т	17-Oct-90	NF	NF
1	C79	6698	CLITORIA	RACEMOSA	FABACEAE	Т	17-Oct-90	Α	Α
1	C79	6699	PHILODENDRON	SELLOUM	ARACEAE	С	17-Oct-90	Α	NF
1	C77	6700	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	D
1	C77	6701	CYATHEA	COOPERI	CYATHEACEAE	Р	1-Nov-90	D	D
1	C77	6702	MARCGRAVIA	RECTIFLORA	MARCGRAVIACEAE	С	1-Nov-90	Α	Α
1	C77	6703	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	D
1	C77	6704	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	D
1	C77	6705	CYATHEA	COOPERI	CYATHEACEAE	Р	1-Nov-90	NF	D
1	C77	6706	PHILODENDRON	TRIPARTITUM	ARACEAE	С	1-Nov-90	NF	D
1	C77	6707	FICUS	PUMILA	MORACEAE	С	1-Nov-90	Α	Α
1	C77	6708	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	D
1	C77	6709	MARCGRAVIA	RECTIFLORA	MARCGRAVIACEAE	С	1-Nov-90	NF	D
1	C77	6710	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	D
1	C77	6711	FICUS	PUMILA	MORACEAE	С	1-Nov-90	Α	Α
1	C77	6712	MARCGRAVIA	RECTIFLORA	MARCGRAVIACEAE	С	1-Nov-90	NF	D
1	C84	6713	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C84	6714	PHILODENDRON	ANGUSTATUM	ARACEAE	C	1-Nov-90	NF	NF
1	C84	6715	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C84	6716	MARCGRAVIA	RECTIFLORA	MARCGRAVIACEAE	С	1-Nov-90	NF	D
1	C84	6717	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	Α	NF
1	C84	6718	SELAGINELLA	SP.	SELAGINELLACEAE	Η	15-Oct-90	NF	NF
1	C84	6719	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C84	6720	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C84	6721	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C84	6722	CYATHEA	COOPERI	CYATHEACEAE	Р	15-Oct-90	NF	NF
1	C84	6723	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	15-Oct-90	NF	NF
1	C84	6724	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C84	6725	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C72	6726	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Н	26-Sep-91	Α	NF
1	C72	6727	STRELITZIA	REGINAE	STRELITZIACEAE	G	26-Sep-91	Α	Α
1	C62	6728	COSTUS	SP.	ZINGIBERACEAE	Η	26-Sep-91	Α	Α
1	C62	6729	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-91	Α	Α
1	C62	6730	COSTUS	SP.	ZINGIBERACEAE	Η	26-Sep-91	Α	Α
2	C62	6731	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
1	C62	6732	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-91	Α	NF
1	C72	6733	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C72	6734	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C72	6735	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C72	6736	PIPER	SP.	PIPERACEAE	Н	26-Sep-91	Α	NF
1	C72	6737	UNKNOWN	UNKNOWN	ARECACEAE	Р	26-Sep-92	Α	NF
2	C62	6738	DIEFFENBACHIA	SP.	ARACEAE	Н			Α
1	C62	6739	CAPPARIS	SPINOSA	CAPPARACEAE	Т	26-Sep-91	Α	NF
2	C62	6740	UNKNOWN	UNKNOWN	UNKNOWN	U	28-Sep-93	Α	NI
2	C62	6741	UNKNOWN	UNKNOWN	UNKNOWN	U	28-Sep-93	Α	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C62	6742	UNKNOWN	UNKNOWN	UNKNOWN	U	28-Sep-93	A	NF
2	C62	6743	UNKNOWN	UNKNOWN	UNKNOWN	U	28-Sep-93	Α	NF
1	C62	6744	UNKNOWN	UNKNOWN	UNKNOWN	U	26-Sep-92	Α	NF
1	C62	6747	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	26-Sep-91	Α	NF
1	C69	6748	CARICA	SP.	CARICACEAE	Т	26-Sep-91	Α	NF
1	C62	6749	CEDRELA	SP.	MELIACEAE	Т	26-Sep-91	Α	D
1	C72	6750	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	26-Sep-91	Α	NF
1	C72	6751	UNKNOWN	UNKNOWN	ACANTHACEAE	U	26-Sep-92	Α	Α
1	C72	6752	UNKNOWN	UNKNOWN	ACANTHACEAE	U	26-Sep-92	Α	NF
1	C72	6753	UNKNOWN	UNKNOWN	ARACEAE	U	26-Sep-92	Α	
1	C72	6754	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	26-Sep-91	Α	Α
1	C72	6755	UNKNOWN	UNKNOWN	ARECACEAE	Р	26-Sep-92	Α	Α
1	C72	6756	UNKNOWN	UNKNOWN	ARECACEAE	Р	26-Sep-92	Α	Α
1	C72	6757	DIEFFENBACHIA	SP.	ARACEAE	Η	26-Sep-91	Α	Α
1	C72	6758	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	26-Sep-91	Α	D
1	C72	6759	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	26-Sep-91	Α	D
1	C79	6760	SYNGONIUM	PODOPHYLLUM	ARACEAE	С	26-Sep-91	Α	
1	C72	6761	MARANTA	SP.	MARANTACEAE	Η	26-Sep-92	Α	NF
1	C89	6762	RICINUS	COMMUNIS	EUPHORBIACEAE	Т	26-Sep-91	Α	NF
1	C90	6763	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	26-Sep-91	Α	Α
1	C73	6764	SETARIA	PALMIFOLIA	POACEAE	R	26-Sep-91	Α	NF
1	C71	6765	DIEFFENBACHIA	SP.	ARACEAE	Η	26-Sep-91	Α	Α
1	C71	6766	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C71	6767	PHILODENDRON	SP.	ARACEAE	С	26-Sep-91	Α	Α
1	C71	6768	DIEFFENBACHIA	SP.	ARACEAE	Η	26-Sep-91	Α	NF
1	C71	6769	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	NF
1	C71	6770	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	D
1	C71	6771	PACHIRA	AQUATICA	BOMBACACEAE	Т	26-Sep-91	Α	Α

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C71	6772	PHILODENDRON	SP.	ARACEAE	С	26-Sep-91	A	NF
1	C80	6773	LEUCAENA	SP.	FABACEAE	Т	26-Sep-92	Α	D
1	C91	6774	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	D
1	C70	6775	COLOCASIA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C7 0	6776	UNKNOWN	UNKNOWN	ARACEAE	U	26-Sep-92	Α	NF
2	C70	6777	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
1	C70	6778	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-91	Α	D
1	C8 6	6779	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	26-Sep-92	Α	NF
1	C7 0	6780	SPATHIPHYLLUM	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C92	6781	UNKNOWN	UNKNOWN	BROMELIACEAE	U	26-Sep-92	Α	NF
1	C91	6782	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	D
1	C91	6783	AGLAONEMA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C69	6784	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	Α	Α
1	C69	6785	CARICA	SP.	CARICACEAE	Т	26-Sep-92	Α	NF
1	C69	6786	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C69	6787	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	NF
1	C69	6788	MUSA	SP.	MUSACEAE	G	26-Sep-92	Α	Α
1	C69	6789	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	Α	Α
1	C69	6790	DERRIS	ELLIPTICA	FABACEAE	С	26-Sep-91	Α	NF
1	C79	6791	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C80	6793	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	NF
1	C73	6794	UNKNOWN	UNKNOWN	UNKNOWN	U	26-Sep-92	Α	NF
2	C90	6795	AECHMEA	LAMARCHEI	BROMELIACEAE	Η			NF
1	C90	6796	MUSA	SP.	MUSACEAE	G	26-Sep-92	Α	Α
1	C90	6797	DIEFFENBACHIA	SP.	ARACEAE	Η	26-Sep-91	Α	Α
1	C9 0	6798	RICINUS	COMMUNIS	EUPHORBIACEAE	Т	26-Sep-91	Α	D
1	C90	6799	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	26-Sep-91	Α	Α
1	C66	6800	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C66	6801	BAMBUSA	MULTIPLEX	POACEAE	A	24-Nov-90	A	Α
1	C66	6802	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	NF
1	C73	6803	BAMBUSA	OLDHAMII	POACEAE	Α	24-Nov-90	Α	Α
1	C66	6804	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C66	6805	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C66	6806	COCOS	NUCIFERA	ARECACEAE	Р	24-Nov-90	Α	Α
1	C66	6807	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	D
1	C66	6808	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C66	6809	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6810	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C65	6811	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C65	6812	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C65	6813	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C66	6814	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C65	6815	BAMBUSA	GLAUCESCENS	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6816	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6817	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	NF
1	C65	6818	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6819	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	Α
1	C65	6820	UNKNOWN	UNKNOWN	POACEAE	U	24-Nov-90	Α	Α
1	C65	6821	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	NF
1	C65	6822	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6823	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6824	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	D
1	C65	6825	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	NF
1	C65	6826	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C65	6827	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	Α	Α
1	C64	6828	BAMBUSA	MULTIPLEX	POACEAE	Α	24-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C64	6829	BAMBUSA	SP.	POACEAE	A	24-Nov-90	A	A
1	C64	6830	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	NF	NF
1	C64	6831	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C64	6832	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C64	6833	BAMBUSA	TULDOIDES	POACEAE	Α	24-Nov-90	Α	Α
1	C80	6834	PACHIRA	AQUATICA	BOMBACACEAE	Т	17-Oct-90	Α	Α
1	C79	6835	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Н	17-Oct-90	NF	N
1	C73	6836	CANNA	INDICA	CANNACEAE	G	17-Oct-90	Α	N
1	C73	6837	CLITORIA	RACEMOSA	FABACEAE	Т	17-Oct-90	Α	D
1	C73	6838	HELICONIA	PSITTACORUM	HELICONIACEAE	G	17-Oct-90	NF	N
1	C72	6839	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	N
1	C72	6840	BARRINGTONIA	ASIATICA	LECYTHIDACEAE	Т	17-Oct-90	Α	Α
1	C72	6841	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	17-Oct-90	Α	Α
1	C72	6842	COLOCASIA	ANTIQUORUM	ARACEAE	Н	17-Oct-90	NF	N
1	C72	6843	MORINGA	OLEIFERA	MORINGACEAE	Т	17-Oct-90	D	D
1	C72	6844	PACHIRA	AQUATICA	BOMBACACEAE	Т	17-Oct-90	Α	Α
1	C72	6845	PHILODENDRON	GLANDULIFERUM	ARACEAE	Н	17-Oct-90	Α	N
1	C72	6846	CEIBA	PENTANDRA	BOMBACACEAE	Т	17-Oct-90	Α	A
1	C72	6847	MYRCIARIA	CAULIFLORA	MYRTACEAE	Т	17-Oct-90	Α	A
1	C72	6848	PHILODENDRON	CV 'WEND-IMBE'	ARACEAE	С	17-Oct-90	Α	A
1	C72	6849	ARUNDINARIA	PYGMAEA	POACEAE	Α	17-Oct-90	NF	N
1	C72	6850	CASIMIROA	EDULIS	RUTACEAE	Т	17-Oct-90	D	D
1	C72	6851	CLITORIA	RACEMOSA	FABACEAE	Т	17-Oct-90	Α	A
1	C72	6852	AGLAONEMA	CRISPUM	ARACEAE	Н	17-Oct-90	Α	A
1	C72	6853	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	Α	Ν
1	C72	6854	INGA	SP.	FABACEAE	Т	17-Oct-90	D	Ν
1	C72	6855	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	Α	Ν
1	C72	6856	MORINGA	SP.	MORINGACEAE	Т	17-Oct-90	Α	N

Table B-1-- continued.

B	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C72	6857	COFFEA	ARABICA	RUBIACEAE	S	17-Oct-90	Α	Α
1	C72	6858	COMMELINA	TUBEROSA	COMMELINACEAE	Н	17-Oct-90	NF	NF
1	C71	6859	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	Α	Α
1	C71	6860	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C71	6861	ILEX	PARAGUARIENSIS	AQUIFOLIACEAE	Т	17-Oct-90	Α	NF
1	C71	6862	COMMELINA	TUBEROSA	COMMELINACEAE	Η	17-Oct-90		NF
1	C71	6863	HIBISCUS	ELATUS	MALVACEAE	S	17-Oct-90	Α	Α
1	C71	6864	HIBISCUS	ELATUS	MALVACEAE	S	17-Oct-90	Α	NF
1	C72	6865	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	D	D
1	C72	6866	VERSCHAFFELTIA	SPLENDIDA	ARECACEAE	Р	17-Oct-90	Α	D
1	C72	6867	VERSCHAFFELTIA	SPLENDIDA	ARECACEAE	Р	17-Oct-90	Α	Α
1	C72	6868	VERSCHAFFELTIA	SPLENDIDA	ARECACEAE	Р	17-Oct-90	Α	Α
1	C71	6869	PLUMERIA	RUBRA	APOCYNACEAE	Т	17-Oct-90	Α	Α
1	C71	6870	RUELLIA	BREVIFOLIA	ACANTHACEAE	S	17-Oct-90	NF	NF
1	C71	6871	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C71	6872	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C71	6873	PHILODENDRON	CV 'WEND-IMBE'	ARACEAE	С	17-Oct-90	Α	Α
1	C71	6874	LEUCAENA	GLAUCA	FABACEAE	Т	17-Oct-90	D	D
1	C71	6875	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C71	6876	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	Α	NF
1	C71	6877	COLOCASIA	ANTIQUORUM	ARACEAE	Н	17-Oct-90	Α	Α
1	C71	6878	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	Α	Α
1	C71	6879	COLOCASIA	ANTIQUORUM	ARACEAE	Η	17-Oct-90	Α	D
1	C71	6880	INGA	SP.	FABACEAE	Т	17-Oct-90	D	NF
1	C71	6881	COLOCASIA	ANTIQUORUM	ARACEAE	Н	17-Oct-90	Α	Α
1	C71	6882	COLOCASIA	ANTIQUORUM	ARACEAE	Η	17-Oct-90	Α	D
1	C71	6883	DIEFFENBACHIA	SP.	ARACEAE	Н	17-Oct-90	Α	Α
1	C71	6884	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	17-Oct-90	Α	D

Table B-1-- continued.

.

Planting		Survey No.	والمحافظ والمح	Specific epithet	Family	GF	Intro Date	93-4	96
1	C71	6885	DIEFFENBACHIA	SP.	ARACEAE	Η	17-Oct-90	Α	Α
1	C71	6886	VERSCHAFFELTIA	SPLENDIDA	ARECACEAE	Р	17-Oct-90	Α	Α
1	C78	6887	DIEFFENBACHIA	SP.	ARACEAE	Η	17-Oct-90	Α	Α
1	C78	6888	DIEFFENBACHIA	SP.	ARACEAE	Η	17-Oct-90	Α	Α
1	C78	6889	VERSCHAFFELTIA	SPLENDIDA	ARECACEAE	Р	17-Oct-90	NF	NF
1	C78	6890	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	NF	NF
1	C78	6891	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C78	6892	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C78	6893	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	NF	NF
1	C79	6894	UNKNOWN	UNKNOWN	UNKNOWN	U	17-Oct-90	NF	NF
1	C79	6895	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	17-Oct-90	Α	NF
1	C79	6896	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	D	NF
1	C79	6897	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	17-Oct-90	Α	NF
1	C84	6900	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C84	6901	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C84	6902	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C85	6903	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6904	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C85	6905	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6906	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6907	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6908	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6909	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6910	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C85	6911	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	Α	NF
1	C85	6912	UNKNOWN	UNKNOWN	UNKNOWN	U	15-Oct-90	NF	NF
1	C85	6913	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	1-Nov-90	NF	NF
1	C85	6914	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	6915	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C85	6916	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C84	6917	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6918	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6919	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	692 0	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C84	6921	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C84	6922	CALLISIA	FRAGRANS	COMMELINACEAE	Н	1-Nov-90	NF	NF
1	C84	6923	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	Α	NF
1	C84	6924	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C84	6925	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6926	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C84	6927	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C84	6928	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6929	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	Α	NF
1	C84	6930	UNKNOWN	UNKNOWN	FABACEAE	Η	1-Nov-90	NF	NF
1	C84	6931	UNKNOWN	UNKNOWN	FABACEAE	Н	1-Nov-90	NF	NF
1	C84	6932	SELAGINELLA	SP.	SELAGINELLACEAE	Η	1-Nov-90	NF	NF
1	C84	6933	SELAGINELLA	SP.	SELAGINELLACEAE	Н	1-Nov-90	NF	NF
1	C84	6934	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6935	CALLISIA	FRAGRANS	COMMELINACEAE	Н	1-Nov-90	NF	NF
1	C84	6936	VANILLA	SP.	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C84	6937	CALLISIA	FRAGRANS	COMMELINACEAE	Н	1-Nov-90	NF	NF
1	C84	6938	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C84	6939	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6940	CYATHEA	COOPERI	CYATHEACEAE	Р	1-Nov-90	NF	NF
1	C84	6941	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C85	6942	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting		Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	6943	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6944	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	Α	NF
1	C78	6945	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6946	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6947	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6948	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6949	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6950	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6951	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6952	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6953	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	NF	NF
1	C78	6954	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6955	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6956	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6957	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6958	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6959	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6960	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C78	6961	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6962	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6963	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6964	UNKNOWN	UNKNOWN	FABACEAE	Н	1-Nov-90	NF	NF
1	C78	6965	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6966	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C78	6967	POLYPODIUM	CRASSIFOLIUM	POLYPODIACEAE	Ε	1-Nov-90	NF	NF
1	C78	6968	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	NF	NF
1	C78	6969	HELICONIA	CARIBAEA	HELICONIACEAE	G	1-Nov-90	NF	NF
1	C78	6970	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF

Table B-1-- continued.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C78	6971	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6972	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	6973	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	6974	SARRACENIA	PURPUREA	SARRACENIACEAE	Η	1-Nov-90	NF	NF
1	C78	6975	DIOSCOREA	SP.	DIOSCOREACEAE	С	1-Nov-90	NF	NF
1	C85	6976	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6977	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C84	6978	DOODIA	CAUDATA	BLECHNACEAE	Η	1-Nov-90	NF	NF
1	C85	6979	POLYPODIUM	AUREUM	POLYPODIACEAE	Η	1-Nov-90	NF	NF
1	C85	6980	CAMELLIA	SINENSIS	THEACEAE	S	1-Nov-90	Α	NF
1	C85	6981	CAMELLIA	SINENSIS	THEACEAE	S	1-Nov-90	NF	NF
1	C85	6982	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C85	6983	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C85	6984	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Η	1-Nov-90	NF	NF
1	C85	6985	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Η	1-Nov-90	NF	NF
1	C85	6986	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Η	1-Nov-90	NF	NF
1	C85	6987	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Н	1-Nov-90	NF	NF
1	C85	6988	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Η	1-Nov-90	NF	NF
1	C85	6989	ELAEIS	GUINEENSIS	ARECACEAE	Р	1-Nov-90	NF	NF
1	C84	6990	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C85	6991	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C84	6992	SARRACENIA	PURPUREA	SARRACENIACEAE	Η	1-Nov-90	NF	NF
1	C84	6993	SARRACENIA	PURPUREA	SARRACENIACEAE	Η	1-Nov-90	NF	NF
1	C84	6994	SARRACENIA	PURPUREA	SARRACENIACEAE	Н	1-Nov-90	NF	NF
1	C85	6995	BLECHNUM	OCCIDENTALE	BLECHNACEAE	Η	1-Nov-90	NF	NF
1	C85	6996	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C85	6997	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C85	6998	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	6999	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C86	7000	BACTRIS	GASIPAES	ARECACEAE	Р	18-Oct-90	Α	Α
1	C86	7001	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	18-Oct-90	Α	NF
1	C86	7002	PHALARIS	ARUNDINACEA	POACEAE	R	18-Oct-90	NF	NF
1	C86	7003	PHILODENDRON	SELLOUM	ARACEAE	С	18-Oct-90	Α	Α
1	C86	7004	BACTRIS	GASIPAES	ARECACEAE	Р	18-Oct-90	Α	Α
1	C86	7005	UNKNOWN	UNKNOWN	ARACEAE	U	18-Oct-90	Α	NF
1	C86	7006	CYATHEA	COOPERI	CYATHEACEAE	Р	18-Oct-90	D	NF
1	C86	7007	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	18-Oct-90	D	NF
1	C86	7008	UNKNOWN	UNKNOWN	UNKNOWN	U	18-Oct-90	NF	NF
1	C79	7009	PHILODENDRON	SELLOUM	ARACEAE	С	18-Oct-90	NF	NF
1	C79	7010	CHRYSALIDOCARPU	S LUTESCENS	ARECACEAE	S	18-Oct-90	Α	Α
1	C79	7011	RUBUS	SP.	ROSACEAE	S	18-Oct-90	NF	NF
1	C79	7012	RUBUS	SP.	ROSACEAE	S	18-Oct-90	NF	NF
1	C79	7013	COLOCASIA	ANTIQUORUM	ARACEAE	Н	18-Oct-90	NF	NF
1	C79	7014	COLOCASIA	ANTIQUORUM	ARACEAE	Н	18-Oct-90	NF	NF
1	C79	7015	BACTRIS	GASIPAES	ARECACEAE	Р	18-Oct-90	Α	Α
1	C79	7016	DAVALLIA	SOLIDA	DAVALLIACEAE	Н	18-Oct-90	NF	NF
1	C79	7017	PHILODENDRON	SP.	ARACEAE	С	18-Oct-90	Α	D
1	C79	7018	CEDRELA	SP.	MELIACEAE	Т	18-Oct-90	Α	Α
1	C79	7019	DIOSCOREA	ALATA	DIOSCOREACEAE	С	18-Oct-90	NF	NF
1	C79	7020	PHILODENDRON	SELLOUM	ARACEAE	С	18-Oct-90	Α	Α
1	C79	7021	PHILODENDRON	RUBENS	ARACEAE	С	18-Oct-90	Α	Α
1	C79	7022	TIBOUCHINA	INTEROMALLA	MELASTOMATACEA	AES	18-Oct-90	NF	NF
1	C78	7023	PHILODENDRON	SELLOUM	ARACEAE	С	18-Oct-90	Α	Α
1	C78	7024	IPOMOEA	BATATAS	CONVOLVULACEAE	ΕH	18-Oct-90	NF	NF
1	C78	7025	PHILODENDRON	SELLOUM	ARACEAE	С	18-Oct-90	NF	Α
1	C78	7026	UNKNOWN	UNKNOWN	UNKNOWN	U	18-Oct-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C78	7027	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	H	18-Oct-90	NF	NF
1	C78	7028	COLOCASIA	ANTIQUORUM	ARACEAE	Η	18-Oct-90	NF	NF
1	C86	7029	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	18-Oct-90	NF	NF
1	C63	7030	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C63	7031	BREYNIA	DISTICHA	EUPHORBIACEAE	Η	31-Oct-90	Α	Α
1	C63	7032	CALATHEA	LOUISAE	MARANTACEAE	Н	31-Oct-90	NF	D
1	C63	7033	CALATHEA	LOUISAE	MARANTACEAE	Н	31-Oct-90	NF	D
1	C63	7034	CALATHEA	LOUISAE	MARANTACEAE	Н	31-Oct-90	NF	D
1	C63	7035	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	D	D
1	C63	7036	BAMBUSA	MULTIPLEX	POACEAE	Α	31-Oct-90	Α	D
1	C63	7037	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	Α
1	C64	7038	BREYNIA	DISTICHA	EUPHORBIACEAE	Н	31-Oct-90	Α	Α
1	C64	7039	UNKNOWN	UNKNOWN	ARACEAE	U	31-Oct-90	Α	Α
1	C63	7040	CALATHEA	VIOLACEA	MARANTACEAE	Н	31-Oct-90	NF	Α
1	C63	7041	CALATHEA	VIOLACEA	MARANTACEAE	Н	31-Oct-90	Α	Α
1	C71	7042	PIPER	SP.	PIPERACEAE	Н	31-Oct-90	Α	Α
1	C71	7043	PHILODENDRON	RUBENS	ARACEAE	С	31-Oct-90	Α	Α
1	C71	7044	MONSTERA	DELICIOSA	ARACEAE	С	31-Oct-90	Α	Α
1	C71	7045	PIPER	SP.	PIPERACEAE	Н	31-Oct-90	NF	NF
1	C71	7046	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C71	7047	ALPINIA	SANDERAE	ZINGIBERACEAE	G	31-Oct-90	Α	NF
1	C71	7048	PSIDIUM	GUAJAVA	MYRTACEAE	Τ	31-Oct-90	NF	NF
1	C71	7049	UNKNOWN	UNKNOWN	LORANTHACEAE	U	31-Oct-90	D	NF
1	C70	7050	CROTON	SP.	EUPHORBIACEAE	Н	31-Oct-90	Α	NF
1	C71	7051	SETARIA	PALMIFOLIA	POACEAE	R	31-Oct-90	Α	Α
1	C71	7052	EUGENIA	AGGREGATA	MYRTACEAE	Т	31-Oct-90	Α	NI
1	C71	7053	ANNONA	MURICATA	ANNONACEAE	Т	31-Oct-90	Α	Α
1	C71	7054	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	31-Oct-90	Α	Α

Table B-1-- continued.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C71	7055	ARCHONTOPHOENIX	SP.	ARECACEAE	Р	31-Oct-90	A	A
1	C70	7056	PITHECOCTENIUM	SP.	BIGNONIACEAE	С	31-Oct-90	NF	NF
1	C70	7057	ACORUS	CALAMUS	ARACEAE	Η	31-Oct-90	NF	NF
1	C70	7058	ACORUS	CALAMUS	ARACEAE	Н	31-Oct-90	NF	NF
1	C71	7060	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	31-Oct-90	Α	Α
1	C71	7061	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	31-Oct-90	Α	Α
1	C71	7062	BEGONIA	SP.	BEGONIACEAE	Н	31-Oct-90	D	NF
1	C78	7063	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	31-Oct-90	Α	Α
1	C78	7064	SCINDAPSUS	AUREUS	ARACEAE	С	31-Oct-90	Α	Α
1	C70	7065	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	31-Oct-90	Α	Α
1	C70	7066	CANNA	SP.	CANNACEAE	G	31-Oct-90	NF	NF
1	C69	7067	SAGITTARIA	LATIFOLIA	ALISMATACEAE	Η	31-Oct-90	NF	NF
1	C69	7068	EQUISETUM	HYEMALE	EQUISETACEAE	Η	31-Oct-90	NF	NF
1	C69	7069	ASPLENIUM	NIDUS	ASPLENIACEAE	Ε	31-Oct-90	NF	NF
1	C69	7070	HYDROCOTYLE	VERTICILLATA	APIACEAE	Η	31-Oct-90	NF	NF
1	C69	7071	SAGITTARIA	LATIFOLIA	ALISMATACEAE	Н	31-Oct-90	NF	NF
1	C69	7072	ACROSTICHUM	AUREUM	PTERIDACEAE	Н	31-Oct-90	NF	NF
1	C69	7073	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	31-Oct-90	NF	NF
1	C70	7074	PONTEDERIA	CORDATA	PONTEDERIACEAE	Η	31-Oct-90	NF	NF
1	C70	7075	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C70	7076	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	31-Oct-90	Α	Α
1	C70	7077	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF
1	C70	7078	MARSILEA	MUTICA	MARSILEACEAE	Н	31-Oct-90	NF	NF
1	C70	7079	NYMPHAEA	SP.	NYMPHAEACEAE	Η	31-Oct-90	NF	NF
1	C70	7080	COMMELINA	TUBEROSA	COMMELINACEAE	Η	31-Oct-90	NF	NF
1	C70	7081	ТҮРНА	ANGUSTIFOLIA	TYPHACEAE	Η	31-Oct-90	NF	NF
1	C70	7082	ТҮРНА	ANGUSTIFOLIA	TYPHACEAE	Н	31-Oct-90	NF	NF
1	C70	7083	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C70	7084	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF
1	C70	7085	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF
1	C70	7086	DIEFFENBACHIA	SP.	ARACEAE	Н	31-Oct-90	Α	Α
1	C70	7087	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Н	31-Oct-90	Α	NF
1	C70	7088	ACORUS	CALAMUS	ARACEAE	Н	31-Oct-90	NF	NF
1	C70	7089	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Н	31-Oct-90	NF	NF
1	C70	7090	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	31-Oct-90	Α	D
1	C70	7091	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	31-Oct-90	NF	NF
1	C70	7092	SPARTINA	SP.	POACEAE	R	31-Oct-90	NF	NF
1	C70	7093	MUSA	SP.	MUSACEAE	G	31-Oct-90	Α	NF
1	C63	7094	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	31-Oct-90	Α	D
1	C63	7095	SAGITTARIA	LANCIFOLIA	ALISMATACEAE	Η	31-Oct-90	NF	D
1	C63	7096	NYMPHAEA	SP.	NYMPHAEACEAE	Η	31-Oct-90	NF	D
1	C63	7097	PONTEDERIA	CORDATA	PONTEDERIACEAE	Η	31-Oct-90	NF	D
1	C63	7098	SAGITTARIA	LATIFOLIA	ALISMATACEAE	Η	31-Oct-90	NF	D
1	C63	7099	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	31-Oct-90	Α	D
1	C63	7100	CALATHEA	LOUISAE	MARANTACEAE	Η	31-Oct-90	Α	D
1	C63	7101	CALATHEA	VIOLACEA	MARANTACEAE	Η	31-Oct-90	Α	Α
1	C63	7102	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	31-Oct-90	Α	D
1	C70	7103	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	31-Oct-90		NF
1	C70	7104	SAGITTARIA	RUBRUM	ALISMATACEAE	Η	31-Oct-90	NF	NF
1	C70	7105	PONTEDERIA	CORDATA	PONTEDERIACEAE	Η	31-Oct-90	NF	NF
1	C70	7106	PONTEDERIA	CORDATA	PONTEDERIACEAE	Н	31-Oct-90	NF	NF
1	C70	7107	PONTEDERIA	CORDATA	PONTEDERIACEAE	Н	31-Oct-90	NF	NF
1	C70	7108	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF
1	C70	7109	SAGITTARIA	LATIFOLIA	ALISMATACEAE	Η	31-Oct-90	NF	NF
1	C70	7110	PONTEDERIA	CORDATA	PONTEDERIACEAE	Н	31-Oct-90	NF	NF
1	C70	7111	SAGITTARIA	LATIFOLIA	ALISMATACEAE	Н	31-Oct-90	NF	NF

Table B-1-- continued.

Planting		Survey No.	Conus	Specific epithet	Family	GF	Intro Date	93-4	96
1 1anung 1	C70	7112	PONTEDERIA	CORDATA	PONTEDERIACEAE	H	31-Oct-90		NF
1	C70	7112	NYMPHAEA	SP.	NYMPHAEACEAE	Н	31-Oct-90	NF	NF
1	C70	7114	SAGITTARIA	LATIFOLIA	ALISMATACEAE	н	31-Oct-90	NF	NF
1	C70	7115	SAGITTARIA	RUBRUM	ALISMATACEAE	H	31-Oct-90	NF	NF
1	C70	7116	HYMENOCALLIS	SP.	AMARYLLIDACEAE	Н	31-Oct-90	NF	NF
1	C70	7117	CYPERUS	HASPERIS	CYPERACEAE	R	31-Oct-90	NF	NF
1	C70	7118	NYMPHAEA	SP.	NYMPHAEACEAE	H	31-Oct-90	NF	NF
1	C70	7119	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	31-Oct-90	A	NF
1	C70	7120	EQUISETUM	HYEMALE	EQUISETACEAE	H	31-Oct-90	NF	NF
1	C/0	7120	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	A	NF
1	C62	7122	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	31-Oct-90	NF	A
1	C62	7122	PSIDIUM	GUAJAVA	MYRTACEAE	J T	31-Oct-90	A	D
_			CALATHEA	VIOLACEA	MARANTACEAE		31-Oct-90 31-Oct-90	A NF	
1	C69	7124			MARANTACEAE	H T	31-Oct-90 31-Oct-90		A
1	C69	7125	SYZYGIUM	JAMBOS				A	A
1	C69	7126	CAPSICUM	SP.	SOLANACEAE	H	31-Oct-90	D	NF
1	C69	7127	CAESALPINIA	SP.	FABACEAE	T T	31-Oct-90	A	NF
1	C69	7128	LEUCAENA	GLAUCA	FABACEAE	T	31-Oct-90	A	NF
1	C69	7129	CAPSICUM	SP.	SOLANACEAE	Н	31-Oct-90	NF	NF
1	C69	7130	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	31-Oct-90	Α	NF
1	C69	7131	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	NF	NF
1	C69	7132	TABEBUIA	HETEROPHYLLA	BIGNONIACEAE	Т	31-Oct-90	Α	NF
1	C70	7133	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	31-Oct-90	Α	NF
1	C77	7134	BLECHNUM	ORIENTALE	BLECHNACEAE	Н	31-Oct-90	NF	D
1	C70	7135	FICUS	PUMILA	MORACEAE	С	31-Oct-90	NF	NF
1	C70	7136	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	31-Oct-90	NF	D
1	C70	7137	TRADESCANTIA	PALLIDA	COMMELINACEAE	Н	31-Oct-90	NF	NF
1	C70	7138	CANNA	SP.	CANNACEAE	G	31-Oct-90	NF	NF
1	C70	7139	BACOPA	MONNIERI	SCROPHULARIACEA	ΕH	31-Oct-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C70	7140	SAGITTARIA	GRAMINEA	ALISMATACEAE	H	31-Oct-90	NF	NF
1	C7 0	7141	ТҮРНА	DOMINGENSIS	TYPHACEAE	Η	31-Oct-90	NF	NF
1	C77	7142	DIETES	BICOLOR	IRIDACEAE	Н	31-Oct-90	Α	D
1	C77	7143	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	31-Oct-90	NF	D
1	C77	7144	CLUSIA	SP.	CLUSIACEAE	Т	31-Oct-90	NF	D
1	C78	7145	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C78	7146	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	31-Oct-90	Α	Α
1	C78	7147	UNKNOWN	UNKNOWN	ARACEAE	U	31-Oct-90	NF	NF
1	C78	7148	ACORUS	CALAMUS	ARACEAE	Η	31-Oct-90	NF	NF
1	C78	7149	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C78	7150	UNKNOWN	UNKNOWN	FABACEAE	Н	31-Oct-90	NF	NF
1	C78	7151	PLATYCERIUM	SUPERBUM	POLYPODIACEAE	Ε	31-Oct-90	NF	NF
1	C78	7152	UNKNOWN	UNKNOWN	FABACEAE	U	31-Oct-90	NF	NF
1	C78	7153	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	31-Oct-90	NF	NF
1	C78	7154	UNKNOWN	UNKNOWN	BROMELIACEAE	U	31-Oct-90	NF	NF
1	C78	7155	UNKNOWN	UNKNOWN	FABACEAE	U	31-Oct-90	NF	NF
1	C79	7156	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C79	7157	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	2-Nov-90	D	NF
1	C79	7158	GUZMANIA	BERTERONIANA	BROMELIACEAE	Ε	2-Nov-90	NF	NF
1	C79	7159	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	Α
1	C79	7160	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	Α	Α
1	C79	7161	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	Α	Α
1	C86	7162	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	Α	Α
1	C86	7163	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	Α	NF
1	C86	7164	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	Α
1	C86	7165	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NF
1	C85	7166	AECHMEA	ORLANDIANA	BROMELIACEAE	Ε	2-Nov-90	NF	NF
1	C83	7168	RHAPIS	EXCELSA	ARECACEAE	Р	2-Nov-90	D	D

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C77	7169	CLUSIA	SP.	CLUSIACEAE	Т	1-Nov-90	NF	D
1	C77	7170	AGLAONEMA	CRISPUM	ARACEAE	Η	1-Nov-90	Α	Α
1	C76	7171	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	1-Nov-90	Α	D
1	C76	7172	PHILODENDRON	ERUBESCENS	ARACEAE	С	1-Nov-90	NF	NF
1	C76	7173	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	Α	NF
1	C76	7174	CEDRELA	SP.	MELIACEAE	Т	1-Nov-90	Α	D
1	C76	7175	SCINDAPSUS	AUREUS	ARACEAE	С	1-Nov-90		Α
1	C76	7176	BILLBERGIA	PYRAMIDALIS	BROMELIACEAE	Ε	1-Nov-90	Α	NF
1	C61	7177	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	NF	Α
1	C68	7178	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	Α	NF
1	C68	7179	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	NF	NF
1	C69	7180	CANNA	INDICA	CANNACEAE	G	31-Oct-90	NF	NF
1	C68	7181	HEDYCHIUM	CORNATUM	ZINGIBERACEAE	G	31-Oct-90	NF	NF
1	C69	7182	COSTUS	SP.	ZINGIBERACEAE	Н	31-Oct-90	Α	Α
1	C69	7183	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	Α
1	C69	7184	GLOBBA	SP.	ZINGIBERACEAE	Н	31-Oct-90	NF	NF
1	C69	7185	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	Α	Α
1	C69	7186	CANANGA	ODORATA	ANNONACEAE	Т	31-Oct-90	NF	NF
1	C68	7187	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	NF
1	C76	7188	CALOPOGONIUM	MUCUNOIDES	FABACEAE	Н	31-Oct-90	NF	NF
1	C76	7189	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	NF	NF
1	C75	7190	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C76	7191	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	D
1	C76	7192	PASSIFLORA	EDULIS	PASSIFLORACEAE	С	31-Oct-90	Α	NF
1	C76	7193	CANNA	GENERALIS	CANNACEAE	G	31-Oct-90	Α	NF
1	C82	7194	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	NF
1	C83	7195	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	Α	Α
1	C83	7196	SPARTINA	SP.	POACEAE	R	31-Oct-90	Α	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C83	7197	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C83	7198	CANNA	INDICA	CANNACEAE	G	31-Oct-90	NF	NF
1	C82	7199	MUSA	SP.	MUSACEAE	G	31-Oct-90	Α	Α
1	C82	7200	HELICONIA	PSITTACORUM	HELICONIACEAE	G	31-Oct-90	NF	NF
1	C82	7201	HELICONIA	PSITTACORUM	HELICONIACEAE	G	31-Oct-90	NF	NF
1	C89	7202	MUSA	SP.	MUSACEAE	G	31-Oct-90	Α	Α
1	C90	7203	MUSA	SP.	MUSACEAE	G	31-Oct-90	NF	Α
1	C90	7204	CANNA	INDICA	CANNACEAE	G	31-Oct-90	Α	D
1	C9 0	7205	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	31-Oct-90	Α	Α
1	C90	7206	HEDYCHIUM	CORONARIUM	ZINGIBERACEAE	G	31-Oct-90	Α	Α
1	C90	7207	COSTUS	SP.	ZINGIBERACEAE	Н	2-Nov-90	Α	D
1	C90	7209	ALPINIA	SANDERAE	ZINGIBERACEAE	G	2-Nov-90	NF	NI
1	C90	7210	CANNA	INDICA	CANNACEAE	G	2-Nov-90	Α	NI
1	C90	7211	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NI
1	C90	7212	HEDYCHIUM	SP.	ZINGIBERACEAE	G	2-Nov-90	NF	NI
1	C90	7213	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C90	7214	CURCUMA	LONGA	ZINGIBERACEAE	Н	2-Nov-90	NF	NF
1	C91	7215	CANNA	GENERALIS	CANNACEAE	G	2-Nov-90	NF	D
1	C91	7216	ALPINIA	PURPURATA	ZINGIBERACEAE	G	2-Nov-90	NF	Α
1	C92	7217	ALPINIA	SANDERAE	ZINGIBERACEAE	G	2-Nov-90	NF	NF
1	C92	7218	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NI
1	C93	7221	CANNA	INDICA	CANNACEAE	G	2-Nov-90	NF	D
1	C94	7222	CANNA	GENERALIS	CANNACEAE	G	2-Nov-90	NF	N
1	C94	7223	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NI
1	C94	7224	CAPSICUM	SP.	SOLANACEAE	Н	2-Nov-90	NF	NF
1	C94	7225	CANNA	INDICA	CANNACEAE	G	2-Nov-90	Α	NI
1	C94	7226	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90		NI
1	C94	7227	CRESCENTIA	CUJETE	BIGNONIACEAE	Т	2-Nov-90	Α	Α

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C94	7228	CAPSICUM	SP.	SOLANACEAE	H	2-Nov-90	NF	NF
1	C94	7229	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	Α	NF
1	C87	7230	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C87	7231	GUAREA	TRICHILIODES	MELIACEAE	Т	2-Nov-90	NF	D
1	C87	7232	CEIBA	PENTANDRA	BOMBACACEAE	Т	2-Nov-90	Α	D
1	C87	7233	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Τ	2-Nov-90	Α	D
1	C87	7234	LECYTHIS	ZABUCAJO	LECYTHIDACEAE	Τ	2-Nov-90	Α	NF
1	C86	7235	PASSIFLORA	QUADRANGULAR	IS PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C86	7236	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C86	7237	CISSUS	SICYOIDES	VITACEAE	С	2-Nov-90	Α	D
1	C86	7238	POGOSTEMON	HEYNEANUS	LAMIACEAE	S	2-Nov-90	NF	NF
1	C80	7239	BUCHENAVIA	CAPITATA	COMBRETACEAE	Т	2-Nov-90	NF	NI
1	C87	7240	COFFEA	ARABICA	RUBIACEAE	S	2-Nov-90	Α	Α
1	C87	7241	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	2-Nov-90	D	D
1	C87	7242	CYATHEA	SP.	CYATHEACEAE	Р	2-Nov-90	D	D
1	C87	7243	ERYNGIUM	FOETIDUM	APIACEAE	Η	2-Nov-90	NF	D
1	C80	7244	DIPLAZIUM	L'HERMINIERI	ASPLENIACEAE	Η	2-Nov-90	NF	NF
1	C80	7245	CLITORIA	RACEMOSA	FABACEAE	Т	2-Nov-90	Α	NF
1	C80	7246	CANAVALIA	ENSIFORMIS	FABACEAE	Η	2-Nov-90	NF	NF
1	C79	7248	PASSIFLORA	QUADRANGULAR	IS PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C79	7249	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	2-Nov-90	NF	NF
1	C79	7250	SELAGINELLA	VERSICOLOR	SELAGINELLACEAE	Η	2-Nov-90	NF	NF
1	C79	7251	SELAGINELLA	VERSICOLOR	SELAGINELLACEAE	Η	2-Nov-90	NF	NI
1	C79	7252	PASSIFLORA	TRIFASCIATA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C79	7253	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	2-Nov-90	NF	NF
1	C80	7254	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C80	7255	GUAREA	TRICHILIODES	MELIACEAE	Т	2-Nov-90	Α	NF
1	C80	7256	CORDIA	ALLIODORA	BORAGINACEAE	Т	2-Nov-90	NF	N

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C80	7257	MELIA	AZEDARACH	MELIACEAE	Т	2-Nov-90	Α	Α
1	C80	7258	LECYTHIS	ZABUCAJO	LECYTHIDACEAE	Т	2-Nov-90	NF	NF
1	C81	7259	ANNONA	MURICATA	ANNONACEAE	Т	2-Nov-90	Α	D
1	C81	7260	HELICONIA	PSITTACORUM	HELICONIACEAE	G	2-Nov-90	NF	D
1	C73	7261	POGOSTEMON	HEYNEANUS	LAMIACEAE	S	2-Nov-90	NF	NF
1	C80	7262	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	2-Nov-90	Α	Α
1	C80	7263	ALEURITES	MOLUCCANA	EUPHORBIACEAE	Т	2-Nov-90	Α	NF
1	C80	7264	SPONDIAS	MOMBIN	ANACARDIACEAE	Т	2-Nov-90	Α	NF
1	C79	7265	BUDDLEJA	DIVERSIFOLIA	BUDDLEJACEAE	Т	2-Nov-90	D	NF
1	C78	7266	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C78	7267	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C78	7268	PHILODENDRON	RUBENS	ARACEAE	С	2-Nov-90	Α	Α
1	C78	7269	SELAGINELLA	VERSICOLOR	SELAGINELLACEAE	Н	2-Nov-90	NF	NF
1	C78	7270	ASCLEPIAS	CURASSAVICA	ASCLEPIADACEAE	Н	2-Nov-90	NF	Α
1	C78	7271	FICUS	PUMILA	MORACEAE	С	2-Nov-90	NF	NF
1	C78	7272	ASCLEPIAS	CURASSAVICA	ASCLEPIADACEAE	Η	2-Nov-90	NF	NF
1	C71	7273	FICUS	PUMILA	MORACEAE	С	2-Nov-90	NF	NF
1	C71	7274	UNKNOWN	UNKNOWN	ARACEAE	U	2-Nov-90	D	NF
1	C71	7275	UNKNOWN	UNKNOWN	ARACEAE	U	2-Nov-90	Α	D
1	C71	7276	SCINDAPSUS	AUREUS	ARACEAE	С	2-Nov-90	Α	NF
1	C71	7277	ASCLEPIAS	CURASSAVICA	ASCLEPIADACEAE	Η	2-Nov-90	NF	NF
1	C71	7278	SELAGINELLA	VICTORIAE	SELAGINELLACEAE	Н	2-Nov-90	NF	NF
1	C71	7279	UNKNOWN	UNKNOWN	ARACEAE	U	2-Nov-90	D	NF
1	C71	7280	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	D	NF
1	C71	7281	DIETES	GRANDIFLORA	IRIDACEAE	Н	2-Nov-90	D	NF
1	C71	7282	UNKNOWN	UNKNOWN	POACEAE	U	2-Nov-90	Α	NF
1	C71	7283	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C64	7284	SELAGINELLA	VERSICOLOR	SELAGINELLACEAE	Н	2-Nov-90	NF	NI

Table B-1-- continued.

Planting		Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C71	7285	PASSIFLORA	QUADRANGULARIS	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C71	7286	PHILODENDRON	CV 'WEND-IMBE'	ARACEAE	С	2-Nov-90	NF	NF
1	C71	7287	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	2-Nov-90	NF	NF
1	C72	7288	TABERNAEMONTANA	DIVARICATA	APOCYNACEAE	S	2-Nov-90	NF	NF
1	C72	7289	BAUHINIA	SP.	FABACEAE	S	2-Nov-90	D	NF
1	C72	7290	ACORUS	CALAMUS	ARACEAE	Н	2-Nov-90	D	NF
1	C72	7291	SELAGINELLA	VERSICOLOR	SELAGINELLACEAE	Η	2-Nov-90	D	NF
1	C72	7292	CISSUS	SICYOIDES	VITACEAE	С	2-Nov-90	NF	NF
1	C72	7293	UNKNOWN	UNKNOWN	MELASTOMATACEA	EU	2-Nov-90	NF	NF
1	C72	7294	ELAEAGNUS	PHILIPPENSIS	ELAEAGNACEAE	Т	2-Nov-90	NF	NF
1	C73	7295	PASSIFLORA	QUADRANGULARIS	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C66	7296	FICUS	PUMILA	MORACEAE	С	2-Nov-90	NF	D
1	C73	7297	DRACUNCULUS	CANARIENSIS	ARACEAE	Η	2-Nov-90	Α	Α
1	C73	7298	PASSIFLORA	QUADRANGULARI	S PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C73	7299	GUAREA	TRICHILIODES	MELIACEAE	Т	2-Nov-90	Α	D
1	C85	7300	ADIANTUM	RADDIANUM	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C85	7301	POLYTAENIUM	FEEI	ADIANTACEAE	Η	1-Nov-90	NF	NF
1	C85	7302	POLYTAENIUM	FEEI	ADIANTACEAE	Η	1-Nov-90	NF	NF
1	C85	7303	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C85	7304	POLYTAENIUM	FEEI	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C85	7305	CYATHEA	COOPERI	CYATHEACEAE	Р	1-Nov-90	NF	NF
1	C85	7306	ADIANTUM	RADDIANUM	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C85	7307	POLYTAENIUM	FEEI	ADIANTACEAE	Η	1-Nov-90	NF	NF
1	C85	7308	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C85	7309	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C85	7310	COCCOCYPSELUM	HERBACEUM	RUBIACEAE	S	1-Nov-90	Α	NF
1	C85	7311	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C85	7312	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	7313	TILLANDSIA	SP.	BROMELIACEAE	E	1-Nov-90	NF	NF
1	C85	7314	POLYTAENIUM	FEEI	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C85	7315	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C85	7316	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C77	7318	CLUSIA	SP.	CLUSIACEAE	Т	31-Oct-90	NF	D
1	C77	7319	COSTUS	SP.	ZINGIBERACEAE	Η	31-Oct-90	NF	NF
1	C77	7320	CALLISIA	FRAGRANS	COMMELINACEAE	Η	31-Oct-90	NF	D
1	C77	7321	RHIPSALIS	BACCIFERA	CACTACEAE	Ε	31-Oct-90	NF	D
1	C77	7322	RHIPSALIS	BACCIFERA	CACTACEAE	Ε	31-Oct-90	NF	D
1	C84	7323	CALLISIA	FRAGRANS	COMMELINACEAE	Η	31-Oct-90	NF	NF
1	C84	7324	CALLISIA	FRAGRANS	COMMELINACEAE	Н	31-Oct-90	NF	NF
1	C84	7325	CALLISIA	FRAGRANS	COMMELINACEAE	Н	31-Oct-90	NF	NF
1	C84	7326	CLUSIA	SP.	CLUSIACEAE	Т	31-Oct-90	NF	NF
1	C84	7327	CLUSIA	SP.	CLUSIACEAE	Т	31-Oct-90	NF	NF
1	C84	7328	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	31-Oct-90	NF	NF
1	C84	7329	FICUS	PUMILA	MORACEAE	С	31-Oct-90	NF	Α
1	C84	7330	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C84	7331	COCCOCYPSELUM	HERBACEUM	RUBIACEAE	S	2-Nov-90	NF	NF
1	C84	7332	CYATHEA	ARBOREA	CYATHEACEAE	Р	2-Nov-90	NF	NF
1	C84	7333	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	NF	NF
1	C84	7334	HELICONIA	PSITTACORUM	HELICONIACEAE	G	2-Nov-90	Α	Α
1	C84	7335	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	NF	NF
1	C77	7336	TILLANDSIA	SP.	BROMELIACEAE	Ε	31-Oct-90	NF	D
1	C77	7337	UNKNOWN	UNKNOWN	FABACEAE	Н	31-Oct-90	NF	D
1	C77	7338	PHILODENDRON	SP.	ARACEAE	С	31-Oct-90	NF	D
1	C77	7339	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	D
1	C78	7340	CLUSIA	SP.	CLUSIACEAE	Т	31-Oct-90	NF	NF
1	C78	7341	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF

Table B-1-- <u>continued</u>,

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C78	7342	UNKNOWN	UNKNOWN	UNKNOWN	U	31-Oct-90	NF	NF
1	C78	7343	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	31-Oct-90	D	D
1	C78	7344	UNKNOWN	UNKNOWN	BROMELIACEAE	U	31-Oct-90	NF	NF
1	C78	7345	RHIPSALIS	BACCIFERA	CACTACEAE	Ε	31-Oct-90	NF	NF
1	C78	7346	RHIPSALIS	BACCIFERA	CACTACEAE	Ε	31-Oct-90	NF	NF
1	C78	7347	RHIPSALIS	BACCIFERA	CACTACEAE	Ε	31-Oct-90	NF	NF
1	C85	7348	FICUS	PUMILA	MORACEAE	С	1-Nov-90	NF	NF
1	C85	7349	ADIANTUM	RADDIANUM	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C78	7350	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	7351	PHILODENDRON	SP.	ARACEAE	С	1-Nov-90	NF	NF
1	C78	7352	CYATHEA	COOPERI	CYATHEACEAE	Р	1-Nov-90	D	D
1	C85	7353	ADIANTUM	RADDIANUM	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C78	7354	ADIANTUM	RADDIANUM	ADIANTACEAE	Н	1-Nov-90	NF	NF
1	C78	7355	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	Α	NF
1	C78	7356	FICUS	PUMILA	MORACEAE	С	1-Nov-90	Α	Α
1	C78	7357	UNKNOWN	UNKNOWN	RUBIACEAE	U	1-Nov-90	NF	NF
1	C78	7358	FICUS	PUMILA	MORACEAE	С	1-Nov-90	NF	Α
1	C78	7359	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C78	· 7360	PHILODENDRON	SP.	ARACEAE	С	1-Nov-90	NF	NF
1	C78	7361	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C78	7362	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	7363	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	7364	UNKNOWN	UNKNOWN	UNKNOWN	U	1-Nov-90	NF	NF
1	C78	7365	PHILODENDRON	SP.	ARACEAE	С	1-Nov-90	NF	NF
1	C78	7366	TILLANDSIA	SP.	BROMELIACEAE	Ε	1-Nov-90	NF	NF
1	C78	7367	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	1-Nov-90	NF	NF
1	C78	7368	FICUS	PUMILA	MORACEAE	С	1-Nov-90	NF	NF
1	C85	7370	CAMELLIA	SINENSIS	THEACEAE	S	2-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C85	7371	CAMELLIA	SINENSIS	THEACEAE	S	2-Nov-90	NF	NF
1	C85	7372	POLYPODIUM	PUNCTATUM	POLYPODIACEAE	Н	2-Nov-90	NF	NF
1	C85	7373	UNKNOWN	UNKNOWN	FABACEAE	Н	2-Nov-90	Α	NF
1	C85	7374	CYATHEA	ARBOREA	CYATHEACEAE	Р	2-Nov-90	NF	NF
1	C84	7375	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C84	7376	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NF
1	C84	7377	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	2-Nov-90	D	D
1	C84	7378	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	D	D
1	C84	7379	ANTHURIUM	DIGITATUM	ARACEAE	Η	2-Nov-90	NF	NF
1	C84	7380	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	D	NF
1	C84	7381	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	D	NF
1	C84	7382	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	NF	NF
1	C84	7383	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	D	NF
1	C86	7384	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	Α	NF
1	C86	7385	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	Α	NF
1	C73	7387	COUROUPITA	AMAZONICA	LECYTHIDACEAE	Т	2-Nov-90	Α	Α
1	C74	7388	PRUNUS	TOMENTOSA	ROSACEAE	Т	2-Nov-90	NF	NF
1	C74	7389	SCINDAPSUS	AUREUS	ARACEAE	С	2-Nov-90	NF	Α
1	C74	7390	POGOSTEMON	CABLIN	LAMIACEAE	S	2-Nov-90	NF	NF
1	C74	7391	CLITORIA	RACEMOSA	FABACEAE	Т	2-Nov-90	Α	Α
1	C74	7392	POLYPODIUM	PUNCTATUM	POLYPODIACEAE	Н	2-Nov-90	NF	NF
1	C74	7393	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	2-Nov-90	NF	NF
1	C74	7394	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	2-Nov-90	NF	NF
1	C74	7395	UNKNOWN	UNKNOWN	MARANTACEAE	Н	2-Nov-90	NF	NF
1	C74	7396	CRESCENTIA	CUJETE	BIGNONIACEAE	Т	2-Nov-90	NF	Α
1	C74	7397	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	2-Nov-90	NF	NF
1	C74	7398	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	NF	NI
1	C74	7399	SETARIA	PALMIFOLIA	POACEAE	R	2-Nov-90	NF	D

Table B-1-- continued.

.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C73	7400	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	D
1	C73	7401	UNKNOWN	UNKNOWN	ARACEAE	U	2-Nov-90	Α	Α
1	C73	7402	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C74	7404	CRESCENTIA	CUJETE	BIGNONIACEAE	Т	2-Nov-90	NF	FN
1	C74	7405	CAPSICUM	SP.	SOLANACEAE	Н	2-Nov-90	NF	FN
1	C67	7406	CAPSICUM	SP.	SOLANACEAE	Н	2-Nov-90	NF	NF
1	C67	7407	HIBISCUS	CALYPHYLLUS	MALVACEAE	S	2-Nov-90	Α	Α
1	C67	7408	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	Α	Α
1	C73	7409	SOLANDRA	MAXIMA	SOLANACEAE	С	20-Nov-90	Α	Α
1	C74	7410	DRACUNCULUS	CANARIENSIS	ARACEAE	Η	20-Nov-90	Α	Α
1	C73	7411	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	20-Nov-90	Α	Α
1	C73	7412	PHILODENDRON	RUBENS	ARACEAE	С	20-Nov-90	Α	NF
1	C73	7413	UNKNOWN	UNKNOWN	UNKNOWN	U	20-Nov-90	NF	NF
1	C73	7414	SOLANDRA	MAXIMA	SOLANACEAE	С	20-Nov-90	NF	NF
1	C73	7415	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	20-Nov-90	Α	Α
1	C66	7416	COLEUS	BLUMEI	LAMIACEAE	Η	20-Nov-90	NF	D
1	C66	7417	UNKNOWN	UNKNOWN	UNKNOWN	U	20-Nov-90	NF	D
1	C66	7418	CHRYSALIDOCARPUS	S LUTESCENS	ARECACEAE	S	20-Nov-90	Α	Α
1	C66	7419	COLEUS	BLUMEI	LAMIACEAE	Η	20-Nov-90	NF	D
1	C73	7420	ALLAMANDA	CATHARTICA	APOCYNACEAE	S	20-Nov-90	Α	Α
1	C73	7421	SOLANDRA	MAXIMA	SOLANACEAE	С	20-Nov-90	NF	NF
1	C73	7422	COLEUS	BLUMEI	LAMIACEAE	Н	20-Nov-90	NF	NF
1	C73	7423	PHILODENDRON	RUBENS	ARACEAE	С	20-Nov-90	Α	Α
1	C73	7424	CISSUS	GONGYLODES	VITACEAE	С	20-Nov-90	NF	NF
1	C72	7425	CALLISIA	FRAGRANS	COMMELINACEAE	Η	20-Nov-90	Α	NF
1	C72	7426	PHILODENDRON	RUBENS	ARACEAE	С	20-Nov-90	NF	Α
1	C65	7427	COLEUS	BLUMEI	LAMIACEAE	Η	20-Nov-90	NF	D
1	C65	7428	COLEUS	BLUMEI	LAMIACEAE	Н	20-Nov-90	NF	D

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C72	7429	PASSIFLORA	EDULIS	PASSIFLORACEAE	C	20-Nov-90	A	NF
1	C72	7430	UNKNOWN	UNKNOWN	SAPOTACEAE	U	20-Nov-90	NF	NF
1	C64	7431	TRADESCANTIA	SP.	COMMELINACEAE	Η	20-Nov-90		NF
1	C64	7433	BAMBUSA	MULTIPLEX	POACEAE	Α	20-Nov-90	NF	NF
1	C71	7434	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	20-Nov-90	NF	NF
1	C71	7435	PHILODENDRON	ERUBESCENS	ARACEAE	С	20-Nov-90	NF	NF
1	C71	7436	PASSIFLORA	QUADRANGULARIS	PASSIFLORACEAE	С	20-Nov-90	Α	NF
1	C64	7437	UNKNOWN	UNKNOWN	ARACEAE	U	20-Nov-90	Α	Α
1	C65	7438	BACCHARIS	HALIMIFOLIA	ASTERACEAE	S	20-Nov-90	NF	D
1	C65	7439	UNKNOWN	UNKNOWN	UNKNOWN	U	20-Nov-90	Α	D
1	C65	7440	BACCHARIS	HALIMIFOLIA	ASTERACEAE	S	20-Nov-90	NF	D
1	C65	7441	BACCHARIS	HALIMIFOLIA	ASTERACEAE	S	20-Nov-90	NF	D
1	C84	7450	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	D	D
1	C85	7451	UNKNOWN	UNKNOWN	RUBIACEAE	U	2-Nov-90	NF	N
1	C85	7452	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NI
1	C85	7453	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	Α	NI
1	C85	7454	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	NF	NI
1	C85	7455	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	NF	NI
1	C85	7456	THELYPTERIS	SP.	THELYPTERIDACEAE	Η	2-Nov-90	NF	NI
1	C85	7457	PHILODENDRON	ERUBESCENS	ARACEAE	С	2-Nov-90	NF	Α
1	C85	7458	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C86	7459	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NI
1	C86	7460	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NI
1	C85	7461	PHILODENDRON	ERUBESCENS	ARACEAE	С	2-Nov-90	NF	NI
1	C86	7462	CALLISIA	FRAGRANS	COMMELINACEAE	Н	2-Nov-90	NF	NI
1	C86	7463	PHILODENDRON	ERUBESCENS	ARACEAE	С	2-Nov-90	NF	NI
1	C86	7464	PHILODENDRON	ERUBESCENS	ARACEAE	С	2-Nov-90	NF	NF
1	C86	7465	ASPARAGUS	DENSIFLORUS	ASPARAGACEAE	Н	2-Nov-90	NF	N

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C86	7466	СҮАТНЕА	COOPERI	CYATHEACEAE	P	2-Nov-90	D	NF
1	C86	7467	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	2-Nov-90	NF	NF
1	C86	7468	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	2-Nov-90	NF	NF
1	C86	7469	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	2-Nov-90	NF	NF
1	C86	7470	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	Α	NF
1	C86	7471	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C86	7472	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C86	7473	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	2-Nov-90	Α	NF
1	C85	7474	UNKNOWN	UNKNOWN	FABACEAE	U	2-Nov-90	NF	NF
1	C78	7475	CALLISIA	FRAGRANS	COMMELINACEAE	Η	2-Nov-90	NF	NF
1	C86	7476	MARCGRAVIA	SINTENISII	MARCGRAVIACEAE	С	2-Nov-90	Α	NF
1	C86	7477	PHILODENDRON	RUBENS	ARACEAE	С	2-Nov-90	Α	NF
1	C86	7478	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C86	7479	ASCLEPIAS	CURASSAVICA	ASCLEPIADACEAE	Н	2-Nov-90	NF	NF
1	C86	7480	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C86	7481	UNKNOWN	UNKNOWN	ARACEAE	U	2-Nov-90	NF	NF
1	C79	7482	PHILODENDRON	ERUBESCENS	ARACEAE	С	2-Nov-90	NF	NF
1	C79	7483	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	NF	NF
1	C79	7484	PASSIFLORA	CORIACEA	PASSIFLORACEAE	С	2-Nov-90	NF	NF
1	C79	7485	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C79	7486	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90	NF	NF
1	C79	7487	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	Α	NF
1	C79	7488	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90		NF
1	C78	7489	PHILODENDRON	ANGUSTATUM	ARACEAE	С	2-Nov-90	NF	NF
1	C78	7490	CLUSIA	SP.	CLUSIACEAE	Т	2-Nov-90	NF	NF
1	C78	7491	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	NF	NF
1	C78	7492	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	NF	NF
1	C78	7493	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NF

Table B-1-- continued.

Dlanking		Current No	<u> </u>	Creatific arithet	Eamily	GF	Intro Data	02.4	06
Planting		Survey No.		Specific epithet	Family RECONTRACE AF		Intro Date	93-4	96
1	C78	7494	UNKNOWN	UNKNOWN	BROMELIACEAE	U	2-Nov-90	NF	NF
1	C78	7495	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	2-Nov-90	NF	NF
1	C78	7496	PHILODENDRON	SP.	ARACEAE	С	2-Nov-90	NF	NF
1	C78	7497	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	2-Nov-90	NF	NF
1	C78	7498	UNKNOWN	UNKNOWN	UNKNOWN	U	2-Nov-90		
1	C86	7499	PLATYCERIUM	SUPERBUM	POLYPODIACEAE	Ε	2-Nov-90	D	NF
1	C81	7500	HELICONIA	SP.	HELICONIACEAE	G	29-Nov-90	NF	D
1	C81	7501	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	29-Nov-90	Α	Α
1	C81	7502	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Н	29-Nov-90	NF	D
1	C81	7503	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Н	29-Nov-90	Α	D
1	C81	7504	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	Α	Α
1	C81	7505	HEDYCHIUM	AURANTIACA	ZINGIBERACEAE	G	29-Nov-90	NF	D
1	C81	7506	KAEMPFERIA	PULCHRA	ZINGIBERACEAE	Н	29-Nov-90	Α	D
1	C81	7507	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	Α	Α
1	C88	7508	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	Α	NF
1	C88	7509	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C88	7510	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	Α	D
1	C88	7511	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C88	7512	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	Α	NF
1	C88	7513	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C88	7514	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	D
1	C88	7515	STROMANTHE	AMABILIS	MARANTACEAE	Н	29-Nov-90	Α	Α
1	C88	7516	PTERIS	LONGIFOLIA	ADIANTACEAE	Н	29-Nov-90	NF	NF
1	C88	7517	GLOBBA	SP.	ZINGIBERACEAE	Н	29-Nov-90	NF	NF
1	C88	7518	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Н	29-Nov-90	Α	D
1	C88	7519	KAEMPFERIA	DECORA	ZINGIBERACEAE	Н	29-Nov-90	NF	NF
1	C95	7520	SCINDAPSUS	AUREUS	ARACEAE	C	29-Nov-90	NF	NF
1	C95	7521	SCINDAPSUS	AUREUS	ARACEAE	c	29-Nov-90	NF	NF
1	C)5	/ 521		NONEOU			27 1107 70	1 41	4 44

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C95	7522	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	NF	NF
1	C95	7523	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Н	29-Nov-90	NF	NF
1	C95	7524	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	NF	NF
1	C95	7525	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Н	29-Nov-90	NF	NF
1	C95	7526	HELICONIA	PSITTACORUM	HELICONIACEAE	G	29-Nov-90	NF	D
1	C95	7527	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	Α	NF
1	C95	7528	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C95	7529	RENEALMIA	ALPINIA	ZINGIBERACEAE	G	29-Nov-90	NF	Α
1	C94	7530	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C94	7531	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C94	7532	HEDYCHIUM	AURANTIACA	ZINGIBERACEAE	G	29-Nov-90	NF	NF
1	C94	7533	ALPINIA	ZERUMBET	ZINGIBERACEAE	G	29-Nov-90	Α	Α
1	C94	7534	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C94	7535	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	Α	NF
1	C94	7536	HEDYCHIUM	AURANTIACA	ZINGIBERACEAE	G	29-Nov-90	NF	Α
1	C94	7537	DATURA	STRAMONIUM	SOLANACEAE	Н	29-Nov-90	NF	NF
1	C93	7538	CARICA	PAPAYA	CARICACEAE	Т	29-Nov-90	NF	D
1	C93	7539	UNKNOWN	UNKNOWN	LORANTHACEAE	U	29-Nov-90	NF	D
1	C93	7540	CLUSIA	SP.	CLUSIACEAE	Т	29-Nov-90	NF	D
1	C93	7541	COFFEA	ARABICA	RUBIACEAE	S	29-Nov-90	D	D
1	C86	7542	MANGIFERA	INDICA	ANACARDIACEAE	Т	29-Nov-90	NF	NF
1	C86	7543	GARCINIA	SP.	CLUSIACEAE	Т	29-Nov-90	Α	NF
1	C86	7544	GARCINIA	SP.	CLUSIACEAE	Т	29-Nov-90	Α	Α
1	C86	7545	GARCINIA	SP.	CLUSIACEAE	Т	29-Nov-90	Α	NF
1	C86	7546	ASPLENIUM	DAUCIFOLIUM	ASPLENIACEAE	Η	29-Nov-90	NF	NF
1	C86	7547	PAULLINIA	SP.	SAPINDACEAE	С	29-Nov-90	NF	NF
1	C86	7548	BLECHNUM	ORIENTALE	BLECHNACEAE	Η	29-Nov-90	D	NF
1	C86	7549	JUSTICIA	PECTORALIS	ACANTHACEAE	Η	29-Nov-90	NF	NF

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C87	7550	CEDRELA	ODORATA	MELIACEAE	T	29-Nov-90	A	D
1	C87	7551	UNKNOWN	UNKNOWN	ARACEAE	U	29-Nov-90	Α	D
1	C87	7552	SALVIA	DIVINORUM	LAMIACEAE	S	29-Nov-90	NF	D
1	C88	7553	PHILODENDRON	ANGUSTATUM	ARACEAE	С	29-Nov-90	NF	D
1	C88	7554	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	Α	D
1	C88	7555	LECYTHIS	ZABUCAJO	LECYTHIDACEAE	Т	29-Nov-90	NF	D
1	C80	7556	SALVIA	DIVINORUM	LAMIACEAE	S	29-Nov-90	NF	NF
1	C80	7557	PHILODENDRON	SP.	ARACEAE	С	29-Nov-90	Α	Α
1	C80	7558	SALVIA	DIVINORUM	LAMIACEAE	S	29-Nov-90	NF	NF
1	C80	7559	LYCOPODIUM	CERNUUM	LYCOPODIACEAE	Н	29-Nov-90	D	NF
1	C79	7560	PELLAEA	VIRIDIS	ADIANTACEAE	Н	29-Nov-90	D	NF
1	C72	7561	BRACHIONIDIUM	SP.	ORCHIDACEAE	S	29-Nov-90	D	NF
1	C72	7562	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	29-Nov-90	NF	NF
1	C72	7563	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	Т	29-Nov-90	Α	NF
1	C72	7564	GUZMANIA	MONOSTACHIA	BROMELIACEAE	Ε	29-Nov-90	D	NF
1	C72	7565	TRADESCANTIA	SP.	COMMELINACEAE	Н	29-Nov-90		NF
1	C72	7566	GUZMANIA	MONOSTACHIA	BROMELIACEAE	Ε	29-Nov-90	Α	NF
1	C71	7567	LYCOPODIUM	CERNUUM	LYCOPODIACEAE	Н	29-Nov-90	D	NF
1	C73	7568	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C65	7569	SYNGONIUM	PODOPHYLLUM	ARACEAE	С	29-Nov-90	NF	D
1	C65	7570	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-90	Α	Α
1	C65	7571	SCINDAPSUS	AUREUS	ARACEAE	С	29-Nov-9 0		
1	C71	7572	IPOMOEA	BATATAS	CONVOLVULACEAE	Η	29-Nov-90	NF	NF
1	C64	7573	CALLISIA	FRAGRANS	COMMELINACEAE	Η	29-Nov-90		NF
1	C71	7574	ELAEIS	GUINEENSIS	ARECACEAE	Р	29-Nov-90	Α	Α
1	C71	7575	UNKNOWN	UNKNOWN	UNKNOWN	U	29-Nov-90	NF	NF
1	C71	7576	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	Т	29-Nov-90	Α	NF
1	C71	7577	ANDROPOGON	SP.	POACEAE	R	29-Nov-90	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C71	7578	COFFEA	ARABICA	RUBIACEAE	S	29-Nov-90	A	Α
1	C71	7579	ELAEIS	GUINEENSIS	ARECACEAE	Р	29-Nov-90	Α	Α
1	C78	7580	PHILODENDRON	TRIPARTITUM	ARACEAE	С	29-Nov-90	NF	NF
1	C78	7581	PHILODENDRON	GRAZIELAE	ARACEAE	С	29-Nov-90	NF	NF
1	C78	7582	UNKNOWN	UNKNOWN	FABACEAE	U	29-Nov-90	NF	NF
1	C78	7583	JUSTICIA	PECTORALIS	ACANTHACEAE	Η	29-Nov-90	NF	NF
1	C78	7584	MALPIGHIA	GLABRA	MALPIGHIACEAE	S	29-Nov-90	NF	NF
1	C67	7585	POGOSTEMON	HEYNEANUS	LAMIACEAE	S	29-Nov-90	NF	NF
1	C67	7586	CANNA	INDICA	CANNACEAE	G	29-Nov-90	Α	Α
1	C67	7587	PASSIFLORA	QUADRANGULARIS	PASSIFLORACEAE	С	29-Nov-90	Α	NF
1	C67	7588	ALPINIA	SANDERAE	ZINGIBERACEAE	G	29-Nov-90	NF	NF
1	C67	7589	ALPINIA	SANDERAE	ZINGIBERACEAE	G	29-Nov-90	NF	NF
1	C61	7590	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	29-Nov-90	Α	Α
1	C69	7591	THEOBROMA	CACAO	STERCULIACEAE	S	29-Nov-90	Α	NF
1	C69	7592	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	29-Nov-90	Α	Α
1	C69	7593	COSTUS	SP.	ZINGIBERACEAE	Н	29-Nov-90	NF	NF
1	C69	7594	SINNINGIA	REGINA	GESNERIACEAE	S	29-Nov-90	NF	NF
1	C69	7595	PALICOUREA	SP.	RUBIACEAE	Т	29-Nov-90	NF	NF
1	C69	7596	UNKNOWN	UNKNOWN	FABACEAE	Н	29-Nov-90	NF	NF
1	C76	7597	UNKNOWN	UNKNOWN	ARACEAE	U	29-Nov-90	NF	NF
1	C76	7598	THEOBROMA	CACAO	STERCULIACEAE	S	29-Nov-90	Α	NF
1	C75	7599	CANNA	GENERALIS	CANNACEAE	G	29-Nov-90	Α	NF
1	C83	7600	ZINGIBER	OFFICINALE	ZINGIBERACEAE	Η	29-Nov-90	NF	NF
1	C83	7601	UNKNOWN	UNKNOWN	ARACEAE	U	29-Nov-90	NF	D
1	C83	7602	EPHEDRA	SP.	EPHEDRACEAE	S	29-Nov-90	NF	NF
1	C83	7603	ANTIGONON	LEPTOPUS	POLYGONACEAE	С	29-Nov-90	NF	NF
1	C83	7604	ALPINIA	SANDERAE	ZINGIBERACEAE	G	29-Nov-90	NF	NF
1	C82	7605	ALPINIA	SANDERAE	ZINGIBERACEAE	G	29-Nov-90	Α	Α

Table B-1-- <u>continued.</u>

Table B-	1 <u>co</u>	ntinued.		`					
Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C89	7606	HELICONIA	MUTISIANA	HELICONJACEAE	G	29-Nov-90	NF	NF
1	C89	7607	ETLINGERA	ELATIOR	ZINGIBERACEAE	Η	29-Nov-90	NF	NF
1	C90	7608	HELICONIA	PSITTACORUM	HELICONIACEAE	G	29-Nov-90	NF	NF
1	C9 0	7609	HELICONIA	PSITTACORUM	HELICONIACEAE	G	29-Nov-90	NF	NF
1	C90	7610	DICHORISANDRA	THYRSIFLORA	COMMELINACEAE	Η	29-Nov-90	NF	NF
1	C91	7611	COSTUS	SP.	ZINGIBERACEAE	Η	29-Nov-90	Α	Α
1	C90	7612	LEUCAENA	GLAUCA	FABACEAE	Т	29-Nov-90	D	NF
1	C90	7613	CYATHEA	SP.	CYATHEACEAE	Р	29-Nov-90	D	NF
1	C91	7614	PTERIS	CRETICA	ADIANTACEAE	Н	29-Nov-90	NF	D
1	C65	7616	COCOS	NUCIFERA	ARECACEAE	Р	29-Nov-90	Α	Α
1	C84	7618	ANNONA	MURICATA	ANNONACEAE	Т	29-Nov-90	NF	NF
1	C85	7619	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C84	7620	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C84	7621	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C84	7622	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C84	7623	EUGENIA	BOQUERONENSIS	MYRTACEAE	Т	29-Nov-90	NF	NF
1	C67	7703	AGLAONEMA	SP.	ARACEAE	Н	26-Sep-91	Α	Α
1	C67	7704	FICUS	PUMILA	MORACEAE	С	26-Sep-91	Α	Α
1	C67	7705	FICUS	PUMILA	MORACEAE	С	26-Sep-91	Α	NF
1	C67	7706	FICUS	PUMILA	MORACEAE	С	26-Sep-91	Α	Α
1	C67	7707	HIBISCUS	CALYPHYLLUS	MALVACEAE	S	26-Sep-91	Α	Α
1	C66	7708	THALIA	GENICULATA	MARANTACEAE	Н	26-Sep-91	Α	Α
1	C65	7709	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C64	7711	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C64	7712	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	Α
1	C64	7713	PHILODENDRON	SP.	ARACEAE	С	26-Sep-91	Α	Α
1	C64	7714	COSTUS	SP.	ZINGIBERACEAE	Η	26-Sep-91	Α	Α
1	C64	7715	HIBISCUS	CALYPHYLLUS	MALVACEAE	S	26-Sep-91	Α	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C63	7716	HEIMIA	SALICIFOLIA	LYTHRACEAE	S	26-Sep-91	Ā	D
1	C63	7717	BREYNIA	DISTICHA	EUPHORBIACEAE	Η	26-Sep-92	Α	Α
1	C63	7718	BREYNIA	DISTICHA	EUPHORBIACEAE	Η	26-Sep-92	Α	Α
1	C76	7719	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C76	7720	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7721	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7722	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C76	7723	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C76	7724	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C76	7725	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	Α	NF
1	C76	7726	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7727	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7728	CARICA	РАРАҮА	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7729	PIPER	SP.	PIPERACEAE	Н	26-Sep-91	Α	Α
1	C76	7730	PIPER	SP.	PIPERACEAE	Н	26-Sep-91	Α	D
1	C76	7731	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	D
1	C76	7732	CARICA	PAPAYA	CARICACEAE	Т	26-Sep-92	??	D
1	C76	7733	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	Α
1	C76	7734	CARICA	РАРАҮА	CARICACEAE	Т	26-Sep-92	Α	NF
1	C76	7735	PLATYCERIUM	SUPERBUM	POLYPODIACEAE	Ε	26-Sep-92	Α	NF
1	C76	7737	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-92	Α	NF
1	C76	7738	CARICA	ΡΑΡΑΥΑ	CARICACEAE	Т	26-Sep-92	Α	D
1	C76	7739	CARICA	РАРАҮА	CARICACEAE	Т	- 26-Sep-92	Α	NF
1	C76	7740	THEOBROMA	CACAO	STERCULIACEAE	S	26-Sep-91	Α	D
1	C76	7741	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-91	Α	Α
1	C76	7742	MUSA	SP.	MUSACEAE	G	26-Sep-92	Α	Α
1	C74	7744	LEUCAENA	SP.	FABACEAE	Т	26-Sep-92	Α	NF
1	C74	7745	MUSA	SP.	MUSACEAE	G	26-Sep-91	Α	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C83	7746	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S			Α
1	C75	7747	MUSA	SP.	MUSACEAE	G	26-Sep-92	NF	NF
1	C83	7748	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Н	26-Sep-91	Α	NF
1	C83	7749	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-92	Α	Α
1	C83	7751	COFFEA	ARABICA	RUBIACEAE	S	26-Sep-91	Α	Α
1	C83	7752	RICINUS	COMMUNIS	EUPHORBIACEAE	Т	26-Sep-91	D	D
1	C83	7753	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C83	7755	STRELITZIA	SP.	STRELITZIACEAE	G	26-Sep-92	Α	Α
1	C83	7756	CURCUMA	DOMESTICA	ZINGIBERACEAE	Н	26-Sep-91	Α	NF
1	C83	7757	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-92	Α	Α
1	C83	7758	MUSA	SP.	MUSACEAE	G	26-Sep-92	Α	Α
1	C83	7759	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-92	Α	Α
1	C74	7760	LEUCAENA	SP.	FABACEAE	Т	26-Sep-92	Α	Α
1	C74	7761	LEUCAENA	SP.	FABACEAE	Т	26-Oct-92	Α	NF
1	C74	7762	AGLAONEMA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C81	7763	HEDYCHIUM	SP.	ZINGIBERACEAE	G	26-Sep-92	Α	Α
1	C81	7764	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	26-Sep-91	Α	D
1	C81	7765	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C81	7766	STRELITZIA	SP.	STRELITZIACEAE	G	26-Sep-92	Α	NF
1	C81	7767	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C81	7768	HEIMIA	SP.	LYTHRACEAE	S	26-Sep-91	Α	D
1	C81	7769	STRELITZIA	SP.	STRELITZIACEAE	G	26-Sep-92	Α	D
1	C81	7770	MUSA	SP.	MUSACEAE	G	26-Sep-92	Α	Α
1	C81	7771	LEUCAENA	LEUCOCEPHALA	FABACEAE	Т	26-Sep-91	Α	Α
1	C88	7772	COSTUS	SP.	ZINGIBERACEAE	Н	26-Sep-92	Α	NF
1	C88	7773	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	NF
1	C88	7774	LEUCAENA	SP.	FABACEAE	Т	- 26-Sep-91	Α	NF
1	C88	7775	LEUCAENA	SP.	FABACEAE	Т	- 26-Sep-91	Α	NF

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C88	7776	MUSA	SP.	MUSACEAE	G	26-Sep-92	A	A
1	C88	7777	STRELITZIA	REGINAE	STRELITZIACEAE	G	26-Sep-91	Α	Α
1	C88	7778	LUDWIGIA	OCTOVALVIS	ONAGRACEAE	Н	26-Sep-92	Α	NF
1	C88	7779	SOLANDRA	MAXIMA	SOLANACEAE	С	26-Sep-91	Α	NF
1	C88	7780	SOLANDRA	NITIDA	SOLANACEAE	С	26-Sep-92	Α	NF
2	C88	7781	MONSTERA	DELICIOSA	ARACEAE	С	26-Sep-93	Α	Α
1	C88	7782	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C85	7783	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	Α
1	C88	7784	MONSTERA	DELICIOSA	ARACEAE	С	26-Sep-91	Α	Α
1	C88	7785	UNKNOWN	UNKNOWN	BROMELIACEAE	U	26-Sep-92	Α	Α
1	C88	7786	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C88	7787	MONSTERA	DELICIOSA	ARACEAE	С	26-Sep-91	Α	Α
1	C95	7788	UNKNOWN	UNKNOWN	ZINGIBERACEAE	Н	26-Sep-92	Α	Α
1	C95	7789	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C95	7790	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	26-Sep-91	Α	Α
1	C95	7791	HELICONIA	LONGIFLORA	HELICONIACEAE	G	26-Sep-91	Α	Α
1	C95	7792	STRELITZIA	REGINAE	STRELITZIACEAE	G	26-Sep-91	Α	Α
1	C95	7793	PIPER	SP.	PIPERACEAE	Н	26-Sep-91	Α	Α
1	C83	7794	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	26-Sep-91	Α	NF
1	C95	7794	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	26-Sep-91		NF
1	C95	7795	BRUGMANSIA	SUAVEOLENS	SOLANACEAE	S	26-Sep-91	Α	NF
1	C85	7796	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	Α
1	C85	7798	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	Α
1	C85	7800	LUDWIGIA	SP.	ONAGRACEAE	S	26-Sep-92	Α	Α
1	C86	7801	CISSUS	SICYOIDES	VITACEAE	С	26-Sep-91	Α	Α
1	C86	7802	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	Α	NF
1	C86	7803	LEUCAENA	GLAUCA	FABACEAE	Т	- 26-Sep-91	Α	NF
1	C86	7804	LEUCAENA	GLAUCA	FABACEAE	Т	- 26-Sep-91	Α	D

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C86	7805	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	D	NF
1	C86	7806	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	D	D
1	C86	7807	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Sep-91	Α	NF
1	C86	7808	NEPHROLEPIS	EXALTATA	DAVALLIACEAE	Η	26-Sep-91	Α	NF
1	C86	7809	UNKNOWN	UNKNOWN	BROMELIACEAE	U	26-Sep-92	Α	NF
1	C87	7810	COLOCASIA	SP.	ARACEAE	Η	26-Sep-92	Α	NF
1	C87	7811	UNKNOWN	UNKNOWN	ORCHIDACEAE	Ε	26-Sep-92	Α	D
1	C87	7812	SANCHEZIA	SPECIOSA	ACANTHACEAE	S	26-Sep-91	Α	Α
1	C93	7813	CANNA	INDICA	CANNACEAE	G	26-Sep-91	Α	D
1	C77	7814	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	NF
1	C78	7815	UNKNOWN	UNKNOWN	ARACEAE	U	26-Sep-92	Α	NF
1	C78	7816	UNKNOWN	UNKNOWN	ASCLEPIADACEAE	U	26-Sep-92	Α	Α
1	C78	7817	CANNA	GENERALIS	CANNACEAE	G	26-Sep-91	Α	NF
1	C84	7818	ANANAS	SP.	BROMELIACEAE	Н	26-Sep-91	Α	NF
1	C84	7819	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C84	7820	HELICONIA	PSITTACORUM	HELICONIACEAE	G	26-Sep-91	Α	Α
1	C77	7821	CARICA	SP.	CARICACEAE	Т	26-Sep-91	Α	NF
1	C77	7822	SCINDAPSUS	AUREUS	ARACEAE	С	26-Sep-91	Α	Α
1	C94	7823	KAEMPFERIA	ROTUNDA	ZINGIBERACEAE	Η	26-Sep-91	Α	NF
1	C94	7824	PHENAKOSPERMUM		STRELITZIACEAE	G	26-Sep-91	Α	NF
1	C94	7825	SETARIA	PALMIFOLIA	POACEAE	R	26-Sep-91	Α	Α
1	C94	7826	PHILODENDRON	SP.	ARACEAE	С	26-Sep-92	Α	Α
1	C93	7827	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	Α
1	C93	7828	COLOCASIA	SP.	ARACEAE	Н	26-Sep-92	Α	D
1	C94	7829	DIEFFENBACHIA	SP.	ARACEAE	Η	26-Sep-91	Α	Α
1	C94	7830	ARENGA	SP.	ARECACEAE	Р	26-Sep-91	Α	Α
1	C94	7831	UNKNOWN	UNKNOWN	ARACEAE	U	26-Sep-92	Α	Α
1	C94	7832	RICINUS	COMMUNIS	EUPHORBIACEAE	Т	26-Sep-91	Α	D

Table B-1-- continued.

1 1 1	C87	7833	BAMBUSA						
1 1			DAIVIDUSA	SP.	POACEAE	A	26-Sep-92	A	Α
1		7835	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
		7836	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	D
1		7837	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	D
1		7838	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	D
1	C94	7839	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C95	7840	STRELITZIA	NICOLAI	STRELITZIACEAE	G	30-Apr-91	NF	NF
1	C95	7841	STRELITZIA	NICOLAI	STRELITZIACEAE	G	30-Apr-91	NF	NF
1	C95	7842	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C95	7843	PHOENIX	ROEBELENII	ARECACEAE	Р	30-Apr-91	Α	D
1	C95	7844	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C95	7845	STRELITZIA	NICOLAI	STRELITZIACEAE	G	30-Apr-91	NF	NF
1	C95	7846	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	NF	NF
1	C95	7847	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C95	7848	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C94	7849	PHOENIX	ROEBELENII	ARECACEAE	Ρ	30-Apr-91	NF	NF
1	C94	7850	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C87	7851	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	30-Apr-91	Α	Α
1	C87	7852	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	30-Apr-91	Α	Α
1	C87	7853	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	D
1	C87	7854	CHAMAEDOREA	MICROSPADIX	ARECACEAE	S	30-Apr-91	Α	Α
1	C86	7855	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	D
1	C87	7856	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C87	7857	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C87	7858	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	Α	Α
1	C80	7859	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	30-Apr-91	NF	NF
1	C80	7860	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Н	30-Apr-91	Α	Α
1	C80	7861	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Н	30-Apr-91	Α	Α

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C80	7862	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C80	7863	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C79	7864	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C79	7865	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C79	7866	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C79	7867	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C79	7868	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C79	7869	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C80	7870	SPATHOGLOTTIS	PLICATA	ORCHIDACEAE	Н	30-Apr-91	NF	NF
1	C80	7871	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C80	7872	SPATHOGLOTTIS	PLICATA	ORCHIDACEAE	Η	30-Apr-91	NF	NF
1	C80	7873	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	Α	Α
1	C79	7874	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	C.	30-Apr-91	NF	NF
1	C81	7875	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	NF	Α
1	C79	7876	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C79	7877	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C80	7878	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C80	7879	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C81	7880	PHOENIX	ROEBELENII	ARECACEAE	Р	30-Apr-91	NF	D
1	C79	7881	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	NF	Α
1	C80	7883	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C81	7884	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	D
1	C74	7886	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C73	7887	CECROPIA	SCHREBERIANA	CECROPIACEAE	Т	30-Apr-91	NF	NF
1	C74	7888	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C74	7889	BRACHYCHILUM	HORSFIELDII	ZINGIBERACEAE	Н	30-Apr-91	NF	NF
1	C74	7890	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C74	7891	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF

Table B-1-- <u>continued.</u>

			0		T . 11.			00.4	- 01
Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C73	7892	CECROPIA	SCHREBERIANA	CECROPIACEAE	Τ	30-Apr-91	D	NF
1	C74	7893	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	NF
1	C74	7894	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	D
1	C74	7895	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C74	7896	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	Α	D
1	C74	7897	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C74	7898	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C74	7899	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C74	7900	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	NF
1	C74	7901	ARECA	CATECHU	ARECACEAE	Р	30-Apr-91	NF	NF
1	C74	7902	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C74	7903	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C67	7904	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C67	7905	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	Α	D
1	C67	7906	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C67	7907	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C67	7908	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C67	7909	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C67	7910	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C67	7911	STRELITZIA	NICOLAI	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C67	7912	STRELITZIA	NICOLAI	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C74	7913	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	Α	NF
1	C73	7914	ARECA	CATECHU	ARECACEAE	Р	30-Apr-91	Α	Α
1	C73	7915	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	D	NF
1	C72	7916	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91		NF
1	C73	7917	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	30-Apr-91	NF	Α
1	C73	7918	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	NF	NF
1	C73	7919	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
							•		

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C73	7920	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C73	7921	MYRISTICA	FRAGRANS	MYRISTICACEAE	T	30-Apr-91	NF	NF
1	C73	7922	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C66	7923	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	D	D
1	C73	7924	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	D	NF
1	C72	7925	ARECA	CATECHU	ARECACEAE	Р	30-Apr-91	NF	NF
1	C72	7926	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	D	NF
1	C72	7927	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	NF	NF
1	C72	7928	MYRISTICA	FRAGRANS	MYRISTICACEAE	Т	30-Apr-91	NF	NF
1	C72	7929	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C72	7930	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C72	7931	PRESTOEA	MONTANA	ARECACEAE	Р	30-Apr-91	NF	NF
1	C72	7932	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C72	7933	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C72	7934	ZAMIA	FISCHERI	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C72	7935	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	NF	D
1	C72	7936	ZAMIA	FISCHERI	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C72	7937	MYRISTICA	FRAGRANS	MYRISTICACEAE	Т	30-Apr-91	NF	NF
1	C71	7938	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	NF	NF
1	C72	7939	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	30-Apr-91	Α	Α
1	C65	794 0	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91		
1	C64	7941	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C72	7942	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91		NF
1	C71	7943	ZAMIA	FURFURACEA	ZAMIACEAE	S	30-Apr-91	Α	Α
1	C65	7944	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91		D
1	C64	7945	BAMBUSA	VULGARIS	POACEAE	Α	30-Apr-91	Α	Α
1	C71	7946	FICUS	PUMILA	MORACEAE	С	30-Apr-91	Α	NF
1	C64	7947	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
1	C64	7948	PANDOREA	PANDORANA	BIGNONIACEAE	C	30-Apr-91	NF	NF
1	C64	7949	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	NF	Α
1	C64	7950	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	Α	D
1	C71	7951	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	30-Apr-91	Α	Α
1	C71	7952	FICUS	PUMILA	MORACEAE	С	30-Apr-91	NF	NF
1	C71	7953	FICUS	PUMILA	MORACEAE	С	30-Apr-91	NF	NF
1	C71	7954	FICUS	PUMILA	MORACEAE	С	30-Apr-91	D	NF
1	C71	7955	FICUS	PUMILA	MORACEAE	С	30-Apr-91	D	Α
1	C63	7956	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	D
1	C63	7957	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	D
1	C62	7958	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	Α	NF
1	C62	7959	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	NF	NF
1	C69	7960	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	NF	NF
1	C76	7961	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C76	7962	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	NF	NF
1	C76	7963	MYRISTICA	FRAGRANS	MYRISTICACEAE	Т	30-Apr-91	NF	NF
1	C76	7964	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C77	7965	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	NF	D
1	C76	7966	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C76	7967	THEOBROMA	CACAO	STERCULIACEAE	S	30-Apr-91	NF	NF
1	C76	7968	MYRISTICA	FRAGRANS	MYRISTICACEAE	Т	30-Apr-91	NF	NF
1	C76	7969	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C76	797 0	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C83	7971	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	NF
1	C83	7972	PANDOREA	PANDORANA	BIGNONIACEAE	С	30-Apr-91	NF	NF
1	C82	7973	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C84	7974	PASSIFLORA	MOLLISSIMA	PASSIFLORACEAE	С	30-Apr-91	NF	D
1	C83	7975	EUTERPE	SP.	ARECACEAE	Р	30-Apr-91	NF	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	· · · · · · · · · · · · · · · · · · ·	Specific epithet	Family	GF	Intro Date	93-4	96
1	C83	7976	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C92	7977	STRELITZIA	REGINAE	STRELITZIACEAE	G	30-Apr-91	Α	Α
1	C93	7978	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	D
1	C93	7979	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	Α	D
1	C93	7980	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	Α	D
1	C86	7981	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91		NF
1	C86	7982	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C86	7983	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C87	7984	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C86	7985	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C87	7986	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	NF	NF
1	C95	7987	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	Α	NF
1	C95	7988	THUNBERGIA	MYSORENSIS	ACANTHACEAE	С	30-Apr-91	Α	NF
1	C71	7989	ADIANTUM	HISPIDULUM	ADIANTACEAE	Η	30-Apr-91		D
1	C71	7990	UNKNOWN	UNKNOWN	UNKNOWN	U	30-Apr-91	NF	NF
1	C62	9808	CANNA	INDICA	CANNACEAE	G	26-Sep-91	Α	Α
2	C80	9810	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	NF
2	C78	10413	POUTERIA	OBOVATA	SAPOTACEAE	Т	30-Dec-93	Α	NF
1	C85	10414	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	Α
1	C85	10415	SACCHARUM	OFFICINARUM	POACEAE	Α	26-Sep-91	Α	Α
2	C88	10416	DIOSCOREA	ALATA	DIOSCOREACEAE	С	21-Dec-93	Α	NF
2	C78	10417	DIOSCOREA	ALATA	DIOSCOREACEAE	С	21-Dec-93	Α	Α
2	C83	10418	DIOSCOREA	ALATA	DIOSCOREACEAE	С	21-Dec-93	Α	NF
2	C70	10420	DIOSCOREA	ALATA	DIOSCOREACEAE	С	21-Dec-93	Α	D
2	C88	10422	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	21-Dec-93	Α	NF
2	C81	10423	XANTHOSOMA	SP.	ARACEAE	Н	21-Dec-93	Α	Α
2	C74	10424	XANTHOSOMA	SP.	ARACEAE	Н	21-Dec-93	Α	NF
2	C73	10425	XANTHOSOMA	SP.	ARACEAE	Н	21-Dec-93	Α	D

Table B-1-- <u>continued</u>.

•

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C74	10426	XANTHOSOMA	SP.	ARACEAE	Н	21-Dec-93	Α	D
2	C74	10427	COLOCASIA	SP.	ARACEAE	Η	21-Dec-93	Α	NF
2	C88	10431	COLOCASIA	ESCULENTA	ARACEAE	Η	21-Dec-93	Α	D
2	C92	10432	COLOCASIA	ESCULENTA	ARACEAE	Н	23-Dec-93	Α	NF
2	C91	10433	COLOCASIA	ESCULENTA	ARACEAE	Н	21-Dec-93	D	D
2	C89	10435	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C78	10436	ARTOCARPUS	ALTILIS	MORACEAE	Т	21-Dec-93	Α	Α
2	C78	10437	ARTOCARPUS	ALTILIS	MORACEAE	Т	21-Dec-93	D	D
2	C85	10440	COLOCASIA	ESCULENTA	ARACEAE	Η	21-Dec-93	Α	D
2	C78	10441	COLOCASIA	ESCULENTA	ARACEAE	Η	21-Dec-93	Α	D
2	C91	10444	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	D
2	C90	10445	COLOCASIA	ESCULENTA	ARACEAE	Н			NF
2	C83	10446	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	Α
2	C82	10447	COLOCASIA	ESCULENTA	ARACEAE	Н			NF
2	C83	10448	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	Α
2	C76	10449	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	NF
2	C74	10449	SPATHIPHYLLUM	CANNIFOLIUM	ARACEAE	Η			D
2	C75	10450	COLOCASIA	ESCULENTA	ARACEAE	Η			Α
2	C76	10450	COLOCASIA	ESCULENTA	ARACEAE	Н			Α
1	C71	10451	COFFEA	DEWEVREI	RUBIACEAE	S	26-Sep-92	Α	Α
1	C74	10452	TRADESCANTIA	PALLIDA	COMMELINACEAE	Η	26-Sep-91	NF	Α
1	C72	10453	CALLISIA	FRAGRANS	COMMELINACEAE	Н	26-Sep-91	Α	Α
1	C66	10454	CALLISIA	FRAGRANS	COMMELINACEAE	Н	26-Sep-91	Α	Α
1	C72	10455	GUZMANIA	SP.	BROMELIACEAE	Ε	26-Sep-91	Α	NF
2	C75	10456	COLOCASIA	ESCULENTA	ARACEAE	Н	-		NF
2	C68	10458	COLOCASIA	ESCULENTA	ARACEAE	Η	18-Dec-93	Α	NF
2	C69	10459	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	NF
2	C68	10460	COLOCASIA	ESCULENTA	ARACEAE	Н	18-Dec-93	Α	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
1	C79	10484	PACHIRA	AQUATICA	BOMBACACEAE	Т	26-Sep-91	Α	NF
1	C73	10485	PACHIRA	AQUATICA	BOMBACACEAE	Т	26-Sep-91	Α	NF
1	C79	10486	PACHIRA	AQUATICA	BOMBACACEAE	Т	26-Sep-91	Α	Α
1	C79	10487	PACHIRA	AQUATICA	BOMBACACEAE	Т	26-Sep-91	Α	NF
1	C72	10488	CISSUS	RHOMBIFOLIA	VITACEAE	С	26-Sep-92	Α	NF
2	C85	10489	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Н	20-Nov-93	Α	D
2	C71	10490	DIOSCOREA	ALATA	DIOSCOREACEAE	С	20-Nov-93	Α	D
2	C84	10491	ARTOCARPUS	HETEROPHYLLUS	MORACEAE	Т	20-Nov-93	Α	NF
2	C83	10492	AVERRHOA	CARAMBOLA	OXALIDACEAE	Т	20-Nov-93	Α	D
2	C74	10493	XANTHOSOMA	SP.	ARACEAE	Η	20-Nov-93	Α	Α
2	C73	10494	IPOMOEA	BATATAS	CONVOLVULACEAE	Н	20-Nov-93	Α	D
1	C65	10495	CYPERUS	ALTERNIFOLIUS	CYPERACEAE	R	26-Sep-91	Α	Α
1	C76	10496	LEUCAENA	SP.	FABACEAE	Т	26-Sep-91	Α	NF
1	C69	10497	LEUCAENA	GLAUCA	FABACEAE	Т	26-Sep-91	Α	Α
1	C83	10499	XANTHOSOMA	SAGITTIFOLIUM	ARACEAE	Η	26-Sep-92	Α	NF
1	C80	10500	XANTHOSOMA	SP.	ARACEAE	Η	26-Sep-92	Α	NF
2	C81	11001	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	D
2	C81	11002	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	D
2	C81	11003	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	D
2	C74	11004	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NF
2	C73	11005	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NF
2	C72	11006	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	Α
2	C72	11007	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NI
2	C72	11008	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NI
2	C72	11009	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NF
2	C79	11010	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	D
2	C80	11011	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	NI
2	C78	11012	PRESTOEA	MONTANA	ARECACEAE	Р	23-Feb-94	Α	D

Table B-1-- <u>continued.</u>

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C85	11013	NELUMBO	NUCIFERA	NELUMBONACEAE	Н	1-Mar-94	A	NF
2	C85	11013	NELUMBO	NUCIFERA	NELUMBONACEAE	Η	1-Mar-94	NF	NF
2	C70	11017	NEPTUNIA	OLERACEA	FABACEAE	Η	1-Mar-94	Α	NF
2	C70	11018	CYPERUS	HASPAN	CYPERACEAE	R	1-Mar-94	Α	NF
2	C80	11022	CANANGA	ODORATA	ANNONACEAE	Т	2-Mar-94	Α	NF
2	C80	11024	CANANGA	ODORATA	ANNONACEAE	Т	2-Mar-94	Α	NF
2	C93	11025	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	D
2	C93	11025	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	D
2	C78	11026	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	NF
2	C91	11027	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	NF
2	C80	11028	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	NF
2	C81	11029	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	D
2	C81	11030	MORINGA	OLEIFERA	MORINGACEAE	Т	2-Mar-94	Α	D
2	C86	11031	VANDA	TRICUSPIDATA	ORCHIDACEAE	Ε	2-Mar-94	Α	D
2	C87	11032	VANDA	TRICUSPIDATA	ORCHIDACEAE	Ε	2-Mar-94	Α	D
2	C80	11033	PLATYCERIUM	WILLINCKII	POLYPODIACEAE	Ε	2-Mar-94	Α	NF
2	C81	11034	VANDA	TRICUSPIDATA	ORCHIDACEAE	Ε	2-Mar-94	Α	D
2	C70	11035	BARRINGTONIA	RACEMOSA	LECYTHIDACEAE	Т	2-Mar-94	Α	NF
2	C62	11036	BARRINGTONIA	RACEMOSA	LECYTHIDACEAE	Т	3-Mar-94	Α	NF
2	C86	11037	PLATYCERIUM	BIFURCATUM	POLYPODIACEAE	Ε	3-Mar-94	Α	NF
2	C87	11038	PLATYCERIUM	BIFURCATUM	POLYPODIACEAE	Ε	3-Mar-94	Α	NF
2	C70	11039	BARRINGTONIA	RACEMOSA	LECYTHIDACEAE	Т	3-Mar-94	Α	NF
2	C74	11040	PLATYCERIUM	VASSEI	POLYPODIACEAE	Ε	3-Mar-94	Α	D
2	C74	11041	PLATYCERIUM	VASSEI	POLYPODIACEAE	Ε	3-Mar-94		NF
2	C74	11042	PLATYCERIUM	VEITCHII	POLYPODIACEAE	Ε	3-Mar-94	Α	NF
2	C72	11043	PLATYCERIUM	VEITCHII	POLYPODIACEAE	Ε	3-Mar-94	Α	NF
2	C71	11044	PLATYCERIUM	HILLII	POLYPODIACEAE	Ε	3-Mar-94	Α	D
2	C72	11045	PLATYCERIUM	HILLII	POLYPODIACEAE	Ε	3-Mar-94	Α	NF

Table B-1-- <u>continued.</u>

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C72	11046	PLATYCERIUM	WILLINCKII	POLYPODIACEAE	E	3-Mar-94	Α	NF
2	C74	11047	PLATYCERIUM	WILLINCKII	POLYPODIACEAE	Ε	3-Mar-94	Α	NF
2	C87	11048	DRYNARIA	QUERCIFOLIA	POLYPODIACEAE	Ε	3-Mar-94	Α	Α
2	C91	11049	CTENITIS	SLOANII	ASPLENIACEAE	Н			
2	C85	11050	CTENITIS	SLOANII	ASPLENIACEAE	Η	3-Mar-94	Α	NF
2	C84	11051	CTENITIS	SLOANII	ASPLENIACEAE	Η	3-Mar-94	Α	NF
2	C86	11052	CYATHEA	ARBOREA	CYATHEACEAE	Р	3-Mar-94	Α	NF
2	C94	11053	ANGIOPTERIS	EVECTA	MARATTIACEAE	Н	3-Mar-94	Α	D
2	C84	11054	NYMPHAEA	SP.	NYMPHAEACEAE	Н	3-Mar-94	Α	NF
2	C94	11055	DIPLAZIUM	PROLIFERUM	ASPLENIACEAE	Ε	3-Mar-94	Α	Α
2	C86	11056	DIPLAZIUM	PROLIFERUM	ASPLENIACEAE	Ε	3-Mar-94	Α	NF
2	C78	11057	UNKNOWN	UNKNOWN	UNKNOWN	U			
2	C70	11059	MAURITIA	FLEXUOSA	ARECACEAE	Р	3-Mar-94	Α	NF
2	C85	11060	EUTERPE	OLERACEA	ARECACEAE	Р	3-Mar-94	D	NF
2	C62	11061	EUTERPE	OLERACEA	ARECACEAE	Р	3-Mar-94	Α	NF
2	C69	11062	EUTERPE	OLERACEA	ARECACEAE	Р	3-Mar-94	Α	NF
2	C78	11063	EUTERPE	OLERACEA	ARECACEAE	Р	3-Mar-94	Α	NF
2	C70	11064	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	NF
2	C70	11064	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	NF
2	C70	11065	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	NF
2	C84	11066	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	NF
2	C63	11067	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	D
2	C70	11068	EUTERPE	EDULIS	ARECACEAE	Р	3-Mar-94	Α	D
2	C81	11069	AECHMEA	LAMARCHEI	BROMELIACEAE	Н	3-Mar-94	Α	Α
2	C81	11070	AECHMEA	LAMARCHEI	BROMELIACEAE	Н	4-Mar-94	Α	Α
2	C86	11071	AECHMEA	FASCIATA	BROMELIACEAE	Ε	4-Mar-94	Α	D
2	C73	11072	AECHMEA	FOSTERIANA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C72	11072	AECHMEA	FOSTERIANA	BROMELIACEAE	Ε			Α

Table B-1-- continued.

Tuble D		<u>Internacion</u>							
Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C73	11073	AECHMEA	RAMOSA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C81	11074	AECHMEA	CAUDATA	BROMELIACEAE	Н	4-Mar-94	Α	NF
2	C81	11075	AECHMEA	NUDICAULIS	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C79	11076	AECHMEA	NUDICAULIS	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C80	11077	AECHMEA	NUDICAULIS	BROMELIACEAE	Ε	4-Mar-94	Α	NF
2	C72	11078	BILLBERGIA	HORRIDA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C83	11079	BILLBERGIA	HORRIDA	BROMELIACEAE	Ε	4-Mar-94	Α	D
2	C77	11080	BILLBERGIA	HORRIDA	BROMELIACEAE	Ε	4-Mar-94	Α	D
2	C72	11081	AECHMEA	CYLINDRATA	BROMELIACEAE	Ε			Α
2	C83	11081	AECHMEA	PENDULIFLORA	BROMELIACEAE	Е	4-Mar-94	Α	D
2	C83	11082	AECHMEA	RACINAE	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C76	11083	GUZMANIA	LINGULATA	BROMELIACEAE	Ε	4-Mar-94	Α	NF
2	C76	11083	GUZMANIA	LINGULATA	BROMELIACEAE	Ε	4-Mar-94		NF
2	C91	11084	AECHMEA	CALYCALATA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C92	11085	AECHMEA	PINELIANA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C92	11086	GUZMANIA	LINGULATA	BROMELIACEAE	Ε	4-Mar-94	Α	Α
2	C73	11087	AECHMEA	CYLINDRATA	BROMELIACEAE	Ε	4-Mar-94	Α	NF
2	C87	11088	VANILLA	PLANIFOLIA	ORCHIDACEAE	Ε	5-Mar-94	Α	NF
2	C79	11089	VANILLA	PLANIFOLIA	ORCHIDACEAE	Ε	5-Mar-94	Α	??
2	C72	11090	VANILLA	PLANIFOLIA	ORCHIDACEAE	Ε	5-Mar-94	D	NF
2	C73	11091	EPIDENDRUM	IBAGUENSE	ORCHIDACEAE	Ε	5-Mar-94	Α	NF
2	C76	11092	VANILLA	PLANIFOLIA	ORCHIDACEAE	Ε	5-Mar-94	Α	D
2	C77	11093	EPIDENDRUM	IBAGUENSE	ORCHIDACEAE	Ε	5-Mar-94	Α	D
2	C69	11094	EPIDENDRUM	IBAGUENSE	ORCHIDACEAE	Ε	5-Mar-94	Α	D
2	C83	11095	EPIDENDRUM	IBAGUENSE	ORCHIDACEAE	Ε	5-Mar-94	Α	D
2	C91	11096	EPIDENDRUM	IBAGUENSE	ORCHIDACEAE	Ε	5-Mar-94	Α	D
2	C62	11097	NEPTUNIA	OLERACEA	FABACEAE	Н	5-Mar-94	Α	NF
2	C72	11100	OENOCARPUS	MAPORA	ARECACEAE	Р			Α
-									

Table B-1-- continued.

Planting		Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C72	11102	CHAMAEDOREA	SP.	ARECACEAE	S			Α
2	C78	11102	UNKNOWN	UNKNOWN	UNKNOWN	U			
2	C70	11103	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
2	C70	11104	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
2	C70	11105	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
2	C93	11119	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	D
2	C88	11120	COLOCASIA	ESCULENTA	ARACEAE	Н	20-Nov-93	Α	Α
2	C82	11127	COLOCASIA	ESCULENTA	ARACEAE	Н			Α
2	C82	11128	COLOCASIA	ESCULENTA	ARACEAE	Н			Α
2	C82	11129	COLOCASIA	ESCULENTA	ARACEAE	Н			Α
2	C90	11131	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
2	C89	11132	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C89	11133	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C90	11134	UNKNOWN	UNKNOWN	UNKNOWN	U			NF
2	C89	11135	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C89	11136	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C89	11137	UNKNOWN	UNKNOWN	UNKNOWN	U	7-Aug-96		NF
2	C79	20011	PACHIRA	AQUATICA	BOMBACACEAE	Т	?-Jul-96		Α
2	C80	20015	COSTUS	SP.	ZINGIBERACEAE	Н	1-Jul-96		Α
2	C87	20017	UNKNOWN	UNKNOWN	ARECACEAE	Р			Α
2	C95	20018	UNKNOWN	UNKNOWN	ARACEAE	U	20-Jul-96		Α
2	C85	20020	MUSA	SP.	MUSACEAE	G	4-Aug-96		Α
2	C69	20021	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S			Α
2	C72	20022	COLOCASIA	SP.	ARACEAE	Н	1-Jul-96		Α
2	C79	20023	UNKNOWN	UNKNOWN	ARACEAE	U	?-Jul-96		Α
2	C88	20028	UNKNOWN	UNKNOWN	ARECACEAE	Р	9-Aug-96		Α
2	C92	20034	ALPINIA	PURPURATA	ZINGIBERACEAE	G	26-Jul-96		Α
2	C69	20035	HIBISCUS	ROSA-SINENSIS	MALVACEAE	S			Α

Table B-1-- continued.

Planting	Cell	Survey No.		Specific epithet	Family	GF	Intro Date	93-4	96
2	C85	20036	PHILODENDRON	SP.	ARACEAE	C	4-Aug-96		A
2	C64	20037	LEUCAENA	SP.	FABACEAE	Т	30-Jul-96		Α
2	C78	20040	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G			Α
2	C90	20042	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	4-Aug-96		Α
2	C90	20043	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	4-Aug-96		Α
2	C80	20044	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Η	1-Jul-96		Α
2	C90	20045	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	4-Aug-96		Α
2	C80	20049	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C80	20051	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C92	20054	MUSA	SP.	MUSACEAE	G	26-Jul-96		Α
2	C90	20056	MUSA	SP.	MUSACEAE	G	4-Aug-96		Α
2	C94	20057	COLOCASIA	ESCULENTA	ARACEAE	Н	24-Jul-96		Α
2	C80	20060	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C80	20061	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C80	20062	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C80	20063	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C94	20064	COLOCASIA	ESCULENTA	ARACEAE	Н	24-Jul-96		Α
2	C80	20066	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C80	20067	PACHIRA	AQUATICA	BOMBACACEAE	Т	1-Jul-96		Α
2	C79	20068	EUCHARIS	GRANDIFLORA	AMARYLLIDACEAE	Н	?-Jul-96		Α
2	C73	20069	COFFEA	SP.	RUBIACEAE	S	3-Jul-96	-	Α
2	C73	20074	XANTHOSOMA	SAGGITTIFOLIA	ARACEAE	Н	3-Jul-96	-	Α
2	C92	20075	ALPINIA	PURPURATA	ZINGIBERACEAE	G	26-Jul-96		Α
2	C88	20076	UNKNOWN	UNKNOWN	ARECACEAE	Р	9-Aug-96		Α
2	C90	20077	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	4-Aug-96		Α
2	C90	20078	PHENAKOSPERMUM	GUYANENSE	STRELITZIACEAE	G	4-Aug-96		Α
2	C95	20079	UNKNOWN	UNKNOWN	ARACEAE	U	20-Jul-96		Α
2	C94	20080	COSTUS	SP.	ZINGIBERACEAE	Н	25-Jul-96		Α

Table B-1-- continued.

Planting	Cell	Survey No.	Genus	Specific epithet	Family	GF	Intro Date	93-4	96
2	C94	20089	COSTUS	SP.	ZINGIBERACEAE	H	25-Jul-96		A
2	C94	20094	COSTUS	SP.	ZINGIBERACEAE	Н	25-Jul-96		Α
2	C92	20097	DIEFFENBACHIA	SP.	ARACEAE	Н	26-Jul-96		Α

A = Woody gramino	id, such as bamboo, H = Herb, G = Giant herb, E = Epi	iphyte.		_	_
				ber of p	•
Family	Species	Growth form	1991	<u>1993</u>	1996
Acanthaceae	Justicia californica (Benth.) D.N. Gibson	S	1	0	0
	Justicia pectoralis Jacq.	Н	2	0	0
	Ruellia brevifolia (Pohl) C. Ezcurra	S	1	0	0
	Sanchezia speciosa Leonard	S	11	9	6
	Thunbergia mysorensis (Wight) T. Anderson ex Bedd.	C	15	2	0
Adiantaceae	Adiantum hispidulum	Н	1	0	0
	Adiantum raddianum C. Presl	Н	5	0	0
	Pellaea viridis (Forssk.) Prantl	Н	1	0	0
	Polytaenium feei (W. Schaffn. ex Fée) Maxon	Н	5	0	0
	Pteris cretica L.	Н	5	0	0
	Pteris longifolia L.	Н	3	0	0
Alismataceae	Sagittaria graminea Michx.	Н	1	0	0
	Sagittaria lancifolia L.	Н	1	0	0
	Sagittaria latifolia Willd.	Н	6	0	0
	Sagittaria rubrum	Н	2	0	0
Amaryllidaceae	Eucharis grandiflora Planch. & Linden	Н	10	10	8
-	Hymenocallis sp.	Н	1	0	0
Anacardiaceae	Anacardium occidentale L.	Т	1	1	0
	Mangifera indica L.	Т	5	2	0
	Spondias mombin L.	<u> </u>	1	1	0

Table B-2. Species from the first planting of the Biosphere 2 rainforest, with inventories from 1991, 1993 and 1996. T = Tree, S = Shrub, P = Arboreal palm, S = Shrub, R = Graminoid, C = Climber, A = Woody graminoid, such as bamboo, H = Herb, G = Giant herb, E = Epiphyte.

Table B-2 <u>co</u>	ntinued.
---------------------	----------

Family	Species	Growth form	1991	1993	1996
	Annona sp.	T	1	0	0
	Cananga odorata (Lam.) Hook. f. & Thomson	Т	1	0	0
	Rollinia mucosa (Jacq.) Baill.	Т	2	2	0
Apiaceae	Eryngium foetidum L.	Н	1	0	0
	Hydrocotyle asiatica L.	Н	3	0	0
	Hydrocotyle verticillata Thunb.	Н	1	0	0
Apocynaceae	Allamanda cathartica L.	S	8	5	5
	Catharanthus roseus (L.) G. Don	Н	1	0	0
	Plumeria rubra L.	Т	1	1	1
	Tabernaemontana divaricata (L.) R. Br. ex Roem. & Schult.	S	1	0	0
Aquifoliaceae	<i>llex paraguariensis</i> J. StHil. (chk)	Т	2	1	0
Araceae	Acorus calamus L.	Н	5	0	0
	Aglaonema crispum (Pitcher & Manda) Nicolson	Н	2	2	2
	Aglaonema sp.	Н	4	4	4
	Anthurium digitatum (Jacq.) Schott	Н	2	1	1
	Colocasia antiquorum Schott	Н	9	4	2
	Colocasia esculenta (L.) Schott	Н	1	1	1
	Colocasia sp.	Н	8	8	6
	Dieffenbachia sp.	Н	20	19	15
	Dracunculus canariensis Kunth	Н	2	2	2
	Monstera deliciosa Liebm.	С	5	5	3
	Philodendron angustatum Schott	С	7	1	1
	Philodendron erubescens K. Koch & Augustin	С	7	1	1

Table B-2 -- <u>continued</u>.

Family	Species	Growth form	1991	1993	1996
••••	Philodendron glanduliferum Matuda	Н	1	1	0
	Philodendron grazielae G.S. Bunting	С	3	0	0
	Philodendron rubens Schott	С	10	9	6
	Philodendron selloum K. Koch	С	9	8	5
	Philodendron tripartitum (Jacq.) Schott	С	3	0	0
	Philodendron cv wend-embi	C C	5	4	4
	Philodendron sp.	С	18	10	6
	Scindapsus aureus (Linden & André) Engl. & K. Krause	C	16	11	8
	Spathiphyllum sp.	Н	2	2	2
	Syngonium podophyllum Schott	С	2	1	0
	Xanthosoma sagittifolium (L.) Schott	Н	25	11	5
	Xanthosoma sp.	Н	1	1	0
	Zamioculcas zamiifolia Engl.	Н	2	2	2
Arecaceae	Archontophoenix sp.	Р	2	2	2
	Areca catechu L.	Р	3	1	1
	Arenga pinnata (Wurmb) Merr.	Р	5	5	5
	Arenga sp.	Р	1	1	1
	Bactris gasipaes Kunth	Р	6	4	3
	Chamaedorea microspadix Burret	S	9	4	4
	Chrysalidocarpus lutescens H. Wendl.	S	4	3	3
	Cocos nucifera L.	Р	2	2	2
	Elaeis guineensis Jacq.	Р	3	2	2
	Euterpe sp.	Р	8	2	1
	Jessenia bataua (Mart.) Burret	P	4	1	0
	Mauritia flexuosa L. f.	P	7	1	1
	Oenocarpus bacaba Mart.	Р	2	1	1

Table B-2 -- continued.

Family	Species	Growth form	1991	1993	1996
	Oenocarpus mapora H. Karst.	Р	2	1	0
	Phoenix roebelenii O'Brien	Р	4	2	1
	Prestoea montana (Graham) G. Nicholson	Р	1	0	0
	Rhapis excelsa (Thunb.) A. Henry ex Rehder	Р	2	0	0
	Roystonea regia (Kunth) O.F. Cook	Р	3	3	3
	Socratea exorrhiza (Mart.) H. Wendl.	Р	1	1	0
	Verschaffeltia splendida H. Wendl.	Р	5	4	3
	Wodyetia bifurcata I.K. Irvine	Р	2	1	1
Asclepiadaceae	Asclepias curassavica L.	Н	4	1	1
Asparagaceae	Asparagus densiflorus (Kunth) Jessop	Н	2	0	0
Aspleniaceae	Asplenium daucifolium Lam.	н	1	0	0
•	Asplenium nidus L.	Ε	5	1	0
	Diplazium l'herminieri Hieron.	Н	1	0	0
Asteraceae	Baccharis halimifolia L.	S	3	0	0
Basellaceae	Basella alba L.	С	4	0	0
Begoniaceae	Begonia sp.	Н	2	0	0
Bignoniaceae	Crescentia cujete L.	Т	5	4	4
-	Pandorea pandorana (Andr.) Steenis	С	10	4	1
	Pithecoctenium sp.	С	5	2	0
	Spathodea campanulata P. Beauv.	Т	1	1	1
	Tabebuia heterophylla (DC.) Britton	Т	3	3	0

Family	Species	Growth form	1991	1993	1996
Bixaceae	Bixa orellana L.	Т	8	6	1
Blechnaceae	Blechnum brasiliense Desv.	Н	1	0	0
	Blechnum occidentale L.	Н	1	0	0
	Blechnum orientale L.	Н	2	0	0
	Doodia caudata (Cav.) R. Br.	Н	1	0	0
Bombacaceae	Ceiba pentandra (L.) Gaertn.	Т	6	6	5
	Pachira aquatica Aubl.	Т	16	15	11
Boraginaceae	Cordia alliodora (Ruiz & Pav.) Oken	Т	2	0	0
Bromeliaceae	Aechmea orlandiana L.B. Sm.	Е	1	0	0
	Ananas sp.	Н	2	1	0
	Billber gia pyramidalis (Sims) Lindl.	Ε	1	1	0
	Guzmania berteroniana (Schult. & Schult.) Mez	Ε	1	0	0
	Guzmania monostacliia (L.) Rusby ex Mez	Ε	2	1	0
	Guzmania sp.	E	1	1	0
	Tillandsia sp.	Ε	17	0	0
Buddlejaceae	Buddleja diversifolia Vahl	Т	1	0	0
Cactaceae	Rebutia sp.	Е	1	0	0
	Rhipsalis baccifera (J.S. Muell.) Stearn	Ε	5	0	0
Cannaceae	Canna edulis Ker Gawl.	G	11	6	4
	Canna generalis L.H. Bailey	G	11	6	2
	Canna indica L.	G	15	9	4
	Canna sp.	G	2	0	0

Family	Species	Growth form	1991	1993	1996
Capparaceae	Capparis spinosa L.	Т	1	1	0
Caricaceae	Carica papaya L.	Т	14	9	0
	Carica pentagona Heilborn	Т	4	0	0
	Carica sp.	Т	6	4	0
Cecropiaceae	Cecropia schreberiana Miq.	Т	11	6	5
Clusiaceae	Clusia sp.	Т	13	1	0
	Garcinia tinctoria (DC.) Dunn	Т	1	1	1
	Garcinia sp.	Т	3	3	1
Combretaceae	Buchenavia capitata (Vahl) Eichler	Т	2	0	0
Commelinaceae	Callisia fragrans (Lindl.) Woodson	Н	15	3	2
	Commelina tuberosa L.	Н	5	0	0
	Dichorisandra thyrsiflora J.C. Mikan	Н	14	4	0
	Palisota schweinfurthii C.B. Clarke	Н	1	0	0
	Tradescantia pallida (Rose) D.R. Hunt	Н	7	1	1
	Tradescantia sp.	Н	2	0	0
Convolvulaceae	Ipomoea batatas (L.) Lam.	С	8	1	0
Cyatheaceae	Cnemidaria horrida (L.) C. Presl	Р	1	0	0
2	Cyathea arborea (L.) Sm.	Р	3	0	0
	Cyathea cooperi (F. Muell.) Domin	Р	11	0	0
	Cyathea sp.	Р	2	0	0

Table B-2 continue Family	Species	Growth form	1991	1993	1996
Cyclanthaceae	Carludovica palmata Ruiz & Pav.	G	3	3	3
Cyperaceae	Cyperus alternifolius L.	R	20	17	14
	Cyperus hasperis	R	1	0	0
Davalliaceae	Davallia solida (G. Forst.) Sw.	Н	1	0	0
	Nephrolepis exaltata (L.) Schott	Н	32	4	0
Dilleniaceae	Dillenia indica L.	Т	2	0	0
Dioscoreaceae	Dioscorea alata L.	С	3	1	1
	Dioscorea sp.	C	1	0	0
Ebenaceae	Diospyros digyna Jacq.	Т	1	1	0
Elaeagnaceae	Elaeagnus philippensis Perrottet	Т	2	1	0
Ephedraceae	Ephedra sp.	S	2	0	0
Equisetaceae	Equisetum hyemale L.	Н	2	0	0
Euphorbiaceae	Aleurites moluccana (L.) Willd.	Т	7	6	3
-	Breynia disticha J.R. Forst. & G. Forst.	Н	4	4	4
	Croton sp.	Н	1	1	0
	Hevea brasiliensis (Willd. ex A. Juss.) Müll. Arg.	Т	2	0	0
	Hura crepitans L.	Т	3	3	1

Family	Species	Growth form	1991	1993	1996
	Manihot esculenta Crantz	S	10	9	5
	Phyllanthus pulcher Wall. ex Müll. Arg.	Т	1	1	1
	Ricinus communis L.	Т	5	4	0
Fabaceae	Bauhinia sp.	S	5	0	0
	Caesalpinia sp.	Т	5	3	1
	Cajanus cajan (L.) Millsp.	Н	1	0	0
	Calopogonium mucunoides Desv.	Н	13	0	0
	Canavalia ensiformis (L.) DC.	Н	1	0	0
	Ceratonia siliqua L.	Т	2	0	0
	Clitoria racemosa Sessé & Moç.	Т	11	11	8
	Copaifera sp.	Т	1	0	0
	Derris elliptica (Roxb.) Benth.	С	2	2	1
	Enterolobium cyclocarpum (Jacq.) Griseb.	Т	2	2	1
	Hymenaea courbaril L.	Т	2	1	1
	Inga feuillei DC.	Т	1	1	1
	Inga sp.	Т	6	4	3
	Leucaena glauca Benth.	Т	26	19	6
	Leucaena leucocephala (Lam.) de Wit	Т	7	5	1
	Leucaena sp.	Т	12	12	2
	Pterocarpus indicus Willd.	Т	5	2	2
	Schotia latifolia Jacq.	Т	1	0	0
	Tamarindus indica L.	Т	1	0	0
Gesneriaceae	Sinningia regina Sprague	S	1	0	0
Gnetaceae	Gnetum sp.	Т	1	0	0

Tab	le B-2	continued.
1 40		

Family	Species	Growth form	1991	1993	1996
Heliconiaceae	Heliconia bicolor Klotzsch	G	10	2	0
	Heliconia bourgaeana Petersen	G	3	2	1
	Heliconia caribaea Lam.	G	8		2
	Heliconia longiflora R.R. Sm.	G	7	5	2
	Heliconia mutisiana Cuatrec.	G	1	0	0
	Heliconia psittacorum L. f.	G	12	3	2
	Heliconia sp.	G	7	3	3
Iridaceae	Dietes bicolor (Steud.) Sweet ex Klatt	Н	1	1	0
	Dietes grandiflora N.E. Br.	Н	1	0	0
Lamiaceae	Coleus blumei Benth.	Н	5	0	0
	Pogostemon cablin (Blanco) Benth.	S	2	5 5 0 3 3 1 0	0
	Pogostemon heyneanus Benth.	S	4		0
	Salvia divinorum Epling & Játiva	S	3	0	0
Lauraceae	Cinnamomum zeylanicum Breyn.	Т	1	2 2 5 5 0 3 3 1 0 0 0 0 0 0 0 0 0 0 1 3 2 1 1 1 1 0 4	1
	Persea americana Mill.	Т	10	3	2
Lecythidaceae	Barringtonia asiatica (L.) Kurz	Т	2	2	2
,	Couroupita amazonica R. Knuth	Т	1	1	1
	Couroupita guianensis Aubl.	Т	1		1
	Lecythis zabucajo Aubl.	Т	3		0
Lycopodiaceae	Lycopodium cernuum L.	н	2	0	0
Lythraceae	Heimia salicifolia (Kunth) Link	S	12	4	0
-	Heimia sp.	S	1	3 2 3 5 7 5 1 0 2 3 1 1 1 0 5 0 2 3 1 1 5 0 2 0 4 0 3 0 1 1 0 3 2 2 1 1 3 1 2 0 2 4	0

.

Family	Species	Growth form	1991	1993	1996
Malpighiaceae	Malpighia emarginata DC.	Т	1	1	0
	Malpighia glabra L.	S	3	1	1
Malvaceae	Hibiscus calyphyllus Cav.	S	3	3	2
	Hibiscus elatus Sw.	S	2	2	1
	Hibiscus rosa-sinensis L.	S	4	4	3
Marantaceae	Calathea gigantea	Н	2	2	2
	Calathea louisae	Н	4	1	0
	Calathea panamensis Rowlee ex Standl.	Н	3	3	3
	Calathea violacea Lindl.	Н	4	4	4
	Calathea zebrina (Sims) Lindl.	Н	1	1	0
	Maranta sp.	Н	1	1	0
	Stromanthe amabilis E. Morren	Н	1	1	1
	Thalia geniculata L.	Н	3	2	1
Marcgraviaceae	Marcgravia rectiflora Triana & Planch.	С	5	1	1
	Marcgravia sintenisii Urb.	С	1	1	0
	Norantea guianensis Aubl.	С	1	0	0
Marsileaceae	Marsilea mutica	Н	1	0	0
Melastomataceae	Tibouchina interomalla	S	2	0	0
Meliaceae	Cedrela odorata L.	Т	1	1	0
	Cedrela sp.	Т	6	6	3
	Guarea trichilioides C. DC. (check)	Т	3	2	0
	Melia azedarach L.	Т	4	3	3

Family	Species	Growth form	1991	1993	1990
Moraceae	Artocarpus heterophyllus Lam.	Т	2	2	0
	Ficus buxifolia De Wild.	Т	1	1	1
	Ficus pumila L.	C	19	10	8
Moringaceae	Moringa oleifera Lam.	Т	2	0	0
_	Moringa sp.	Т	1	1	0
Musaceae	Musa paradisiaca L.	G	4	3	3
	Musa sapientum L.	G	1	1	1
	Musa textilis Née	G	5	5	5
	Musa sp.	G	31	28	24
Myristicaceae	Myristica fragrans Houtt.	Т	5	0	0
Myrtaceae	Eugenia aggregata (Velloso) Kiaersk.	Т	3	1	0
•	Eugenia boqueronensis Britton	Т	6	0	0
	Myrciaria cauliflora (Mart.) O. Berg	Т	1	1	1
	Psidium guajava L.	Т	8	3	2
	Syzygium jambos (L.) Alston	Т	7	5	2
Nymphaeaceae	Nymphaea sp.	Н	9	0	0
Oleaceae	Phillyrea angustifolia L.	Т	2	1	0
Onagraceae	Ludwigia octovalvis (Jacq.) P.H. Raven	Н	1	1	0
-	Ludwigia sp.	S	1	1	1

Table B-2 <u>continue</u>	<u>ed</u> .				
Family	Species	Growth form	1991	1993	1996
Orchidaceae	Brachionidium sp.	Ē	1	0	0
	Spathoglottis plicata Blume	Н	3	0	0
	Vanilla sp.	Ε	1	0 0 0 2 0 1 3 0 0 2 0 2 0 7 0 0 7 0 0 5 0 0 1	0
Oxalidaceae	Averrhoa carambola L.	Т	5	2	2
Passifloraceae	Passiflora coccinea Aubl.	С	1	0	0
	Passiflora coriacea Juss.	С	8	1	0
	Passiflora edulis Sims	T C C C C C C C C C C C C C C C C C C C			0
	Passiflora maliformis L.	С	5		0
	Passiflora mollissima (Kunth) Bailey	С	30	0 0 2 0 1 3 0 0 2 0 7 0 0 5 0 0 0 5	0
	Passiflora quadrangularis L.	С	7		0
	Passiflora trifasciata Lem.	C	1		0
Phytolaccaceae	Phytolacca dioica L.	Т	8	7	7
Piperaceae	Peperomia sp.	н	1	0	0
1	Piper nigrum L.	С	1	0	0
	Piper sp.		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	
Poaceae	Andropogon sp.	R	1	0	0
	Arundinaria pygmaea (Miq.) Asch. & Graebn.	Α			0
	Bambusa glaucescens (Willd.) Merr.	Α			1
	Bambusa multiplex (Lour.) Raeusch. ex Schult, & Schult, f.	Α			9
	Bambusa oldhamii Munro	Α	1	1	1
	Bambusa tuldoides Munro	A	8	7	6
	Bambusa vulgaris Schrad. ex J.C. Wendl.	A	1	1	1

Table B-2 -- continued.

Family	Species	Growth form	1991	1993	1996
	Bambusa sp.	Α	2	2	2
	Panicum sp.	R	2	0	0
	Paspalum plicatulum Michx.	R	1	1	1
	Phalaris arundinacea L.	R	1	0	0
	Saccharum officinarum L.	Α	6	6	5
	Setaria palmifolia (J. König) Stapf	R	6	5	2
	Spartina sp.	R	3	1	0
Polygonaceae	Antigonon leptopus Hook. & Arn.	С	1	0	0
Polypodiaceae	Platycerium superbum	Ε	3	1	0
<i></i>	Polypodium aureum L.	Н	1	0	0
	Polypodium crassifolium L.	E	6	0	0
	Polypodium punctatum Thunb.	Н	2	0	0
Pontederiaceae	Pontederia cordata L.	Н	7	0	0
Pteridaceae	Acrostichum aureum L.	Н	1	0	0
Rosaceae	Aphanes caryotaefolia	S	2	2	2
	Prunus tomentosa Thunb.	Т	2 2	0	0
	Rubus sp.	S	2	0	0
Rubiaceae	Coccocypselum herbaceum P. Browne	S	2	1	0
	Coffea arabica L.	Т	18	17	13
	Coffea dewevrei De Wild. & T. Durand	Т	1	1	1
	Hamelia patens Jacq.	S	1	0	0

Tahl	0 R_2	cor	tinu	ha
Idui	e D-2	נטו	เน่น	eu.

Family	Species	Growth form	1991	1993	1996
	Palicourea sp.	Т	1	0	0
	Psychotria sp.	Т	1	1	1
Rutaceae	Casimiroa edulis La Llave & Lex.	Т	4	0	0
Sapindaceae	Paullinia sp.	С	2	0	0
Sapotaceae	Manilkara zapota (L.) P. Royen	Т	2	1	1
Sarraceniaceae	Sarracenia purpurea L.	Н	4	0	0
Scrophulariaceae	Bacopa monnieri (L.) Wettst.	Н	1	0	0
Selaginellaceae	Selaginella versicolor Spring	н	5	0	0
0	Selaginella victoriae	Н	1	0	0
	Selaginella sp.	Н	3	0	0
Simaroubaceae	Quassia amara L.	S	1	0	0
Solanaceae	Brugmansia suaveolens (Willd.) Bercht. & J. Presl	S	$\begin{array}{cccc} 2 & 0 \\ 2 & 1 \\ 4 & 0 \\ 1 & 0 \\ 1 & 0 \\ 5 & 0 \\ 1 & 0 \\ 3 & 0 \\ 1 & 0 \\ 1 & 0 \\ 12 & 11 \\ 1 & 1 \\ 3 & 1 \\ 2 & 1 \\ 6 & 0 \end{array}$	9	
	Brunfelsia americana L.	S	1	1	1
	Brunfelsia jamaicensis Griseb.	S			0
	Brunfelsia undulata Sw.	S			1
	Capsicum sp.	Н			0
apindaceae apotaceae arraceniaceae crophulariaceae elaginellaceae	Datura stramonium L.	Н	1	0	0
	Lycianthes rantonnetii (Carrière) Bitter	S	1	1	1
	Solandra maxima (Sessé & Moç.) P.S. Green	С	4	2	1

Table B-2 -- continued.

Family	Species	Growth form	1991	1993	1996
	Solandra nitida Zuccagni	C	1	1	0
	Withania somnifera (L.) Dunal	S	5	0	0
Sterculiaceae	Theobroma cacao L.	Т	11	3	0
Strelitziaceae	Phenakospermum guyanense (Rich.) Endl.	G	14	14	11
	Strelitzia nicolai Regel & Körn.	G	5	2	2
	Strelitzia reginae Aiton	G	22	20	18
	Strelitzia sp.	G	3	3	1
Theaceae	Camellia sinensis (L.) Kuntze	S	4	1	0
Thelypteridaceae	Thelypteris sp.	Н	1	0	0
Typhaceae	Typha angustifolia L.	н	2	0	0
J1	Typha domingensis Pers.	Н	1	0	0
Urticaceae	Pellionia daveauana N.E. Br.	Н	1	0	0
Verbenaceae	Tectona grandis L. f.	Т	2	0	0
Vitaceae	Cissus gongylodes (Burch. ex Baker) Planch.	С	2	1	1
	Cissus rhombifolia Vahl	С	1		0
	Cissus sicyoides L.	С	3	0 1 3 4 14 2 20 3 1 2 20 3 1 4 14 2 20 3 1 4 1 0 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 0 2 1 3 2 2 2	1
Zamiaceae	Zamia fischeri Miq.	S	2	2	2
-	Zamia furfuracea L. f.	S	7	5	5

Table B-2 contin	nued.	
------------------	-------	--

Family	Species	Growth form	1991	1993	1996
Zingiberaceae	Alpinia purpurata (Vieill.) ex K. Schum.	G	4	4	4
-	Alpinia sanderae Sand	G	9	4 3 8 0 0 1 1 2 24 4 0 0 2 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 1 3 14 2 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 3 1 1 3 1 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 1 3 1 1 3 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1	2
	Alpinia zerumbet (Pers.) B.L. Burtt & R.M. Sm.	G	8	8	8
	Brachychilum horsfieldii (Wall.) Petersen	Н	1	0	0
	Costus barbatus Suess.	Н	1	0	0
	Costus elatus	Н	3	1	1
	Costus globosus	Н	1	1	0
	Costus scaber Ruiz & Pav.	Н	2	2	2
	Costus sp.	Н	27	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19
	Curcuma domestica Lour.	Н	10	4	1
	Curcuma longa L.	Н	1	0	0
	Curcuma roscoena	Н	4	0	0
	Etlingera elatior (Jack) R.M. Sm.	H 1 0 H 4 0 M. Sm. H 4 2	1		
	Globba sp.	Н	5	4 3 8 0 0 1 1 2 24 4 0 0 2 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 0 1 1 3 14 2 0 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15	0
	Hedychium aurantiaca	G	5		1
	Hedychium cornatum	G	4	3	2
	Hedychium coronarium Koenig	G	19	4 3 8 0 1 1 2 4 4 0 2 4 0 2 0 1 3 14 2 0 0 1 3 14 2 0 1 3 1	8
	Hedychium sp.	G	5	2	2
	Kaempferia decora	Н	1	0	0
	Kaempferia elegans (Wall.) Baker	Н	1	0	0
	Kaempferia pulchra Ridl.	Н	6	1	0
	Kaempferia rotunda L.	Н			0
	Renealmia alpinia (Rottb.) Maas	G	2	1	1
	Renealmia battenbergiana Cummins ex Baker	Н	1	0	0

Table B-2 -- <u>continued</u>.

Family	Species	Growth form	1991	1993	1996
	Zingiber officinale Roscoe	Н	7	3	0
	Zingiber spectabile Griff.	G	5	4	3
	Unknown		315	89	35
	TOTAL		1890	872	529

Table B-3. Species from the second planting of the Biosphere 2 rainforest, with inventories from 1993 and 1996,
or self-propagated. T = Tree, S = Shrub, P = Arboreal palm, S = Shrub, R = Graminoid, C = Climber,
A = Woody graminoid, such as bamboo, H = Herb, G = Giant herb, E = Epiphyte.

Family	Species	Growth form	New in '93-'94	Alive in 96	New in '96	Total in '96
Amaryllidaceae	Eucharis grandiflora Planch. & Linden	Н	0	0	2	2
Anacardiaceae	Spondias mombin L.	Т	7	0	0	0
Annonaceae	Annona muricata L.	Т	6	0	0	0
	Annona squamosa L.	Т	2	0	0	0
	Cananga odorata (Lam.) Hook. f. & Thomson	Т	2	0	0	0
Araceae	Colocasia esculenta (L.) Schott	Н	30	10	7	17
	Colocasia sp.	Н	1	0	1	1
	Dieffenbachia sp.	Н	0	0	2	2
	Monstera deliciosa Liebm.	С	3	2	0	2
	Philodendron sp.	С	0	0	1	1
	Spathiphyllum cannifolium (Dryand.) Schott	Н	6	0	0	0
	Xanthosoma sagittifolium (L.) Schott	Н	14	4	1	5
	Xanthosoma sp.	Н	5	2	0	2
Arecaceae	Chamaedorea sp.	S	1	1	0	1
	Cocos nucifera L.	Р	2	0	0	0
	Euterpe edulis Mart.	Р	6	0	0	0
	Euterpe oleracea Mart.	Р	3	0	0	0
	Euterpe precatoria Mart.	Р	2	0	0	0
	Mauritia flexuosa L. f.	Р	1	0	0	0
	Oenocarpus mapora H. Karst.	Р	1	0	1	1

				Alive in		Total in
Family	Species	form	'93-'94	96	'96	'96
Aspleniaceae	Ctenitis sloanei (Poepp. ex Spreng.) C.V. Morton	Н	3	0	0	0
	Diplazium proliferum (Lam.) Kaulf.	Ε	2	1	0	1
Bignoniaceae	Parmentiera edulis DC.	Т	1	1	0	1
Bixaceae	Bixa orellana L.	Т	1	1	0	1
Bombacaceae	Pachira aquatica Aubl.	Т	0	0	9	9
Bromeliaceae	Aechmea calyculata (E. Morren) Baker	Ε	1	1	0	1
	Aechmea caudata Lindm.	Η	1	0	0	0
	Aechmea cylindrata Lindm.	Ε	2	1	0	1
	Aechmea fasciata (Lindl.) Baker	Ε	2	0	0	0
	Aechmea fosteriana L.B. Sm.	E	1	1	0	1
	Aechmea lamarchei Mez	Ε	2	2	0	2
	Aechmea nudicaulis (L.) Griseb.	Ε	3	2	0	2
	Aechmea penduliflora André	Ε	1	0	0	0
	Aechmea pineliana (Brongn. ex Planch.) Baker	Ε	1	1	0	1
	Aechmea racinae L.B. Sm.	Ε	1	1	0	1
	Aechmea ramosa Mart. ex Schult. f.	Ε	1	1	0	1
	Billbergia horrida Regel	Ε	3	1	0	1
	Guzmania lingulata (L.) Mez	Ε	3	1	0	1
Cannaceae	Canna edulis Ker Gawl.	G	7	0	0	0
Caricaceae	Carica papaya L.	Т	6	0	0	0
	Carica sp.	Т	1	0	0	0

Table B-3 -- continued.

•

Family	Species	Growth form	New in '93-'94	Alive in 96	New in '96	Total in '96
Clusiaceae	Garcinia mangostana L.	T	2	0	0	0
Convolvulaceae	Ipomoea batatas (L.) Lam.	С	1	0	0	0
Cyatheaceae	Cyathea arborea (L.) Sm.	Р	1	0	0	0
Cyperaceae	Cyperus haspan L.	R	1	0	0	0
Dioscoreaceae	Dioscorea alata L. Dioscorea sp.	C C	6 6	1 2	0 0	1 2
Euphorbiaceae	Manihot esculenta Crantz	S	13	1	0	1
Fabaceae	Inga edulis Mart.	Т	2	0	0	0
	Inga sp. Leucaena sp. Nautauria alamaana I. aan	T T H	1 0 2	0 0	0 1	0 1
Lauraceae	Neptunia oleracea Lour. Cinnamomum zeylanicum Breyn.	н Т	2 1	0 0	0 0	0 0
Lecythidaceae	Barringtonia asiatica (L.) Kurz Couroupita guianensis Aubl.	T T	3 2	0 1	0 0	0 0
Malpighiaceae	Malpighia emarginata DC.	Т	2	0	0	0
Malvaceae	Hibiscus elatus Sw. Hibiscus rosa-sinensis L.	S S	5 0	4 0	0 2	4 2

Table B-3 -- continued.

Tab	le B	-3	continued.

		Growth	New in	Alive in	New in	Total in
Family	Species	form	'93-'94	96	'96	'96
Marantaceae	Calathea allouia (Aubl.) Lindl.	Н	1	0	0	0
	Calathea ornata (Lindl.) Körn.	Н	3	1	0	1
	Calathea picturata (Linden) Koch & Linden	Н	4	1	0	1
	Calathea sp.	Н	1	0	0	0
	Maranta arundinacea L.	Н	6	0	0	0
Marattiaceae	Angiopteris evecta (G. Forst.) Hoffm.	С	1	0	0	0
Meliaceae	Swietenia macrophylla King	Т	1	0	0	0
Moraceae	Artocarpus altilis (Parkinson) Fosberg	Т	1	1	0	1
	Artocarpus heterophyllus Lam.	Т	4	1	0	1
	Artocarpus sp.	Т	1	0	0	0
	Ficus nitida Thunb.	C	1	1	0	1
Moringaceae	Moringa oleifera Lam.	Т	7	0	0	0
Musaceae	Musa sp.	G	34	25	3	28
Myrtaceae	Eugenia aggregata (Velloso) Kiaersk.	Т	2	1	0	1
	Eugenia boqueronensis Britton	Т	1	0	0	0
	Myrciaria cauliflora (Mart.) O. Berg	Т	1	0	0	0
	Psidium guajava L.	Т	2	1	0	1
	Syzygium jambos (L.) Alston	Т	2	1	0	1
Nelumbonaceae	Nelumbo nucifera Gaertn.	Н	1	0	0	0

	Та	able B-3 continued.	
--	----	---------------------	--

		Growth		Alive in		Total in
Family	Species	form	'93-'94	96	'96	'96
Nymphaeaceae	Nymphaea sp.	Н	1	0	0	0
Orchidaceae	Epidendrum ibaguense Kunth	Ε	5	0	0	0
	Vanda tricuspidata J.J. Sm.	Ε	3	0	0	0
	Vanilla planifolia Jacks. ex Andrews	Ε	3	0	0	0
Oxalidaceae	Averrhoa carambola L.	Т	4	0	0	0
Poaceae	Cymbopogon citratus (DC.) Stapf	R	2	0	0	0
Polypodiaceae	Drynaria quercifolia (L.) J. Sm.	Ε	1	1	0	1
	Platycerium bifurcatum C. Chr.	Ε	2	0	0	0
	Platycerium hillii	Ε	2	0	0	0
	Platycerium vassei	Ε	2	0	0	0
	Platycerium veitchii	Ε	2	0	0	0
	Platycerium willinckii	Ε	3	0	0	0
Rubiaceae	Coffea arabica L.	Т	2	1	0	1
	Coffea sp.	Т	0	0	1	1
	Psychotria viridis Ruiz & Pav.	Т	1	1	0	1
	Psychotria sp.	S	1	1	0	1
Sapotaceae	Chrysophyllum sp.	Т	1	1	0	1
-	Pouteria obovata (R. Br.) Baehni		1	0	0	0
	Synsepalum dulcificum (Schumach. & Thonn.) Daniell		1	0	0	0

Table D-5 collen		Growth	New in		New in	Total in
Family	Species	form	'93-'94	96	'96	'96
Simaroubaceae	Quassia tulae		3	0	0	0
Solanaceae	Brugmansia suaveolens (Willd.) Bercht. & J. Presl	Т	1	1	0	1
	Brunfelsia sp.	Т	1	0	0	0
Sterculiaceae	Theobroma cacao L.	Т	6	0	0	0
Strelitziaceae	Phenakospermum guyanense (Rich.) Endl.	G	0	0	6	6
Theaceae	Camellia sinensis (L.) Kuntze	S	2	0	0	0
Zingiberaceae	Alpinia purpurata (Vieill.) K. Schum.	Н	0	0	2	2
	Costus sp.	Н	0	0	4	4
	Zingiber officinale Roscoe	Н	1	0	0	0
	Unknown		15	1	5	6
	TOTAL		339	86	48	134

Table B-3 -- continued.

APPENDIX C PRODUCTION AND BIOMASS MINIMODEL

Table C-1. EXCEL spreadsheet used to calculate coefficients for Biosphere rainforest production and biomass minimodel under predicted steady-state conditions.

Table C-2. Program in QUICKBASIC for the simulation of metabolism of the rainforest in Biosphere 2, model B2METAB in Figure 3-19.

Figure C-1. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with light increased 20% over baseline. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-2. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with no weedy biomass. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-3. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, where all pruned biomass is put onto the soil. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-4. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB with no pruning by humans. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-5. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, human effort is reduced to .75 of the baseline. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-6. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, human effort is reduced to .85 of the baseline. Final values for plant biomass are on the right side of their graphs. g/m^2 =grams per square meter, dry weight for biomass.

Figure C-7. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with airflow cut off from the rest of the Biosphere. g/m^2 =grams per square meter, dry weight for biomass.

Note	Item			Pathway Value	Coefficient Value
Sour	ces for calibration:	Value	Units		
R	Unused sunlight	2.60E+02	kcal/m²/day		
н	Human effort	1.00E+00	unitless		
Im	Mean insolation about which	2.60E+03	kcal/m ² /day		
	sin wave varies	21002.00			
Ir	Annual range of insolation	5.00E+02	kcal/m²/day		
Ja	Air flow	1.00E+00	g/m^2 , CO_2		
Stor	ages for calibration:				
W	Weedy plant biomass	1.00E+03	g/m², dry weig	ht	
M	Mature plant biomass	9.00E+03	g/m^2 , dry weig		
N	CO ₂ in atmosphere	1.80E+01	g/m^2 , CO ₂	,	
S	Soil organic matter	2.84E+04	g/m², dry weig	tht	
B	Biomass stored	2.30E+04	g/m², dry weig		
С	Consumers	1.00E+00	g/m ² , dry weig		
Calo	ulation products:				
		N*W = 1.80E+04			
		$N^*M = 1.62E + 05$			
		$N^*W^*R = 4.68E + 06$			
		$N^*M^*R = 4.21E + 07$			
		$W^*H = 1.00E+03$			
4			7/1		
1	Sunlight to weedy plants			1*N*W*R = 2.340E+02	K1 = 5.000E-05
2	Sunlight to mature plants			2*N*M*R = 2.106E+03	K2 = 5.000E-05
3	Weedy plants feedback to produ			3*N*W*R = 3.000E-01	K3 = 6.410E-08
4	Gross production of weedy plant	tS	K4*I	$N^*W^*R = 1.200E+00$	K4 = 2.564E-07

Table C-1. Spreadsheet used to calculate coefficients for Biosphere rainforest production and biomass minimodel under predicted steady state conditions.

.

Table C-1 -- <u>continued.</u>

Table	2 C-1 <u>continued.</u>		
Note	Item	Pathway Value	Coefficient Value
5	Mature plants feedback to production	$K5^*N^*M^*R = 4.150E+00$	K5 = 9.853E-08
6	Gross production of mature plants	K6*N*M*R = 1.080E+01	K6 = 2.564E-07
7	Weedy biomass pruned and stored	K7*W*H = 1.500E-01	K7 = 1.500E-04
8	Biomass loss due to weedy plant respiration	K8*W = 3.000E-01	K8 = 3.000E-04
9	CO ₂ to atmosphere from weedy plant respiration	K9*W = 7.320E-02	K9 = 7.320E-05
10	Weedy biomass pruned and applied to rainforest soil	$K10^*W^*H = 1.500E-01$	K10 = 1.500E-04
11	Weedy biomass prunings added to soil organic matter	K11*W*H = 1.500E-01	K11 = 1.500E-04
12	Natural litterfall from weedy plants	$K12^*W = 3.000E-01$	K12 = 3.000E-04
13	Organic matter entering soil from weedy plant litterfall	$K13^*W = 3.000E-01$	K13 = 3.000E-04
14	Natural litterfall from mature plants	$K14^*M = 2.500E + 00$	K14 = 2.778E-04
15	Organic matter entering soil from mature plant litterfall	$K15^*M = 2.500E + 00$	K15 = 2.778E-04
16	Biomass loss due to mature plant respiration	$K16^*M = 4.150E + 00$	K16 = 4.611E-04
17	CO ₂ to atmosphere from respiration of mature plants	$K17^*M = 1.010E + 00$	K17 = 1.122E-04
18	Pruned weedy plant biomass stored in basement	K18*W*H = 1.500E-01	K18 = 1.500E-04
19	Human effort dedicated to pruning for storage	$K19^{*}H = 1.000E + 00$	K19 = 1.000E + 00
20	Human effort dedicated to pruning for addition to soil	$K20^{*}H = 1.000E + 00$	K20 = 1.000E + 00
21	CO_2 leaving rainforest in airflow	K21*N = 1.000E+00	K21 = 5.556E-02
22	Microbial consumption of soil organic matter	K22*S = 1.950E+00	K22 = 6.866E-05
23	CO_2 from microbial respiration	K23*S = 4.758E-01	K23 = 1.675E-05
24	CO_2 uptake by weedy plants	$K24^*N^*W^*R = 1.910E-01$	K24 = 4.080E-08
25	CO ₂ uptake by mature plants	K25*N*M*R = 1.407E+00	K25 = 3.341E-08
26	Stored biomass lost by slow decomposition	$K26^*B = 1.500E-01$	K26 = 6.522E-06
27	Consumption of soil organic matter by animals	K27*C*S = 1.000E+00	K27 = 3.521E-05
28	CO ₂ from detritivore respiration	K28*C = 2.440E-03	K28 = 2.440E-03
29	CO ₂ from decomposition of stored biomass	$K29^*B = 3.660E-02$	K29 = 1.591E-06
30	Organic matter used for non-microbe consumer respiration	$K30^{*}C = 1.000E-02$	K30 = 1.000E-02
31	Consumer growth	K31*S*C = 1.000E-02	K31 = 3.521E-07

Table C-1 -- <u>continued.</u>

Note	
I, R	Total average outside sunlight for 24 hour period is 5200 kcal/m ² /day (Romer, 1985). One-half (2600 kcal/m ² /day) is reflected or absorbed by the spaceframe structure or glass covering of the Biosphere. One tenth of the incoming sunlight (260 kcal/m ² /day) is unused by producers, falling on bare ground or structure.
N	Assumes average atmospheric CO ₂ in 20 year steady state condition as 500 ppmv. (500 cm ³ /m ³)(34,690 m ³)(44 g CO ₂ /mole)(1 mole/22,400 cm ³)(1/1900 m ²) = 17.93 g CO ₂ /m ²
S	Soil organic matter as measured in 1993 in the top 60 cm of rainforest soil of Biosphere 2 (Scott, 1998).
B	Biomass stored after 20 years approximated as 23,000 g/m² based on actual weedy plant harvest rates of 2250 kgdw per year in Biosphere 2 rainforest.
С	Consumers estimated to be .01% of total plant biomass, or 1 g/m^2 .
1,2	Of the 2340 kcal/m²/day used by producers, one-tenth (234 kcal/m²/day) is used by weedy plants and nine-tenths (2106 kcal/m²/day) by mature plants.
3,8	Weedy plant respiration is the sum of 2 pathways - that which feeds back to weedy plant growth (K3) and that which puts CO_2 back into the atmosphere (K8). The ratio of gross production to respiration is considered to be 2 for weedy plants - thus the sum of the respiration pathways is $1.2/R = 2$, or 0.6. Half of this, 0.3, is considered to feed back to plant growth (K3) and the other half to go directly into the atmosphere (K8).
4,6	Gross production is set close to 1/3 of the gross production of the tabonuco forest at El Verde in Puerto Rico (Odum, 1970), or 12 grams dry weight per square meter per day. One tenth of that total (K4=1.2 gdw) is gross production by weedy species, nine tenths (K6=10.8 gdw) is gross production by mature species.
5,16	Mature plant respiration is the sum of 2 pathways - that which feeds back to mature plant growth (K5 and that which puts CO ₂ back into the atmosphere (K16). The ratio of gross production to respiration is considered to be 1.3 for mature plants - thus the sum of the respiration pathways is 10.8/R=1.3, or 8.31. Half of this is considered to be fed back to plant growth (K5), half goes directly into the atmosphere (K16).
6	See 4.

Table C-1 -- <u>continued.</u>

Note	
7,10	To calibrate model at steady state, the sum of weedy biomass loss by pruning and litterfall equals gross production minus total respiration of weedy plants (see 12). Pruning (K7+K10) and litterfall (K12) use equal amounts of biomass. Half of the pruned biomass is considered to have been added to the piles of dried biomass stored in the rainforest basement (K7) and half applied to the rainforest soil (K10).
8	See 3.
9	The stoichiometric relationship between organic matter (glucose) and carbon dioxide is as follows: $CO_2 = (0.244)$ organic matter, or organic matter = (4.09) CO_2 . Therefore (0.300 gdw)(0.244 g CO_2 / gdw) = 0.0732 g CO_2
10	See 7.
11	All of pruned biomass added to soil is considered to end up as soil organic matter.
12	Calculated for steady state, the amount of biomass lost to litterfall and pruning must equal net production.
13	Hence, for weedy plants, $K12 + K7 + K10 = K4 - (K3 + K8) = 0.60$ gdw. Biomass loss due to natural litterfall (K12) is considered to be half of the total biomass loss, and the other half is due to pruning (K7 + K10). The average litterfall in the mature Biosphere 2 rainforest (2.31 gdw/m ² /day) is roughly equal to that measured in the mature tabonuco forest of El Verde in Puerto Rico (2.27 gdw/m ² /day (Odum 1970)).
13	All of natural litterfall from weedy plants is considered to end up as soil organic matter.
14	Calculated to maintain steady state. See 12.
15	All of natural litterfall from mature plants is considered to end up as soil organic matter.
16	See 5.
17	$(4.15 \text{ gdw})(0.244 \text{ g CO}_2/\text{ gdw}) = 1.01 \text{ g CO}_2$

Table C-1 -- continued.

l half to
e
he
rage
es to

Table C-2. Program in BASIC for the simulation of metabolism of the rainforest in Biosphere 2, Model B2METAB.bas in Figure 3-19.

Line	e Code
10	REM B2METAB - 18 APR 1999
11	REM Autocatalytic consumers C
12	REM Set for 100 years' run
13	REM started with high soil organics, low plants
15	LINE (0,5) - (400,90),,B
20	LINE $(0,110) - (400,190),,B$
25	
30	LINE (0,310) - (400,350),,B
35	LINE (0,370)-(400,410),,B
40	LINE (0,330)-(400, 330),3
44	REM Outside Sources
45	Im = 2600:REM mean insolation about which sine wave varies
46	Ir = 500:REM annual range of insolation
47	H=1
48	Ja = 1
50	REM Initial storages
	W = 100: REM Calibrated at 1000
60	M = 900:REM Calibrated at 9000
70	N = 18: REM Calibrated at 18
80	
90	
95	C = .1:REM: calibrated at 1
100	REM COEFFICIENTS
	K1 = .00005
	K2 = .00005
	K3 = 6.41E-08
	K4 = 2.564E-07
	K5 = 9.853E-08
	K6 = 2.564E-07
170	K7 = .00015
180	K8 = .0003
190	K9 = .0000732
200	K10 = .00015
210	K11 = .00015
220	K12 = .0003
230	K13 = .0003
240	K14 = .0002778
250	K15 = .0002778
260	K16 = .0004611
270	K17 = .0001122
280	K18 = .00015

Line Code 290 K19 = 1 300 K20 = 1310 K21 = .055556 $320 \quad K22 = 6.866E-05$ 325 K23 = 1.675E-05 330 K24 = 4.08E-08335 K25 = 3.341E-08 340 K26 = 6.522E-06345 K27 = 3.521E-05:REM K27*C*S = 1. (C=1,S=28400) 350 K28 = .00244355 K29 = 1.591E-06 360 K30 = .01:REM If K30*C = .01 where C = 1 370 K31 = 3.521E-07:REM 3.5E-7 since $K27^*C^*S = .01$ (C=1,S=28400) 375 t = 100400 REM Scaling Factors 410 T0 = .01: REM When T0 = .1, 3650 days = 10 years 420 DT = 10430 M0 = .007440 W0 = .007 450 N0 = 1.75 460 S0 = .002470 B0 = .002480 C0 = 6490 I0 = .0225 495 Pr0 = 40500 REM Equations 502 $Pg = K4^*R^*N^*W + K6^*R^*N^*M$:REM Total Gross Production Rate 504 $Rp = K3^*R^*N^*W + K5^*R^*N^*M + K8^*W + K16^*M + K22^*S + K27^*S^*C$ 505 REM Total Respiratory Consumption 506 PR = Pg/Rp508 $I = Im + Ir^*SIN (.017^*t)$ 510 R = I/(1+K1*N*W+K2*N*M)520 DW = K4*N*R*W-K3*N*R*W-K7*W*H-K10*W*H-K12*W-K8*W530 $DM = K6^*N^*R^*M-K5^*N^*R^*M-K14^*M-K16^*M$ 540 DN = K9*W+K17*M+K23*S+K28*C+Ja+K29*B-K25*N*R*M-K24*N*R*W- K21*N 550 DS = K11*H*W+K13*W+K15*M-K27*S*C-K22*S 560 $DB = K18^{H}W-K26^{B}$ 570 DC = K31*S*C-K30*C580 $W = W + DW^*DT$ 590 $M = M + DM^*DT$ 600 N = N + DN * DT610 $S = S + DS^*DT$

Table C-2 – <u>continued.</u>

Line	Code
620	$B = B + DB^*DT$
630	$C = C + DC^*DT$
=00	
700	REM Plotting
710	PSET (t*T0, 90-I*I0)
720	PSET (t*T0,190-W*W0)
730	PSET (t*T0,190-M*M0)
740	PSET (t*T0,90-N*N0)
750	PSET (t*T0,290-S*S0)
760	PSET (t*T0,290-B*B0)
770	PSET (t*T0,410-C*C0)
780	PSET (t*T0, 330-(PR-1)*Pr0)
800	t = t + DT
805	IF t*T0<400 GOTO 500

.

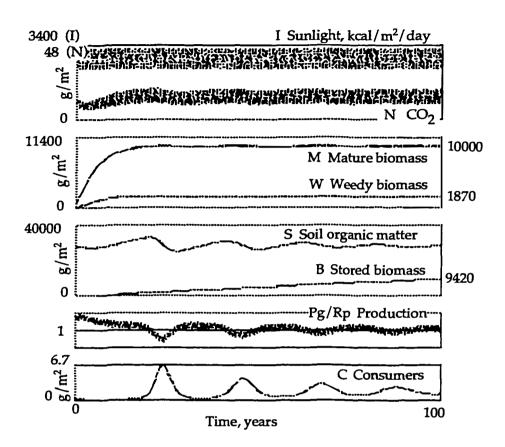


Figure C-1. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, with light increased 20% over baseline. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

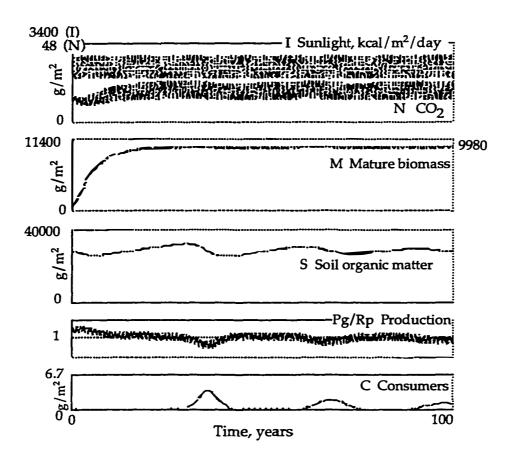


Figure C-2. One-hundred-year simulation of Biosphere 2 rainforest minimodel, B2METAB, with no weedy biomass. Final values for plant biomassare on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

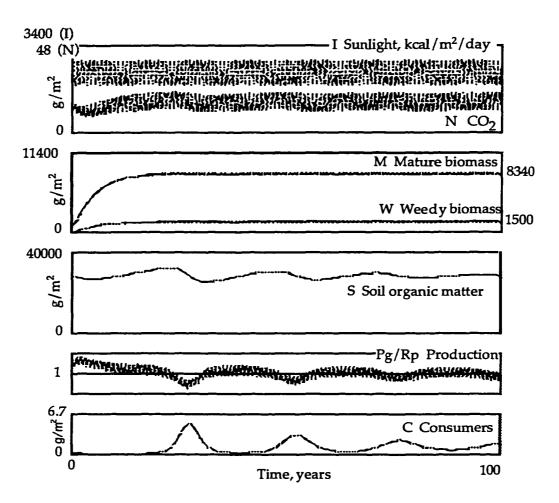


Figure C-3. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, where all pruned biomass is put onto the soil. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

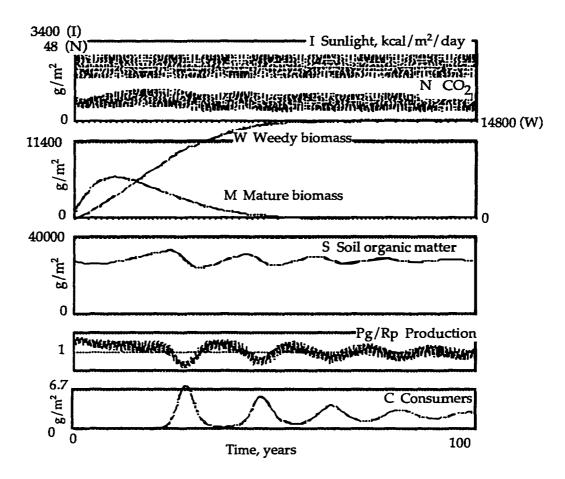


Figure C-4. One-hundred-year simulation of Biosphere 2 production and biomass minimodel, B2METAB, with with no pruning by humans. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

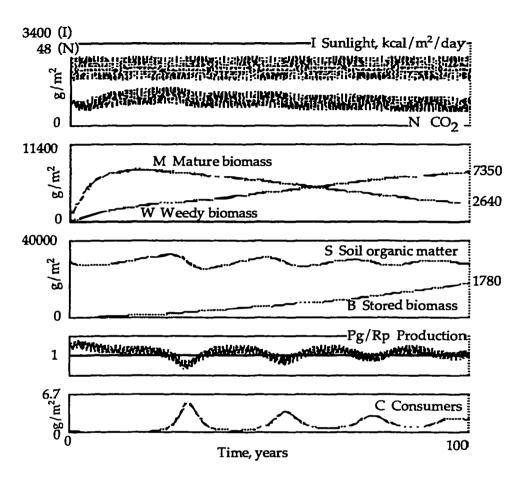


Figure C-5. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel, B2METAB, where human effort is reduced to .75 of baseline. Final values for plant biomass are on the right side of their graphs. $g/m^2 =$ grams per square meter, dry weight for biomass.

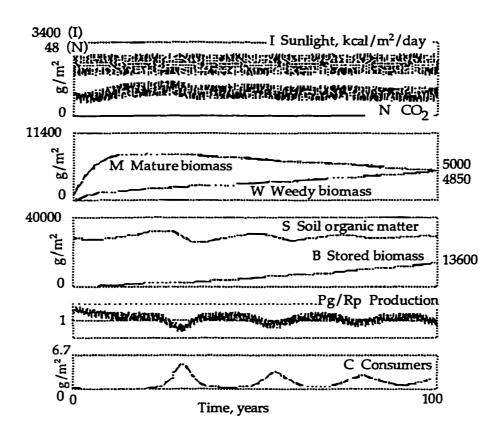


Figure C-6. One-hundred-year simulation of Biosphere 2 rainforest minimodel, B2METAB, where human effort in pruning is reduced to .85 of baseline. Final values for plant biomass are on the right side of their graphs. g/m² = grams per square meter, dry weight for biomass.

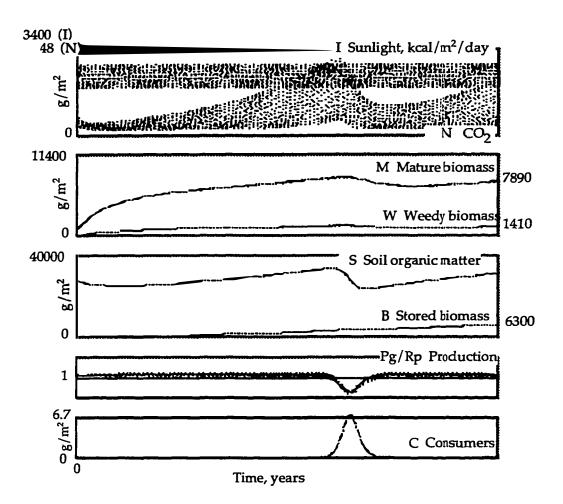


Figure C-7. One-hundred-year simulation of Biosphere 2 rainforest production and biomass minimodel with airflow cut off from the rest of the Biosphere. Final values for plant biomass are on the right side of their graphs.

 $g/m^2 =$ grams per square meter, dry weight for biomass.

APPENDIX D PRODUCTION AND DIVERSITY MINIMODEL

Table D-1.EXCEL spreadsheet used to calculate coefficients for Biosphere 2rainforest production and diversity minimodel SPDIV.

Table D-2.Program in QUICKBASIC for the simulation of production anddiversity in the Biosphere 2 rainforest, model SPDIV in Figure 3-28.

Figure D-1. Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 10 years. Final values for plant biomass and species are on the right side of their graphs. g/m^2 =grams of dry biomass per square meter.

Figure D-2. Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 100 years. Final values for plant biomass and species are on the right side of their graphs. g/m^2 =grams of dry biomass per square meter.

Figure D-3. Simulation of Biosphere 2 rainforest when 50 species are added after the second year. Final velues for plant biomass and species are on the right side of their graphs. g/ m²=grams of dry biomass per square meter.

Table D-1. Spreadsheet used to calculate coefficients for Biosphere 2 rainforest diversity and production minimodel, SPDIV.

Note	3	Item	Pathway	Value	Units	Coefficient Value
Sources for calibration:						
	Ir	Annual range of insolation	Ir =	= 5.00E+02	kcal m ⁻² d ⁻¹	
	Im	Mean insolation about which sin wave varies	Im =	= 2.60E+03	kcal m ⁻² d ⁻¹	
	R	Unused sunlight	R =	= 2.60E+02	kcal m ⁻² d ⁻¹	
		-	S =	= 0		
	Storages	for calibration:				
	В	Biomass	B =	= 10000	g m ⁻²	
	Ε	Established species	E =	= 60	species 1900 m	-2
	N	Transient species	N =	= 300	species 1900 m	-2
1	Sunlight	to plants with diversity interaction	K1*R*E =	= 5.40E+02	kcal m ⁻² d ⁻¹	K1 = 3.46E-02
2		to plants with biomass feedback	K2*R*B =	= 1.80E+03	kcal m ⁻² d ⁻¹	K2 = 6.92E-04
3		oductivity of plants interacting with diversity	K3*R*E =	= 4.00E+00	gdw m ⁻² d ⁻¹	K3 = 2.56E-04
4		feedback to production	K4*R*B =	= 2.00E+00	gdw m ⁻² d ⁻¹	K4 = 7.69E-07
5	Gross pr	oductivity of plants with biomass feedback	K5*R*B =	= 8.00E+00	$gdw m^2 d^{-1}$	K5 = 3.08E-06
6	Flow con	ntrolling biomass used for information support	K6*E*E =	= 1.00E-03	species	K6 = 2.78E-07
7	Return f	low of pathway K6*E*E	K7*E*E =	= 1.00E-03	species	K7 = 2.78E-07
8	Flow fro	m transient species to interaction with biomass	K8*N*B =	= 8.00E-01	species m ⁻² d ⁻¹	K8 = 2.67E-07
9	Flow fro	m interaction to established species	K9*B*N =	= 8.00E-01	species m ⁻² d ⁻¹	K9 = 2.67E-07
10	Transier	t species extinction	K10*N =	= 3.16E-01	species m ⁻² d ⁻¹	K10 = 1.05E-03
11	Biomass	loss due to system respiration	K11*B =	= 8.55E+00	g m ⁻² d ⁻¹	K11 = 8.55E-04
12		low from biomass for support information	K12*B*E*E =	= 1.45E+00	$g m^{-2} d^{-1}$	K12 = 4.04E-08
13		extinction from interactions with other species	K13*B*E*E =	= 1.03E-03	species m ⁻² d ⁻¹	K13 = 2.85E-11
		extinction due to other things	K14*E =	= 1.03E-03	species m ⁻² d ⁻¹	K14 = 1.71E-05
		om species source to inside Biosphere 2	Ja =	= 0.00E+00	species m ⁻² d ⁻¹	

Table D-1 – <u>continued.</u>

	-1 - <u>Conunded.</u>
Note	
Im	Total average outside insolation for 24 hour period is 5200 kcal m ⁻² d ⁻¹ for Tucson, Arizona (Romer 1985). One-half (2600 kcal m ⁻² d ⁻¹) is reflected or absorbed by the glass and steel spaceframe structure of the Biosphere.
Ir	The annual range of insolation used is 500 kcal m ⁻² d ⁻¹ .
R	One tenth of the incoming sunlight (260 kcal m ⁻² d ⁻¹) is estimated as unused by producers, falling on bare ground or other internal structure.
S	Species source is the earth, since in the case of plants evolution would probably not have time to occur over the 100 year planned life of Biosphere 2. The first planting to the Biosphere rainforest from external sources was during the year prior to closure, in 1990 – 1991.
В	The projected standing aboveground biomass of the Biosphere 2 rainforest after 20 years is 10,000 g m ⁻² , based on measured increases in the first 2 years (Bierner 1994).
E	There were initially no plants considered to be established. As plants developed connections with the environment and other plants, they were considered established. The sum of established and transient plants at any time would yield a list of all of the species in the Biosphere.
Ν	The initial input of species to Biosphere – approximately 300 – were considered to be transient for purposes of model calibration.
1,2	Total insolation entering the rainforest is 2600 kcal m ⁻² d ⁻¹ of which 260 is not used by plants, leaving 2340 kcal m ⁻² d ⁻¹ for the production process.
3 <i>,</i> 5	Gross productivity is set at approximately 1/3 of the measured value of gross productivity of the tabonuco forest at El Verde in Puerto Rico, or 12 grams dry weight per square meter per day.
4,11, 12	To calibrate the model for steady state, gross productivity and respiration flows were set to be equal. Therefore, the sum of these three pathways equals a loss of 12 grams dry weight per square meter per day for respiration and system maintenance.

Table D-1 – <u>continued.</u>

Note

- 6,7 Flow 6 controls the amount of biomass used for the maintenance of information of species in the system, with flow 7 returning to the species diversity tank. Since there is no increase of species information through evolution on the time scale represented, the 2 flow are set equal to each other.
- 8, 10 The initial value of transient species at closure in 1991 was 300 species per 1900 square meters of rainforest. To estimate the losses due to extinction and losses due to establishment, a value of species lost per square meter per day was calculated ((300 species)/(1900 m⁻²)/(365 days)/(20 years), and the result divided between the 2 pathways from the transient species tank. Changes were made in the orders of magnitude of these values to obtain a model that would duplicate the first period of measurement of the system.
 - 9 The flow on this pathway is the same as that of 8.
- 13, The flows for extinction of established species were set so that the model would duplicate the first period of
- 14 measurement of the system.
- 15 The flow from the species source and consisted of approximately 300 species, which is the number used to calibrate the minimodel. The system was materially closed to new species during 1991-1993.

Table D-2. Program in BASIC for the simulation of production and diversity in the Biosphere 2 rainforest, Model SPDIV in Figure 3-25.

T:		
Line Code		
10	REM SPDIV – 2 May 1999	
11		
12		
13		
	LINE (0,5) - (360,80),,B	
	LINE (0,100) - (360,180),,B	
15	LINE (0,200) - (360,300),,B	
44	REM Outside Sources	
	Im = $2600!$:REM mean insolation about which sine wave varies	
	Ir = 500:REM annual range of insolation	
47		
	Ja = 0	
	,	
	REM Initial Storages	
	B = 1000 : REM Starting biomass	
60	N = 300: REM Starting transient species diversity	
	E = 10: REM Established species at start	
	C = 30: REM Carrying capacity for species in system	
90	X = 1	
100	REM Coefficients	
	K1 = .0346	
	K1 = .0040 K2 = .000692	
120	K3 = .000256	
	K4 = 7.69E-07	
	$K_{5} = 3.08E-06$	
	K6 = 2.78E-07	
	K7 = 2.78E-07	
	K8 = 2.67E-07:REM calibrated for N = 300	
190	K9 = 2.67E-07:REM same as K8	
200		
210	K10 = .000855	
220		
230		
240		
400		
410	0	
42 0		
430		
440		
450		
460	I0 = .02	

Table D-2 – <u>continued.</u>

Table D-2 – <u>continued.</u>		
Line Code		
500	REM Equations	
508	$I = Im + Ir^*SIN (.017^*T)$	
510	R = I/(1+K1*E*+K2*B)	
520	$DB = K3^{*}E^{*}R + K5^{*}B^{*}R - K4^{*}B^{*}R - K11^{*}B - K12^{*}E^{*}E^{*}B$	
530	$DN = Ja - K10^*N - K8^*N^*B$	
540	DE = K9*N*B-K14*X*E-K13*X*B*E*E:REM K6 = 0	
551	IF E>C THEN X=1	
552	IF E <c then="" x="0</td"></c>	
580	$B = B + DB^*DT$	
590	$N = N + DN^*DT$	
595	IF $N < 0$ THEN $N = 0$	
600	$E = E + DE^*DT$	
700	REM Plotting	
710	PSET (T*T0, 80-I*I0)	
730	PSET (T*T0,300-N*N0)	
740	PSET (T*T0,300-E*E0)	
	T = T + DT	
805	IF T*T0<360 GOTO 500	

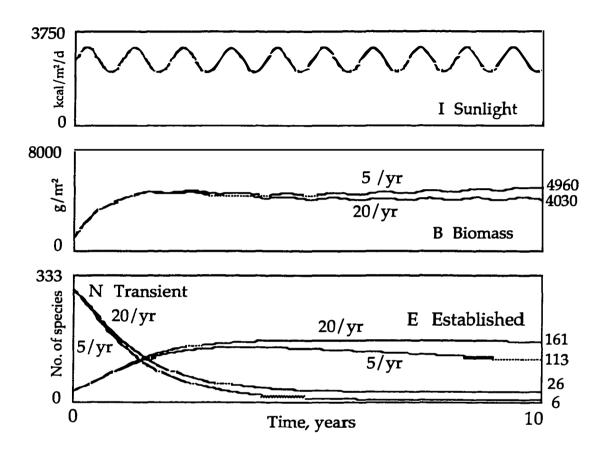


Figure D-1. Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 10 years. Final values for plant biomass and species are on the right sides of their graphs. $g/m^2 = grams$ of dry biomass per square meter.

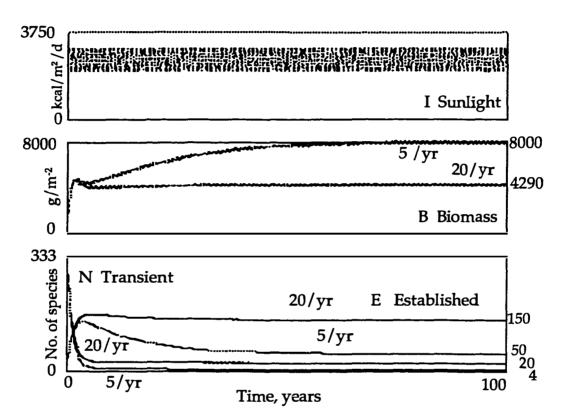


Figure D-2. Simulation of Biosphere 2 rainforest with continuous additions of 5 and 20 species per year over 100 years. Final values for plant biomass and species are on the right sides of their graphs. $g/m^2 = grams$ of dry biomass per square meter.

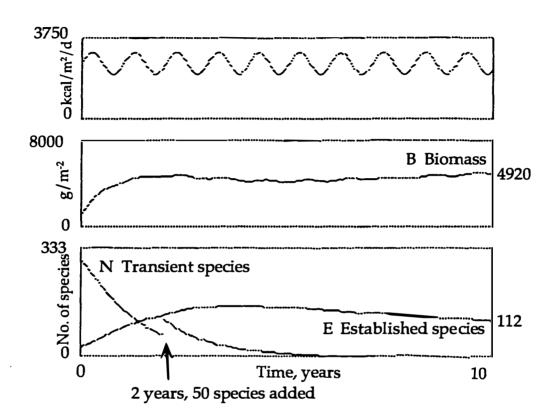


Figure D-3. Simulation of Biosphere 2 rainforest when 50 species are added after the second year. Final values for plant biomass and species are on the right side of their graphs. $g/m^2 =$ grams of dry biomass per square meter.

REFERENCES

- Ahrain, Muhammad Altaf, William James Shuttleworth, Blake Farnsworth. 1998. Evaluating the micrometeorology of the Biosphere 2 tropical rainforest biome relative to that of the Amazon River basin. Report on file at Biosphere 2.
- Angermeier, Paul L. and Isaac J. Schlosser. 1989. Species-area relationships for stream fishes. Ecology 70(5)1450-1462.
- Arrhenius, Olof. 1921. Species and area. Journal of Ecology 9:95-99.
- Arroyo, M.T.K., F.A. Squeo, J.J. Armestro, C. Villagran. 1988. Effects of aridity on plant diversity in the Northern Chilean Andes: Results of a natural experiment. Annals of the Missouri Botanical Garden 75(1):55-78.
- Ashton, P.S. 1977. A contribution of rain forest research to evolutionary theory. Annals of the Missouri Botanical Garden 64:694-705.
- Beyers, Robert J. and Howard T. Odum. 1993. Ecological microcosms. Springer-Verlag, New York.
- Bierner, M. W. 1993. Preliminary report on biomass estimates for the terrestrial wilderness biomes of Biosphere 2. Report prepared for Space Biospheres Ventures, Oracle, AZ. On file at Biosphere 2.
- Bierregaard, R.O., Jr., T.E. Lovejoy, V. Kapos, A.A. do Santos, R.W. Hutchings. 1992. The biological dynamics of tropical rainforest fragments. BioScience 42:859-866.
- Clements, Frederic E. 1936. Nature and structure of the climax. The Journal of Ecology 24:252-284.
- Clinebell, R.R., O.L. Phillips, A.H. Gentry, N. Stark, H. Zuuring. 1995. Prediction of neotropical tree and liana species richness from soil and climatic data. Biodiversity and Conservation 4(1):56-90.

Colinvaux, Paul A. 1986. Ecology. John Wiley, New York.

- Condit, Richard, Stephen P. Hubbell, Robin B. Foster. 1996a. Changes in tree species abundance in a Neotropical forest: Impact of climate change. Journal of Tropical Ecology 12:231-256.
- Condit, Richard, Stephen P. Hubbell, James V. LaFrankie, R. Sukumar, N. Manokaran, Robin B. Foster, Peter S. Ashton. 1996b. Species-area and species-individual relationships for tropical trees: A comparison of three 50-ha plots. Journal of Ecology 84:549-562.
- Connell, Joseph H. 1978. Diversity in tropical rain forests and coral reefs. Science 199:1302-1320.
- Connell, J.H., I.R. Noble, R.O. Slatyer. 1987. On the mechanisms producing successional change. Oikos 50:136-137.
- Connell, Joseph H. and Eduardo Orias. 1964. The ecological regulation of species diversity. The American Naturalist 98(903):399-414.
- Connell, Joseph and R.O. Slatyer. 1977. Mechanisms of succession in natural communities and their role in community stability and organization. The American Naturalist 111:1119-1144.
- Connor, Edward and Earl D. McCoy. 1979. The statistics and biology of the species-area relationship. The American Naturalist 113(6):791-833.
- Crow, Thomas R. 1980. A rainforest chronicle: A 30-year record of change in structure and composition at El Verde, Puerto Rico. Biotropica 12(10):42-55.
- Cuevas, Elvira, Sandra Brown, Ariel E. Lugo. 1991. Above- and belowground organic matter storage and production in a tropical pine plantation and a paired broadleaf secondary forest. Plant and Soil 135:257-268.
- Dempster, W. 1993. Biosphere 2: System dynamics and observations during the initial two-year closure trial. In: SAE Technical Paper Series 932290.
 23rd International Conference on Environmental System, Colorado Springs, CO.
- Dickerson, J.E., Jr., and J.V. Robinson. 1986. The controlled assembly of microcosmic communities: The selective extinction hypothesis. Oecologia 71: 12-17.
- Duellman, W.E. 1988. Patterns of species diversity in anuran amphibians in the American tropics. Annals of the Missouri Botanical Garden 75(1):79-104.

- Edmisten, Joe. 1970. Soil studies in the El Verde rain forest. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. H79-H88.
- Engel, V.C. 1994. Simulation of the Atmosphere Inside Biosphere 2. Master's Thesis, Department of Environmental Engineering Sciences, University of Florida, Gainesville.
- Engel, Victor C. and H.T. Odum. 1999. Simulation of community metabolism and atmospheric carbon dioxide and oxygen concentrations in Biosphere 2. Ecological Engineering 13(1-4):107-134.
- Fisher, R.A., A. Steven Corbet, C.B. Williams. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:42-58.
- Folsome, C. and J.A. Hanson. 1986. The emergence of materially-closedsystem ecology. In: N. Polunin, ed. Ecosystem theory and application. John Wiley, N.Y.
- Gentry, A.H. 1982. Patterns of neotropical plant species diversity. Evolutionary Biology 15:1-84.
- Gentry, A.H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75(1):1-34.
- Gentry, A.H. and C. Dodson. 1987. Contribution of no-trees to species richness of tropical rain forest. Biotropica 19:149-156.
- Gleason, Henry Allan. 1922. On the relation between species and area. Ecology 2:158-162.
- Goodall, D.W. 1952. Quantitative aspects of plant distribution. Biological Review 27:194-245.
- Gonzalez, G., X. Zou, A. Sabat, N. Fetcher. 1999. Earthworm abundance and distribution pattern in contrasting communities within a tropical wet forest in Puerto Rico. Caribbean Journal of Science 35(1-2):93-100.
- Gotelli, Nicholas J. and Gary R. Graves. 1996. Null models in ecology. Smithsonian Institution Press, Washington, D.C.

- Guariguata, Manuel R. 1990. Landslide disturbance and forest regeneration in the upper Luquillo Mountains of Puerto Rico. Journal of Ecology 78:814-832.
- Gutierrez, Luis T. and Willard R. Fey. 1975. Simulation of successional dynamics in ecosystems. In: George S. Innis, ed. New directions in the analysis of ecological systems. Simulation Councils Proceedings Vol. 5, No. 1. Society for Computer Simuation, La Jolla, CA. pp. 73-82.
- Haberstock, Alan. 1991. Biosphere II aboveground terrestrial live biomass estimates for components of the tropical rainforest biome. Report prepared for Space Biospheres Ventures, Oracle, AZ. On file at Biosphere 2.
- Hall, Charles A.S., Jack A. Stanford, F. Richard Hauer. 1992. The distribution and abundance of organisms as a consequence of energy balances along multiple environmental gradients. Oikos 65:377-390.
- Hawksworth, D.L. and M.T. Kalin-Arroyo. 1990. Magnitude and distribution of biodiversity. In: V.H. Heywood, exec. ed. Global biodiversity assessment. United Nations Environment Program. Cambridge University Press, Cambridge, U.K.
- Holling, C.S. 1986. The resilience of terrestrial ecosystem: Local surprise and global change. In: W.C. Clark and R.E. Munn, eds. Sustainable development of the biosphere. Cambridge University Press, Cambridge, U.K.
- Hubbell, Stephen P. 1979. Tree dispersion, abundance, and diversity in a tropical dry forest. Science 203(4387)1299-1309.
- Huston, Michael A. 1994. Biological diversity. Cambridge University Press, Cambridge, U.K.
- Hutchinson, G.E. 1961. The paradox of the plankton. The American Naturalist 45(882):137-145.
- Jaccard, Paul. 1912. The distribution of the flora in the alpine zone. New Phytologist 11(2):37-50.
- Johnston, Mark Harvey. 1990. Successional Change and Species/Site Relationships in a Puerto Rican Tropical Forest. Doctoral Thesis, College of Environmental Science and Forestry, State University of New York, Syracuse, NY.

- Jordan, Carl F. 1969. Derivation of leaf-area index from quality of light on the forest floor. Ecology 50(4):663-666.
- Karr, James R. and Kathryn E. Freemark. 1983. Habitat selection and environmental gradients: Dynamics in the "stable" tropics. Ecology 64(6):1481-1494.
- Kent, Robert. 1996. Seedling Survival and Colonizing Vegetation in Wetland Plots Receiving Pig Wastes in Puerto Rico, Including a Survey of Other Wetlands Receiving Eutrophic Waters in Puerto Rico. Master's Thesis, Department of Environmental Engineering Sciences, University of Florida, Gainesville.
- Kohyama, T. 1997. The role of architecture in enhancing plant species diversity. In: Takuya Abe, Simon A. Levin, Masahiko Higashi, eds. Biodiversity: An ecological perspective. Springer-Verlag, New York.
- Lawrence, William T., Jr. 1996. Plants: The food base. In: Douglas P. Reagan and Robert B. Waide, eds. The food web of a tropical rain forest. University of Chicago Press, Chicago. pp. 18-51.
- Leigh, Egbert Giles, Jr., S. Joseph Wright, Edward Allen Herre, Francis E. Putz. 1993. The decline of tree diversity on newly isolated tropical islands: A test of a null hypothesis and some implications. Evolutionary Ecology 7:76-102.
- Lin, Guanghui, John Adams, Blake Farnsworth, Yongdan Wei, Bruno D.V. Marino, Joseph A. Berry. 1999. Ecosystem carbon exchange in two terrestrial ecosystem mesocosms under changing atmospheric CO₂ concentrations. Oecologia 119:97-108.
- Lin, Guanghui, Bruno D.V. Marino, Yongdan Wei, John Adams, Francesco Tubiello, Joseph A. Berry. 1998. Australian Journal of Plant Physiology 25:547-556.
- Lodge, D. Jean, F.N. Scatena, C.E. Asbury, M.J. Sanchez. 1991. Fine litterfall and related nutrient inputs resulting from hurricane Hugo in subtropical wet and lower montane rain forests of Puerto Rico. Biotropica 23(4a):336-342.
- Lugo, Ariel. 1992. Comparison of tropical tree plantations with secondary forests of similar age. Ecological Monographs 62(1):1-41.
- MacArthur, Robert and Edward O. Wilson. 1967. Theory of island biogeography. Princeton University Press, Princeton, NJ.

- Margalef, Ramon. 1997. Our Biosphere. Ecology Institute, Oldendorf/Luhe, Germany.
- Medina, E., E. Cuevas, P.L. Weaver. 1981. Composición foliar y transpiración de especies leñosas de Pico del Este, Sierra de Luquillo, Puerto Rico. Acta Científica Venezolana 32:159-165.
- Mercado, Nelson. 1970. Leaf growth, leaf survival, leaf holes, color of cambium, and terminal bud condition. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. D271—D286.
- Mueller-Dombois, Dieter and Heinz Ellenberg. 1974. Aims and Methods of Vegetation Ecology. John Wiley, New York.
- Myster, Randall W. and Lawrence R. Walker. 1997. Plant successional pathways on Puerto Rican landslides. Journal of Tropical Ecology 13:165-173.
- Nelson, Mark. 1999. Litterfall and decomposition rates in Biosphere 2 terrestrial biomes. Ecological Engineering 13(1-4)135-146.
- Odum, Howard T. 1960. An organizational hierarchy postulate for the interpretation of species-individual distributions, species entropy, ecosystem evolution, and the meaning of a species-variety index. Ecology 41(2)395-399.
- Odum, Howard T. 1970a. Summary: An emerging view of the ecological system at El Verde. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. I191-I289.
- Odum, Howard T. 1970b. Holes in leaves and the grazing control mechanism. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. I69-I80.
- Odum, Howard T. 1971. Environment, power and society. Wiley, New York.
- Odum, Howard T. 1983. Systems ecology. Wiley, New York.
- Odum, Howard T. 1994. Ecological and general systems: An introduction to systems ecology. University Press of Colorado, Niwot, CO.

- Odum, Howard T. 1996. Environmental accounting: Emergy and environmental decision making. John Wiley, New York.
- Odum, Howard T. 1999. Limits of information and biodiversity. In: Heinz Loffler and Erich W. Streissler. Sozialpolitik und Okologieprobleme der Zukunft. Festsymposium de osterreichischen Akademie der Wissenschaften anlablich ihres 150 jahrigen Jubilaums. Verlag der Osterreichischen Akademie der Wissenschafter, Wien. pp. 229-269.
- Odum, Howard T., B.J. Copeland, Robert Z. Brown. 1963. Direct and optical assay of leaf mass of the lower montane rain forest of Puerto Rico. Proceedings of the National Academy of Sciences 49:429-434.
- Odum, H.T., Steven J. Doherty, Fred N. Scatena, Pushker Kharecha. 1999. Emergy evaluation of reforestation alternatives in Puerto Rico. Paper presented at International Tropical Forestation Conference.
- Odum, H.T., Victor Engel, E.C. Odum. 1993. Observations in Biosphere 2. Field notes, on file at Biosphere 2.
- Odum, H.T. and C.M. Hoskin. 1957. Metabolism of a laboratory stream microcosm. Publications of the Institute of Marine Science, Texas 4:116-133.
- Odum, Howard T. and Elisabeth C. Odum. In press. Modeling for All Scales: An Introduction to Systems and Simulation. Academic Press, San Diego, California.
- Odum, H.T. and Robert F. Pigeon, eds. 1970. A Tropical Rain Forest: A Study of Irradiation and Ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, Tennessee.
- Orrell, Joshua J. 1997. Cross Scale Comparison of Plant Production and Diversity. Master's Thesis, Department of Environmental Engineering Sciences, University of Florida, Gainesville.
- Ovington, J.D. and J.S. Olson. 1970. Biomass and chemical content of El Verde lower montane rain forest plants. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. H-53–H-77.
- Pimm, Stuart L. 1991. The balance of nature? Ecological issues in the conservation of species and communities. University of Chicago Press, Chicago.

- Prance, G.T. 1991. Building a rainforest: The Biosphere 2 project. Longwood Graduate Program Seminars 1988, 20:35-40.
- Pratt, J.R., B.R. Niederlehner, N.B. Pratt, J.J. Cairns. 1987. Prediction of permissible concentrations of copper from microcosm toxicity tests. Toxic Assess 2:1-29.
- Reagan, Douglas P. and Robert B. Waide. 1996. The food web of a tropical rain forest. University of Chicago Press, Chicago.
- Remmert, Hermann. 1991. The mosaic-cycle concept of ecosystems An overview. In: Hermann Remmert, ed. The mosaic-cycle concept of ecosystems. Springer-Verlag, New York.
- Ricklefs, Robert E. 1990. Ecology. W.H. Freeman and Company, New York.
- Romer, Robert H. 1985. Energy: Facts and figures. Spring Street Press, Amherst, MA.
- Rosenzweig, Michael L. 1995. Species diversity in space and time. Cambridge University Press, New York.
- Rosenzweig, M.L. and Z. Abramsky. 1993. How are diversity and productivity related? In: R. Ricklefs and D. Schluter, eds. Species diversity in ecological communities: Historical and geographical perspectives. University of Chicago Press, Chicago.
- Rushing, William N. 1970. A quantitative description of vegetation at El Verde sites. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. B169-B237.
- Sanders, H.L. 1968. Benthic marine diversity: A comparative study. The American Naturalist 102:243-282.
- Scarborough, Robert. 1994. Soils final report, Biosphere II: An accounting of the soils, their sources, their blending, and placing inside Biosphere II. Report prepared for Space Biospheres Ventures, Oracle, AZ. On file at Biosphere 2.
- Scatena, F.N., W. Silver, A. Johnson, M.J. Sanchez. 1993. Biomass and nutrient content of the Bisley Experimental Watersheds, Luquillo Experimental Forest, Puerto Rico, before and after Hurricane Hugo, 1989. Biotropica 25(1):15-27.

- Scott, Harry J. 1994. Soil chemical and physical properties of the tropical rain forest of Biosphere 2: A comparison with other humid tropical forests. Report prepared for Yale University graduate program. On file at Biosphere 2.
- Scott, Harry James. 1999. Characteristics of soils in the tropical rainforest biome of Biosphere 2 after 3 years. Ecological Engineering 13(1-4)95-106.
- Silver, W.L., F.N. Scatena, A.H. Johnson, T.G. Siccama, M.J. Sanchez. 1994. Nitrogen availability in a montane wet tropical forest: Spatial patterns and methodological considerations. Plant and Soil 164:129-145.
- Smith, Robert Ford. 1970. The vegetation structure of a Puerto Rican rainforest before and after short-term gamma irradiation. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. D103-D140.
- Taylor, Charlotte M., Susan Silander, Robert B. Waide, and William J.
 Pfeiffer. 1996. Recovery of a tropical forest after gamma irradiation: A
 23-year chronicle. In: A.E. Lugo and C. Lowe, eds. Tropical forests:
 Management and ecology. Springer-Verlag, New York.
- Teague, J. 1991. Topographic and plant survey data and maps for Biosphere 2. On file at Biosphere 2.
- Thompson, J. 1992. Biosphere 2. Professional Surveyor 12:4-10.
- Tilman, D. 1993. Species richness of experimental productivity gradients: How important is colonization limitation? Ecology 74(8):2179-2191.
- Tilman, D. and A. El Haddi. 1992. Climatic variation and biodiversity in grasslands. Oecologia 89:257-264.
- Tilman, David, Clarence L. Lehman, Peter Kareiva. 1997. Population dynamics in spatial habitats. In: David Tilman and Peter Kareiva, eds. Spatial ecology: The role of space in population dynamics and interspecific interactions. Princeton University Press, Princeton, NJ.
- Ulanowicz, Robert E. 1980. An hypothesis on the development of natural communities. Journal of Theoretical Biology 85:223-245.
- Vestal, Arthur G. 1949. Minimum areas for different vegetation. University of Illinois Press, Urbana.

- Walker, Lawrence R., Daniel J. Zarin, Ned Fetcher, Randall W. Myster, Arthur H. Johnson. 1996. Ecosystem development and plant succession on landslides in the Caribbean. Biotropica 28(4a):566-576.
- Wetterer, J.K., S.E. Miller, D.E. Wheeler, C.A. Olson, D.A. Polhemus, M. Pitts, I.W. Ashton, A.G. Himler, M.M. Yospin, K.R. Helms, E.L. Harken, J. Gallaher, C.E. Dunning, M. Nelson, J. Litsinger, A. Southern, T.L. Burgess. In press. Ecological dominance by Paratrechina longicornis (Hymenoptera: Formicidae), an invasive tramp ant, in Biosphere 2. Florida Entomologist.
- Whittaker, Robert H. 1975. Communities and Ecosystems. MacMillan Publishing Co., Inc., New York.
- Wiegert, Richard G. 1970. Effects of ionizing radiation on leaf fall, decomposition, and the litter microarthropods of a montane rain forest. In: H.T. Odum and Robert F. Pigeon, eds. A tropical rain forest: A study of irradiation and ecology at El Verde, Puerto Rico. TID-24270 (PRNC-138) U.S. Atomic Energy Commission, Oak Ridge, TN. pp. H89-H100.
- Wright, David Hamilton. 1983. Species-energy theory: An extension of species-area theory. Oikos 41:496-506.
- Wright, David H., David J. Currie, Brian A. Maurer. 1993. Energy supply and patterns of species richness on local and regional scales. In: Robert E. Ricklefs and Dolph Schluter, eds. Species diversity in ecological communities: Historical and geographical perspectives. University of Chicago Press, Chicago. pp. 66-74.
- Wright, S.J. 1992. Seasonal drought, soil fertility and the species density of tropical forest plant communities. Trends in Ecology and Evolution 7(8)260-263.
- Yount, J.L. 1956. Factors that control species numbers in Silver Springs, Florida. Limnology and Oceanography 1:286-295.
- Zabel, Bernd, Phil Hawes, Hewitt Stuart, Bruno D.V. Marino. 1999.
 Construction and engineering of a created environment: Overview of the Biosphere 2 closed system. Ecological Engineering 13(1-4)43-64.

BIOGRAPHICAL SKETCH

Linda Leigh grew up in Racine, Wisconsin. She attended the University of Wisconsin in Madison, where she studied botany, and The Evergreen State College from which she earned a bachelor of science degree in ecology and field botany. She studied range management at the University of Arizona, at the same time studying the productivity of Sonoran Desert legume trees and their potential as agricultural crops.

Linda's work with the 1.25 hectare mesocosm called Biosphere 2 began during the design phase in 1985. She coordinated the design teams for the rainforest, savannah, and desert ecosystems; lived for 3 weeks under material closure in the experimental model called the Test Module; and was one of the original Biospherians who lived for 2 years under material closure inside Biosphere 2, from 1991 to 1993. Linda's home is Tucson, Arizona, where she works with the Drylands Institute. I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

AT Down

Howard T. Odum, Chair Graduate Research Professor Emeritus of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Clay L/Montague Associate Professor of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Mark T. Brown Assistant Professor of Environmental Engineering Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

C.S. Holling / Arthur R. Marshall, Jr., Eminent Scholar of Ecological Sciences

I certify that I have read this study and that in my opinion it conforms to acceptable standards of scholarly presentation and is fully adequate, in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

<u>M. Scilena</u> Frederick N. Scatena Research Scientist for the USDA Forest Service

This dissertation was submitted to the Graduate Faculty of the College of Engineering and to the Graduate School and was accepted as partial fulfillment of the requirements for the degree of Doctor of Philosophy.

August 1999

 \int M. Jack Ohanian

Dean, College of Engineering

Winfred M. Philli bs Dean, Graduate School